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SOME CONVERGENCE RESULTS FOR THE JUNGCK-MANN
AND THE JUNGCK-ISHIKAWA ITERATION PROCESSES IN
THE CLASS OF GENERALIZED ZAMFIRESCU OPERATORS

M. O. OLATINWO and C. O. IMORU

Abstract. In this paper, we shall establish some strong convergence results for the
recently introduced Jungck-Mann iteration process of Singh et al. [18] and the newly

introduced Jungck-Ishikawa iteration process in the class of non-selfmappings in an

arbitrary Banach space. Our results are generalizations and extensions of those of
Berinde [4], Rhoades [13, 14] as well as some other analogous ones in the literature.

1. Introduction

Let (E, ‖ · ‖) be a Banach space and T : E → E a self-map of E. Suppose that
FT = { p ∈ E | Tp = p } is the set of fixed points of T.

There are several iteration processes for which the fixed points of operators have
been approximated over the years by various authors. In the Banach space setting
we shall state some of these iteration processes as follows:

For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, . . . ,(1.1)

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [12]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn,
zn = (1− βn)xn + βnTxn,

}
n = 0, 1, . . . ,(1.2)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa iteration
process (see Ishikawa [7]).

The following process is the iteration one introduced by Singh et al [18] to
establish some stability results: Let (X, ‖.‖) be a normed linear space and S, T :
Y → X such that T (Y ) ⊆ S(Y ). Then, for x0 ∈ Y, the sequence {Sxn}∞n=0 defined
by

Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, . . . ,(1.3)

where {αn}∞n=0 is a sequence in [0, 1] is called the Jungck-Mann iteration process.
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While the iteration processes (1.2) and (1.3) extend (1.1), both (1.2) and (1.3)
are independent.

Berinde [4] obtained some strong convergence results in an arbitrary Banach
space for the Ishikawa iteration process by employing the following contractive
definition:

For a mapping T : E → E, there exist real numbers α, β, γ satisfying 0 ≤ α < 1,
0 ≤ β < 1

2 , 0 ≤ γ < 1
2 respectively such that for each x, y ∈ E, at least one of the

following is true:

(z1) d(Tx, Ty) ≤ αd(x, y)

(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)]

(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .

(1.4)

(1.4) is called the Zamfirescu contraction condition. It was employed by Zam-
firescu [19] to prove some fixed point results. The condition (z1) of (1.4) is the
well known contraction condition or Banach’s contraction condition introduced by
Banach [1], see also Zeidler [20] and several other references. Any mapping satis-
fying the condition (z2) of (1.4) is called a Kannan mapping, while the mapping
satisfying the condition (z3) is called Chatterjea operator. See Chatterjea [6] for
the detail on the Chatterjea operator. The condition (1.4) was used by Berinde
[4] to obtain some convergence results.

In the next section, we shall employ both Jungck-Mann and Jungck-Ishikawa
iteration processes to extend the results of Berinde [4] for non-selfmappings in an
arbitrary Banach space. In establishing our results, a more general contractive
condition than (1.4) will be considered.

2. Preliminaries

We shall introduce the following iteration processes in establishing our results:
Let (E, ‖ · ‖) be a Banach space and Y an arbitrary set. Let S, T : Y → E be

two nonselfmappings such that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of E
and S is injective. Then, for x0 ∈ Y, define the sequence {Sxn}∞n=0 iteratively by

Sxn+1 = (1− αn)Sxn + αnTyn

Syn = (1− βn)Sxn + βnTxn

}
, n = 0, 1, . . . ,(2.1)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].
The iteration process (2.1) will be called the Jungck-Ishikawa iteration process.

If in (2.1), S is the identity operator, Y = E, βn = 0, then we obtain the Mann
iteration process defined in (1.1).
Furthermore, with S being injective, if βn = 0, then we get the Jungck-Mann
iteration process defined in (1.3).

Indeed, (2.1) reduces to some other interesting iteration processes such as Picard
and Jungck iterations amongst others. See [1, 8, 18, 20] and some other references
for Picard, Jungck and Jungck-type iteration processes.
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In addition to the Jungck-Mann and Jungck-Ishikawa iteration processes defined
in (1.3) and (2.1) respectively, we shall employ the following contractive definition:

Definition 2.1. For two non-selfmappings S, T : Y → E with T (Y ) ⊆ S(Y ),
there exist real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 , 0 ≤ γ <
1
2 respectively such that for each x, y ∈ Y, at least one of the following is true:

(gz1) d(Tx, Ty) ≤ αd(Sx, Sy)

(gz2) d(Tx, Ty) ≤ β [d(Sx, Tx) + d(Sy, Ty)]

(gz3) d(Tx, Ty) ≤ γ [d(Sx, Ty) + d(Sy, Tx)] .

