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ON THE UNIQUENESS RESULT FOR THE DIRICHLET PROBLEM
AND INVEXITY

M. P LÓCIENNICZAK

Abstract. We provide an existence and uniqueness theorem for the Dirichlet problem

div Hz(y,∇x(y)) = ∇xF (y, x(y)).

The assumption that both H and F are invex with respect to the second variable is imposed
and the direct variational method is applied. The application is also shown.

1. Introduction

We show a generalization of results presented in [2] to the case of partial differential equations
of real-valued functions. We assume that both functions H and F are invex [1], instead of
one being convex and the other one invex. Thus our uniqueness result applies to much more
nonlinear problems since the class of invex functions is broader than the class of convex ones.

Let Ω be a bounded, convex subset of Rn with regular boundary δΩ. We shall consider
the existence of solutions to the Dirichlet problem

div Hz(y,∇x(y)) = ∇xF (y, x(y)), x|δΩ = 0,(1.1)

where H : Ω× Rn → R and F : Ω× R → R. We seek for solutions to (1.1) on

W 1,p
0 (Ω) :=

{
x : Ω → R : x ∈ Lp(Ω), ∇x ∈ Lp(Ω), x|δΩ = 0

}
,
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normed by

‖x‖W 1,p =
(
‖x‖p

p + ‖∇x‖p
p

) 1
p .

The Sobolev inequality for Wm,p(Ω) [3] states that for fixed 1 ≤ p ≤ q, k ≤ m, f ∈ Wm,p(Ω)
there exists a constant C, independent of Ω and f such that

S1. if kp < n, then ‖f‖W m−k,q ≤ C‖f‖W m,p , for p ≤ q ≤ np
n−kp ,

S2. if kp = n, then ‖f‖W m−k,q ≤ C‖f‖W m,p , for p ≤ q < +∞.

If k = m = 1, q = p, then W 0,p = Lp. In this case the above inequalities are equivalent to
the inequality

‖f‖p ≤ C‖f‖W 1,p , for p ≤ n.(1.2)

We assume that
(A1) H is a Caratheodory function, i.e. it is measurable with respect to the first variable

and continuous in the second one. It is also Gâteaux differentiable in the second
variable. There exist constants ci > 0, functions di ∈ L1(Ω), i = 1, . . . , 4 such that for
all w ∈ Rn and almost all y ∈ Ω

c2‖w‖p + d2(y) ≤ H(y, w) ≤ c1‖w‖p + d1(y),(1.3)

c4‖w‖p + d4(y) ≤ ‖Hz(y, w)‖W 1,p ≤ c3‖w‖p + d3(y).(1.4)

(A2) F is a Caratheodory function, Gâteaux differentiable in the second variable. There
exist a constant a < c2 (C−p − 1) and functions bp−j ∈ L1(Ω), j = 1, . . . , p such that

F (y, x) ≥ −a‖x‖p −
p∑

j=1

bp−j(y)‖x‖p−j ,(1.5)
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for all x ∈ R and almost all y ∈ Ω, where C is the best Sobolev constant in inequality
(1.2) [3]. Moreover, for any r > 0 there exists a function gr ∈ L1(Ω) such that for all
x ∈ R, ‖x‖ ≤ r and y ∈ Ω a.e.

F (y, x) ≤ gr(y),(1.6)

‖Fz(y, x)‖W 1,p ≤ gr(y).(1.7)

(A3) Either H is invex with respect to the second variable for a.e. y and F is strictly invex
with respect to the second variable for a.e. y or H is strictly invex in the second
variable for a.e. y and F is invex with respect to the second variable for a.e. y.

(A4) lim infn→∞H(y, wn) ≥ H(y, w̄) for every sequence wn ⇀ w̄ weakly in W 1,p(Ω).

Let us recall that f defined on Rn is said to be (strictly) invex if there exists an operator
η : Rn × Rn → Rn such that for all y1, y2 ∈ Rn the following inequality holds

f(y1)− f(y2) ≥ η(y1, y2)T · ∇f(y2),

(with the strict inequality above). It is well known that every stationary point of (strictly)
invex functional f minimizes it on Rn (uniquely) [1].

