

TWO-GENERATED IDEALS OF LINEAR TYPE

H. KULOSMAN

ABSTRACT. We show that in a local S_1 ring every two-generated ideal of linear type can be generated by a two-element sequence of linear type and give an example which illustrates that the S_1 condition is essential. We also show that every Noetherian local ring in which every two-element sequence is of linear type is an integrally closed integral domain and every two-generated ideal of it can be generated by a two-element d-sequence. Finally, we investigate two-element c-sequences and characterize them under some mild assumptions.

1. INTRODUCTION

Let R be a commutative ring, $\langle \mathbf{a} \rangle = \langle a_1, \ldots, a_n \rangle$ a sequence of elements of R, $I = (a_1, \ldots, a_n)$ the ideal generated by the a_i 's and $I_i = (a_1, \ldots, a_i)$, $i = 0, 1, \ldots, n$, the ideal generated by the first i elements of the sequence. Let S(I) be the symmetric algebra of the ideal I, $R[It] = \bigoplus_{i\geq 0} I^i t^i$ its Rees algebra and $\alpha : S(I) \to R[It]$ the canonical map, which maps $a_i \in S^1(I)$ to $a_i t$. The ideal I is said to be an ideal of linear type if α is an isomorphism.

Let us mention a simple property of ideals of linear type that we are going to use later.

Lemma 1.1 ([3, Theorem 4(i)]). If $I = (a_1, \ldots, a_n)$ is an ideal of linear type, then

$$I_{n-1}I^{k-1}: a_n^k = I_{n-1}: a_n^k$$

for every $k \geq 1$.

Received January 6, 2008: revised June 16, 2008.

Close

Go back

Full Screen

> | >>

44

2000 Mathematics Subject Classification. Primary 13A30, 13B22, 13B25; Secondary 13E15. Key words and phrases. ideal of linear type; sequence of linear type; d-sequence; c-sequence.

Here the notation J: x, where J is an ideal and x an element of a commutative ring R, means $\{r \in R | rx \in J\}$. We also use the notation (J: x) and [J: x] for the same thing.

We say that $\langle \mathbf{a} \rangle$ is a *d*-sequence ([5]) if

(1)
$$[I_{i-1}:a_i]:a_j = I_{i-1}:a_j$$

for every $i, j \in \{1, 2, ..., n\}$ with $j \ge i$. Equivalently

(2)
$$[I_{i-1}:a_i] \cap I = I_{i-1}$$

for every $i \in \{1, 2, ..., n\}$.

The notion of a d-sequence is a useful tool in many questions in commutative algebra. Huneke [6] and G. Valla [13], showed that ideals generated by d-sequences are of linear type, thus generalizing a result of A. Micali [8], who proved the same statement for regular sequences.

We say that $\langle \mathbf{a} \rangle$ is a sequence of linear type ([3]) if I_i is an ideal of linear type for every i = 1, 2, ..., n.

Conditions for a two-generated ideal to be of linear type are first investigated in detail by Ratliff [11]. Similar type of results can also be found in Shimoda's paper [12]. A nice overview of results about ideals and sequences of linear type, including those of two elements, is given by Cipu and Fiorentini [1]. We should also mention two papers by Planas-Vilanova, namely [9] and [10], where among other things two-generated ideals of linear type are considered.

2. Two-generated ideals of linear type in local rings

We start with an example of a two-generated ideal in a local ring, which is of linear type, but cannot be minimally generated by a sequence of linear type.

Example 2.1. Let $R = k[[X, Y, U, V]]/(XU - YV, XV, YU, U^2, V^2, UV) = k[[x, y, u, v]]$, where k is a field and I = (x, y). Then I is an ideal of linear type which cannot be minimally generated by a sequence of linear type.

Proof. Let A = k[u, v] with $u^2 = v^2 = uv = 0$. Then the ring S = A[X, Y]/(vX, uY, uX - vY) is a symmetric algebra of an A-module (namely, $A^2/(A(v, 0) + A(0, u) + A(u, -v)))$ and so its augmentation ideal is of linear type ([4]). Hence the "polynomial version" of the ideal I is of linear type and so I in the above ring R is of linear type.

Now note that $ux^2 = 0$ and $vy^2 = 0$. (Indeed, $ux^2 = ux \cdot x = yv \cdot x = 0$. Similarly $vy^2 = 0$.)