(2.2)

The ondition (2.2) will be called the generalized Zamfirescu contraction for the
pair (S, T ).

Moreover, the condition (gz2) will be called the generalized Kannan condition
for the pair (S, T ), while the condition (gz3) will be called the generalized chat-
terjea condition for the pair (S, T ). However, the condition (gz1) is contained in
[8, 18].

The contractive condition (2.2) is more general than the Zamfirescu contraction
defined in (1.4) in the sense that if in (2.2), S is the identity operator and Y = E,
then we obtain (1.4).

In this paper we shall introduce both the Jungck-Mann and the Jungck-Ishikawa
iteration processes defined in (1.3) and (2.1) to establish some strong convergence
results for non-selfmappings in an arbitrary Banach space by employing the con-
tractive condition (2.2). Our results are generalizations and extensions of some
of the results of Kannan [9, 10], Rhoades [13, 14] and Berinde [3, 4]. We shall
employ the concept of coincidence points of two non-selfmappings.

Definition 2.2. Let X and Y be two nonempty sets and S, T : X → Y two
mappings. Then an element x∗ ∈ X is a coincidence point of S and T if and only
if Sx∗ = Tx∗.

We denote the set of the coincidence points of S and T by C(S, T ). There
are several papers and monographs on the coincidence point theory. However, we
refer our readers to Rus [16] and Rus et al [17] for the Definition 2.2 and some
coincidence point results.

3. Main Results

We shall establish the following theorems as our main results.

Theorem 3.1. Let (E, ‖ · ‖) be an arbitrary Banach space and Y an arbitrary
set. Suppose that S, T : Y → E are non-selfoperators such that T (Y ) ⊆ S(Y ),
where S(Y ) is a complete subspace of E, and S an injective operator. Let z be a
coincidence point of S and T (that is, Sz = Tz = p). Suppose that S and T satisfy
the condition (2.2). For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Ishikawa iteration
process defined by (2.1), where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such
that

∑∞
k=0 αk = ∞. Then {Sxn}∞n=0 converges strongly to p.
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Proof. We shall first establish that the condition (2.2) implies

‖Tx− Ty‖ ≤ 2δ‖Sx− Tx‖+ δ‖Sx− Sy‖, ∀ x, y ∈ Y.(?)

Denoting

δ = max
{

α,
β

1− β
,

γ

1− γ

}
,(??)

then we have 0 ≤ δ < 1.
By the triangle inequality and the condition (gz2) of (2.2), we have

‖Tx− Ty‖ ≤ β [‖Sx− Tx‖+ ‖Sy − Sx‖+ ‖Sx− Tx‖+ ‖Tx− Ty‖] ,

from which it follows that

‖Tx− Ty‖ ≤ 2β

1− β
‖Sx− Tx‖+

β

1− β
‖Sx− Sy‖.(3.1)

Again, using the triangle inequality and the condition (gz3) of (2.2), we obtain

‖Tx− Ty‖ ≤ γ [‖Sx− Tx‖+ ‖Tx− Ty‖+ ‖Sy − Sx‖+ ‖Sx− Tx‖] ,

from which it follows that

‖Tx− Ty‖ ≤ 2γ

1− γ
‖Sx− Tx‖+

γ

1− γ
‖Sx− Sy‖.(3.2)

Now by condition 0 ≤ δ < 1 given in (??) and also with (gz1), (3.1) and (3.2) we
obtain (?). Hence, the condition (2.2) implies (?).

Indeed, we shall use the condition (?) in the rest of the proof.
Let C(S, T ) be the set of the coincidence points of S and T . We shall now

use the condition (3.4) to establish that S and T have a unique coincidence point
z (i.e. Sz = Tz = p): Injectivity of S is sufficient. Suppose that there exist
z1, z2 ∈ C(S, T ) such that Sz1 = Tz1 = p1 and Sz2 = Tz2 = p2.