2. Existence and Uniqueness

We shall prove that (1.1) is a Euler-Lagrange equation for some Gâteaux differentiable,
coercive and weakly lower semicontinuous functional J. Therefore as in [6], the existence of
solutions (1.1) will be guaranteed. Put J : W 1,p

0 (Ω) → R,

J(x) =
∫

Ω

[
H (y,∇x(y)) + F (y, x(y))

]
dy.(2.1)
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Lemma 2.1. The functional J is Gâteaux differentiable and has at each x ∈ W 1,p
0 (Ω) and

in each direction h ∈ W 1,∞(Ω) the Gâteaux variation

δJ(x;h) =
∫

Ω

[
Hz(y,∇x(y))∇h(y) + Fz(y, x(y))h(y)

]
dy.

Proof. Let h ∈ W 1,∞(Ω). By assumptions (A1) and (A2) we obtain

d
dε

J(x+εh)|ε=0 =
d
dε

∫
Ω

[
H(y,∇x(y)+ε∇h(y)) + F (y, x(y) + εh(y))

]
dy|ε=0

=
∫

Ω

[
Hz(y,∇x(y)+εh(y))∇h(y) + Fz(y, x(y)+εh(y))h(y)

]
dy|ε=0

=
∫

Ω

[
Hz(y,∇x(y))∇h(y) + Fz(y, x(y))h(y)

]
dy.

It is clear that the function h 7−→
∫
Ω

[
Hz(y,∇x(y))∇h(y) + Fz(y, x(y))h(y)

]
dy is linear.

Applying the Hölder inequality, (1.4) and (1.7) we obtain its continuity. �

By the above Lemma it follows that (1.1) is Euler-Lagrange equation for the functional J
given by (2.1).

Lemma 2.2. The functional J is coercive on W 1,p
0 (Ω).
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Proof. By the assumptions (A1)–(A2), inequalities (1.3), (1.5) and (1.2) we have

J(x) ≥ c2

∫
Ω

‖∇x(y)‖pdy +
∫

Ω

d2(y)dy − a

∫
Ω

‖x‖pdy −
p∑

j=1

∫
Ω

bp−j(y)‖x‖p−jdy

≥
[
c2

(
1

Cp
− 1

)
− a

] ∫
Ω

‖x‖pdy +
∫

Ω

d2(y)dy −
p∑

j=1

∫
Ω

bp−j(y)‖x‖p−jdy

=
[
c2

(
1

Cp
− 1

)
− a

]
‖x‖p

p +
∫

Ω

d2(y)dy −
p∑

j=1

∫
Ω

bp−j(y)‖x‖p−jdy.

Passing ‖x‖p →∞ we obtain the assertion of the lemma. �

Lemma 2.3. The functional J is weakly lower semicontinuous on W 1,p
0 (Ω).

Proof. We shall prove the weak lower semicontinuity of the functionals

J1(x) =
∫

Ω

H(y,∇x(y))dy and J2(x) =
∫

Ω

F (y, x(y))dy.

Let (xn) be weakly convergent in W 1,p
0 (Ω) to a certain x̄. By the Fàtou Lemma and (A4)

we have that for almost all y ∈ Ω

lim inf
n→∞

∫
Ω

H(y,∇xn(y))dy ≥
∫

Ω

lim inf
n→∞

H(y,∇xn(y))dy ≥
∫

Ω

H(y,∇x̄(y))dy.

To prove weak lower semicontinuity of J2 we observe that Rellich-Kondrashov Theorem
[3] provides strong convergence of a sequence (xn) to x̄ on every open and bounded subset of
Lp(Ω). It implies that (xn) is bounded and there exists a subsequence, still denoted by (xn),
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such that lim
n→∞

xn(y) = x̄(y) for y ∈ Ω a.e. Hence by continuity of F in the second variable

(see [4]), (1.6) and Lebesgue Dominated Convergence Theorem [3] we obtain

lim inf
n→∞

∫
Ω

F (y, xn(y))dy = lim inf
n→∞

∫
Ω

F (y, xn(y))dy =
∫

Ω

F (y, x̄(y))dy.