Every element of I has the form fx + gy, where f, g are power series in x, y, u and v. Suppose fx + gy is a minimal generator of I and $(0: fx + gy) = (0: (fx + gy)^2)$. Since

$$(fx + gy)^2 \cdot u = (f^2x^2 + 2fgxy + g^2y^2) \cdot u = f^2x^2u = 0, (fx + gy)^2 \cdot v = (f^2x^2 + 2fgxy + g^2y^2) \cdot v = g^2y^2v = 0,$$

we would have

$$(fx + gy) \cdot u = fxu = 0,$$

$$(fx + gy) \cdot v = gyv = 0.$$

The first of these equalities would imply $f \in m_R$ (all terms that have either x, or y, or u, or v, when multiplied by xu would give 0 and the constant term c would give $cxu \neq 0$, so there is no constant term) and the second one would imply $g \in m_R$. Hence $fx + gy \in m_R I$ and could not be a minimal generator, that is a contradiction.

The next theorem shows that by adding a very mild condition, namely that the ring is S_1 (which means that the associated primes of the ring are minimal), we can guarantee that every two-generated ideal of linear type in a local ring can necessarily be minimally generated by a sequence of linear type.

Theorem 2.2. Let R be a local S_1 ring. Then every two generated ideal of R of linear type can be generated by a sequence of linear type of two elements.

Proof. For every element $a \in R$ we have $\operatorname{Ass}(R/(0:a)) \subset \operatorname{Ass}(R) = \operatorname{Min}(R)$ (the last equality since R is S_1). Hence all the associated primes of (0:a) are of height 0. Now (a) is of linear type if and only if $(0:a^2) = (0:a)$, i.e., if and only if a is in no associated prime of (0:a), i.e., if and only if a is in no minimal prime of R containing (0:a).

Let Q_1, Q_2, \dots, Q_s be the minimal primes of R that do not contain I. By the prime avoidance lemma we can choose an element a so that

$$a \in I \setminus [(\cup_{i=1}^{s} Q_i) \cup m_R I].$$

We claim that a is in no minimal prime of R containing (0:a). Suppose the contrary. Let $P \in Min(R)$ with $P \supset (0:a)$ and $a \in P$. Since a is in no minimal prime of R which does not contain I, we have $P \supset I$. But then, since I is of linear type, by [4, Proposition 2.4] IR_P can be generated by ht(P) = 0 elements, so $IR_P = 0$. Hence $PR_P \supset (0:a)_P = (0:a/1) = (0:0) = R_P$, this is a contradiction. Thus (a) is of linear type. Now since $a \notin m_R I$, a is a minimal generator of I, hence we can add one more generator $b \in I$ so that $\{a, b\}$ is a minimal system of generators of I and $\langle a, b \rangle$ is a sequence of linear type.

Now we characterize local rings in which every two-element sequence is of linear type. (Note that every one-element sequence $\langle a \rangle$ in a ring R is of linear type if and only if R is *reduced*.)

Theorem 2.3. Let R be a Noetherian local ring in which every sequence $\langle a, b \rangle$ is of linear type. Then R is an integrally closed integral domain and every two generated ideal of R can be generated by a d-sequence of two elements.

Proof. We first show that R is an integral domain. Suppose the contrary. Let a, b be nonzero elements of R such that ab = 0 (so $a, b \in m_R$) and let I = (a, b). By the Costa-Kühl criterion ([3,

Theorem 1] or [7, Theorem 1.2]), the sequence

$$0 \longrightarrow N \longrightarrow I \times I \stackrel{f}{\longrightarrow} I^2 \longrightarrow 0$$

is exact, where f(x, y) = ax + by and N is the submodule of $I \times I$ generated by the trivial syzygy (-b, a). Since $(b, 0) \in N$, we have (b, 0) = r(-b, a) for some $r \in R$. So rb = -b and ra = 0. Since $a \neq 0, r \in m_R$. Hence 1 + r is a unit and since (1 + r)b = 0, we have b = 0, this is a contradiction. Thus R is an integral domain.

Now by [8, page 38, Proposition 1], S(I) is an integral domain for every two generated ideal of R. Hence, by [2, Theorem 3], R is integrally closed. Finally, by [5, Proposition 1.5], every two-generated ideal of R can be generated by a d-sequence of two elements.

3. C-SEQUENCES OF TWO ELEMENTS

It was proved in [3] that d-sequences satisfy the following property:

 $[I_{i-1}I^k:a_i] \cap I^k = I_{i-1}I^{k-1}$

for every $i \in \{1, ..., n\}$ and every $k \ge 1$. It was also proved ([3, Theorem 3]) that, if a sequence satisfies this property, it generates an ideal of linear type. We call the sequences that satisfy this property c-sequences.

Definition 3.1. We say that $\langle \mathbf{a} \rangle$ is a *c*-sequence if

$$[I_{i-1}I^k:a_i] \cap I^k = I_{i-1}I^{k-1}$$

for every $i \in \{1, \ldots, n\}$ and every $k \ge 1$.