If p1 = p2, then Sz1 = Sz2 and since S is injective, it follows that z1 = z2.
If p1 6= p2, then we have by the contractiveness condition (2.2) for S and T that

0 < ‖p1 − p2‖ = ‖Tz1 − Tz2‖ ≤ 2δ‖Sz1 − Tz1‖) + δ‖Sz1 − Sz2‖
= δ‖p1 − p2‖,

which leads to

(1− δ)‖p1 − p2‖ ≤ 0,

from which it follows that 1 − δ > 0 since δ ∈ [0, 1), but ‖p1 − p2‖ ≤ 0, which is
a contradiction since the norm is nonnegative. Therefore, we have ‖p1 − p2‖ = 0,
that is, p1 = p2 = p.

Since p1 = p2, then we have p1 = Sz1 = Tz1 = Sz2 = Tz2 = p2, leading to
Sz1 = Sz2 ⇒ z1 = z2 = z (since S is injective).
Hence, z ∈ C(S, T ), that is, z is a unique coincidence point of S and T.
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We now prove that {Sxn}∞n=0 converges strongly to p (where Sz = Tz = p)
using again, the condition (?). Therefore, we have

‖Sxn+1 − p‖ = ‖(1− αn)(Sxn − p) + αn(Tyn − p)‖

≤ (1− αn)‖Sxn − p‖+ αn‖Tz − Tyn‖

≤ (1− αn)‖Sxn − p‖+ δαn‖p− Syn‖.(3.3)

Now, we have that

‖p− Syn‖ ≤ (1− βn)‖Sxn − p‖+ βn‖p− Txn‖

= (1− βn)‖Sxn − p‖+ βn‖Tz − Txn‖

≤ (1− βn + δβn)‖Sxn − p‖.(3.4)

Using (3.4) in (3.3) yields

‖Sxn+1 − p‖ ≤ [1− (1− δ)αn − δ(1− δ)αnβn]‖Sxn − p‖

≤ [1− (1− δ)αn]‖Sxn − p‖

≤ Πn
k=0[1− (1− δ)αk]‖Sx0 − p‖

≤ e−[(1−δ)
Pn

k=0 αk]‖Sx0 − p‖ → 0 as n →∞,(3.5)

since
∑∞

k=0 αk = ∞ and δ ∈ [0, 1). Hence, from (3.5) we obtain ‖Sxn − p‖ → 0 as
n →∞, that is, {Sxn}∞n=0 converges strongly to p. �

Remark 3.2. Theorem 3.1 is a generalization and extension of a multitude
of results. In particular, Theorem 3.1 is a generalization and extension of both
Theorem 1 and Theorem 2 of Berinde [4], Theorem 2 and Theorem 3 of Kannan
[10], Theorem 3 of Kannan [11], Theorem 4 of Rhoades [13] as well as Theorem 8
of Rhoades [14]. Also, both Theorem 4 of Rhoades [13] and Theorem 8 of Rhoades
[14] are Theorem 4.10 and Theorem 5.6 of Berinde [3] respectively.

Theorem 3.3. Let (E, ‖.‖) be an arbitrary Banach space and Y an arbitrary
set. Suppose that S, T : Y → E are non-selfoperators such that T (Y ) ⊆ S(Y ),
where S(Y ) is a complete subspace of E, and S is an injective operator. Let z
be a coincidence point of S and T (that is, Sz = Tz = p). Suppose that S and
T satisfy the condition (2.2). For x0 ∈ Y, let {Sxn}∞n=0 be the Jungck-Mann
iteration process defined by (1.3), where {αn}∞n=0 is a sequence in [0, 1] such that∑∞

k=0 αk = ∞. Then {Sxn}∞n=0 converges strongly to p.

Proof. The proof of this theorem follows a similar argument as in that of The-
orem 3.1. �

Remark 3.4. Theorem 3.3 is a generalization and extension of Theorem 1 of
Berinde [4], Theorem 2 and Theorem 3 of Kannan [10], Theorem 3 of Kannan
[11] as well as Theorem 4 of Rhoades [13].
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Remark 3.5. If S = I (identity operator) and Y = E in Theorem 3.1, then
the coincidence point z becomes a fixed point of T . If in addition T satisfies
the condition (1.4), we have that the Ishikawa iteration process defined in (1.2)
converges strongly to the fixed point z. It is also true that if S = I (identity
operator), Y = E and that T satisfies condition (1.4) in Theorem 3.3, then the
Mann iteration process obtained from (1.1) converges strongly to the fixed point z.
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