Finally, we get

lim inf
n→∞

J(xn) = lim inf
n→∞

J1(xn) + lim
n→∞

J2(xn) ≥ J1(x̄) + J2(x̄) = J(x̄).

�

Lemma 2.4. Let f : R × R → R and g : R × Rn → R. Assume that both f(y, x(y)) and
g(y, z(y)) are invex in the second variable. If f and/or g is strictly invex with respect to the
second variable, then J =

∫
Ω

[f(y, x(y)) + g(y, z(y)] dy is strictly invex.

Proof. Let

J1(x) =
∫

Ω

f(y, x(y))dy and J2(z) =
∫

Ω

g(y, z(y))dy.

Assume that f is invex and g is strictly invex. We have the following inequalities, for all
x, x̄ ∈ R and z, z̄ ∈ Rn

J1(x)− J1(x̄) ≥
∫

Ω

η(x, x̄) · ∇xf(y, x̄)dy,

J2(z)− J2(z̄) >

∫
Ω

ρ(z, z̄)T · ∇zg(y, z̄)dy,
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for some η : R× R → R and ρ : Rn × Rn → Rn. It follows that

J1(x) + J2(z)− (J1(x̄) + J2(z̄)) >

∫
Ω

[
η(x, x̄) · ∇xf(y, x̄) + ρ(z, z̄)T · ∇zg(y, z̄)

]
dy

=
∫

Ω

〈(η(x, x̄), ρ(z, z̄)), (∇xf(y, x̄),∇zg(y, z̄)〉dy,

where 〈·, ·〉 denotes the scalar product in R×Rn. The remaining two cases follow in the same
manner. �

Now we formulate the main result of the paper.

Theorem 2.5 (Existence). Assume (A1), (A2) and (A4). Then there exists a solution
to (1.1).

Proof. Since the functional J is weakly lower semicontinuous and coercive on W 1,p
0 (Ω) it

follows by [6, Proposition 1.2] that every x̄ for which J ′(x̄) = 0 minimizes J on W 1,p
0 (Ω) and

satisfies (1.1). �

Theorem 2.6 (Uniqueness). Assume (A1)–(A4) Then there exists a unique solution to
(1.1).

Proof. The existence is given by Theorem 2.5. Uniqueness follows by Lemma 2.4. �

3. Application

Let 1 < r < | 25 |. Consider the following two-dimensional Dirichlet problem on W 1,2(Ω)

(1 + 2r sin ‖∇x‖2)4x + 4r cos ‖∇x‖2(x2
uxuu + x2

vxvv)
= 2x + sinx + x cos x, x|δΩ = 0,

(3.1)
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where Ω = {y = (u, v) ∈ R2 : ‖y‖ ≤ 1}. Here

H(y, z) =
1
2
|z|2 − r cos |z|2 and F (y, x) = x2 + x sin(x).

Both H(y, z) and F (y, x) are not convex with respect to z and x, respectively. They are
actually strictly invex since each of them has only one stationary point which is the global
minimizer [7].

We see that the set {
z ∈ R2 : H(y, z) ≤ α

}
is convex for any y ∈ Ω and α > −r. Indeed, H is a radial function with respect to the
second variable. Moreover, f(u) = 1

2 |u|
2 − r cos |u|2 is even and its derivative is positive on

the positive half-line and negative for u < 0. Thus f is strictly increasing for u > 0, strictly
decreasing for u < 0 and f(0) = −r. We conclude that

{
z ∈ R2 : H(y, z) ≤ α

}
is convex in

R2.
Assumptions (A1)–(A4) are clearly satisfied. The unique solution to (3.1) is thus guar-

anteed by Theorem 2.6.
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M. P lócienniczak, Faculty of Mathematics and Computer Science, University of  Lódź, Banacha 22, 90-238
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