We say that a sequence is an *unconditioned c-sequence* if it is a c-sequence in any order.

(3)

For one-element sequences the notions of c- and d-sequences coincide, but already among twoelement sequences it is possible to find an example of a c-sequence that is not a d-sequence.

Example 3.2. Let $R = k[X, Y, Z, U]/(XU - Y^2Z) = k[x, y, z, u]$, where k is a field. Consider the sequence $\langle x, y \rangle$ and the ideal I = (x, y). This sequence is not a d-sequence (since $z \in (x) : y^2$ and $z \notin (x) : y$), although I is an ideal of linear type (as it was shown in [13, Example 3.16]).

Let us show that $\langle x, y \rangle$ is a c-sequence. We should show two relations:

$$[0:x] \cap I^{k} = 0, \qquad k \ge 1$$
$$[xI^{k}:y] \cap I^{k} = xI^{k-1}, \quad k \ge 1,$$

the first of which is trivial since R is an integral domain. For the second one, note that $[xI^k : y] \cap I^k = [xI^k : y] \cap ((xI^{k-1} + (y)^k) = [xI^k : y] \cap (y)^k + xI^{k-1})$. So it is enough to prove that $[xI^k : y] \cap (y)^k \subset xI^{k-1}$. Let $\alpha = ay^k$, $a \in R$, be an element of $[xI^k : y] \cap (y)^k$. Then $ay^{k+1} \in xI^k$, i.e., $a \in xI^k : y^{k+1} = (x) : y$ by Lemma 1.1. Hence $ay \in (x)$ and so $\alpha = ay^k = ay \cdot y^{k-1} \in xI^{k-1}$.

For one-element sequences the notions of a sequence of linear type and a c-sequence coincide. For two-element sequences, every c-sequence $\langle a, b \rangle$ is a sequence of linear type. Indeed, the k = 1 condition for a c-sequence implies $(0 : a) \cap (a) = 0$, which is equivalent with $(0 : a) = (0 : a^2)$. Hence (a) is an ideal of linear type. Also (a, b) is of linear type since every c-sequence generates an ideal of linear type by the above mentioned [3, Theorem 3]. Now we show that the notion of a sequence of linear type is strictly weaker than the notion of a c-sequence.

Example 3.3. Let $R = k[X, Y, U, V]/(UX, VX, UY, U^2, V^2, UV) = k[x, y, u, v]$ where k is a field. Then $\langle x, y \rangle$ is a sequence of linear type which is not a c-sequence.

Indeed, let us first show that I = (x, y) is an ideal of linear type. We can write

R = A[X, Y]/(uX, vX, uY),

where A = k[u, v] with $u^2 = v^2 = uv = 0$. Hence R is a symmetric algebra of an A-module (namely $A^2/(A(u, 0) + A(v, 0) + A(0, u))$ and so (by [4, page 87]) its augmentation ideal I = (x, y) is an ideal of linear type.

Also it is easy to verify that $(0:x) = (0:x^2) = (u, v)$. Thus $\langle x, y \rangle$ is a sequence of linear type. But $(0:x) \cap (x, y)$ contains a nonzero element vy and thus the first condition for $\langle x, y \rangle$ to be a c-sequence is not satisfied.

Now we characterize two-element c-sequences under some mild assumptions.

Theorem 3.4. Let I = (a, b) be an ideal of R. Suppose $(0 : a) \cap I = 0$. Then the following conditions are equivalent:

- (i) I is of linear type,
- (ii) $\langle a, b \rangle$ is a sequence of linear type,
- (iii) $\langle a, b \rangle$ is a c-sequence,

and they imply the following conditions:

- (iv) $aI^k \cap bI^k = abI^{k-1}, k \ge 1$,
- (v) $aI^{k-1} \cap (b)^k \subset a(b)^{k-1}, k \ge 1.$

If we also suppose that $(0:b) \cap I = 0$, then all five conditions are equivalent to each other.

Proof. (i) \Rightarrow (iii): Assume I that is of linear type. Since the first condition for $\langle a, b \rangle$ to be a c-sequence, namely $(0:a) \cap I = 0$, is assumed, we only need to show the second condition, namely

$$[aI^k:b]\cap I^k\subset aI^{k-1},\qquad k\geq 1,$$

or equivalently

$$[aI^k:b] \cap [aI^{k-1} + (b)^k] \subset aI^{k-1}, \qquad k \ge 1.$$

Since $aI^{k-1} \subset aI^k : b$, this is equivalent with

$$[aI^k:b]\cap (b)^k+aI^{k-1}\subset aI^{k-1}, \qquad k\geq 1,$$

••

i.e., with

$$[aI^k:b]\cap (b)^k\subset aI^{k-1},\qquad k\geq 1.$$

Let $x = rb^k$, $r \in R$, be such that $xb = rb^{k+1} \in aI^k$. Then $r \in aI^k : b^{k+1}$ and so by Lemma 1.1, $r \in (a) : b$, i.e., $rb \in (a)$. Hence $x = rb^k = rbb^{k-1} \in aI^{k-1}$. (iii) \Rightarrow (ii) and (ii) \Rightarrow (i): clear.

(ii) \Rightarrow (v): Let $x = rb^k \in aI^{k-1} \cap (b)^k$. Then $r \in aI^{k-1} : b^k = (a) : b$ by Lemma 1.1. Hence $rb \in (a)$ and so $x = rb^k \in a(b)^{k-1}$.

 $(v) \Rightarrow (iv)$: We have

$$\begin{split} aI^{k} \cap bI^{k} &= aI^{k} \cap b(aI^{k-1} + (b)^{k}) \\ &= aI^{k} \cap (abI^{k-1} + (b)^{k+1}) \\ &= aI^{k} \cap (b)^{k+1} + abI^{k-1} \\ &\subset a(b)^{k} + abI^{k-1} \\ &= abI^{k-1}, \end{split}$$

where the inclusion follows from the assumption (v).

(iv) \Rightarrow (iii): Assume now that $(0:b) \cap I = 0$ and suppose that (iv) holds. Let $k \ge 1$ and let $x \in [aI^k:b] \cap I^k$. Then $bx \in aI^k$ and also $bx \in bI^k$. So $bx \in aI^k \cap bI^k \subset abI^{k-1}$ by the assumption. Hence bx = aby, $y \in I^{k-1}$. Now b(x - ay) = 0 and, since $x - ay \in I$ and $(0:b) \cap I = 0$, we have $x = ay \in aI^{k-1}$. Hence $\langle a, b \rangle$ is a c-sequence.

Remark 3.5. All five of the above conditions are equivalent, for example, when R is an integral domain.

Corollary 3.6 ([2, Theorem 2]). Let R be an integral domain, $a, b, \in R$, I = (a, b). Then $S_R(I)$ is an integral domain if and only if $aI^k \cap bI^k = abI^{k-1}$ for all $k \ge 1$.

Proof. Follows from Theorem 3.4 and [8, Proposition 1].

Corollary 3.7. In an integral domain every two-generated ideal of linear type, is generated by an unconditioned c-sequence of two elements.

Remark 3.8. This is an analogue of [5, Proposition 1.5] which says that in an integrally closed integral domain *every* two-generated ideal is generated by a d-sequence of two elements.

Acknowledgment. I would like to thank the referee for a very careful reading of the paper and valuable comments.

- Cipu M. and Fiorentini M., Ubiquity of Relative Regular Sequences and Proper Sequences, K-theory 8 (1994), 81–106.
- 2. Costa D., On the Torsion-Freeness of the Symmetric Powers of an Ideal, J. Algebra 80 (1983), 152–158.
- 3. _____, Sequences of linear type, J. Algebra 94 (1985), 256–263.
- Herzog J., Simis A. and Vasconcelos W., Koszul homology and blowing-up rings, Proc. Trento Comm. Alg. Conf, Lect. Notes Pure Appl. Math. 84, Dekker, N.Y. 1983, 79–169.
- 5. Huneke C., The theory of d-sequences and powers of ideals, Adv. Math. 46 (1982), 249-279.
- 6. _____, On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268–275.
- 7. Kühl M., On the symmetric algebra of an ideal, Manus. math. 37 (1982), 49-60.
- 8. Micali A., Sur les Algebres Universelles, Ann. Inst. Fourier (Grenoble), 14 (1964), 33-88.
- 9. Planas-Vilanova F., Rings of weak dimension one and syzygetic ideals, Proc. A.M.S. 124 (1996), 3015–3017.
- 10. _____, On the module of effective relations of a standard algebra, Math. Proc. Camb. Phil. Soc. 124 (1998), 215–229.
- **11.** Ratliff L. J., Jr., Conditions for ker($R[x] \rightarrow R[c/b]$) to have a linear base, Proc. A.M.S. **39**(1973), 509–514.
- 12. Shimoda Y., A note on Rees algebras of two-dimensional local domains, J. Math. Kyoto Univ. 19 (1979), 327–333.
- 13. Valla G., On the symmetric and Rees algebras of an ideal, Manus. Math. 30 (1980), 239–255.

Go back

Full Screen

Close

H. Kulosman, Department of Mathematics, University of Louisville Louisville, KY 40292 U.S.A., *e-mail*: h0kulo01@louisville.edu

