TWO-GENERATED IDEALS OF LINEAR TYPE

H. KULOSMAN

Abstract

We show that in a local S_{1} ring every two-generated ideal of linear type can be generated by a two-element sequence of linear type and give an example which illustrates that the S_{1} condition is essential. We also show that every Noetherian local ring in which every two-element sequence is of linear type is an integrally closed integral domain and every two-generated ideal of it can be generated by a two-element d-sequence. Finally, we investigate two-element c-sequences and characterize them under some mild assumptions

1. Introduction

Let R be a commutative ring, $\langle\mathbf{a}\rangle=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ a sequence of elements of R, $I=\left(a_{1}, \ldots, a_{n}\right)$ the ideal generated by the a_{i} 's and $I_{i}=\left(a_{1}, \ldots, a_{i}\right), i=0,1, \ldots, n$, the ideal generated by the first i elements of the sequence. Let $S(I)$ be the symmetric algebra of the ideal I, $R[I t]=\bigoplus_{i>0} I^{i} t^{i}$ its Rees algebra and $\alpha: S(I) \rightarrow R[I t]$ the canonical map, which maps $a_{i} \in S^{1}(I)$ to $a_{i} t$. The ideal I is said to be an ideal of linear type if α is an isomorphism.

Go back

Full Screen

Let us mention a simple property of ideals of linear type that we are going to use later.
Lemma 1.1 ([3, Theorem 4(i)]). If $I=\left(a_{1}, \ldots, a_{n}\right)$ is an ideal of linear type, then

$$
I_{n-1} I^{k-1}: a_{n}^{k}=I_{n-1}: a_{n}
$$

for every $k \geq 1$.

[^0]2000 Mathematics Subject Classification. Primary 13A30, 13B22, 13B25; Secondary 13 E 15.

[^1]Here the notation $J: x$, where J is an ideal and x an element of a commutative ring R, means $\{r \in R \mid r x \in J\}$. We also use the notation $(J: x)$ and $[J: x]$ for the same thing.

We say that $\langle\mathbf{a}\rangle$ is a d-sequence ([5]) if

$$
\begin{equation*}
\left[I_{i-1}: a_{i}\right]: a_{j}=I_{i-1}: a_{j} \tag{1}
\end{equation*}
$$

for every $i, j \in\{1,2, \ldots, n\}$ with $j \geq i$. Equivalently

$$
\begin{equation*}
\left[I_{i-1}: a_{i}\right] \cap I=I_{i-1} \tag{2}
\end{equation*}
$$

for every $i \in\{1,2, \ldots, n\}$.
The notion of a d-sequence is a useful tool in many questions in commutative algebra. Huneke [6] and G. Valla [13], showed that ideals generated by d-sequences are of linear type, thus generalizing a result of A. Micali [8], who proved the same statement for regular sequences.

We say that $\langle\mathbf{a}\rangle$ is a sequence of linear type ([3]) if I_{i} is an ideal of linear type for every $i=1,2, \ldots, n$.

Conditions for a two-generated ideal to be of linear type are first investigated in detail by Ratliff [11]. Similar type of results can also be found in Shimoda's paper [12]. A nice overview of results about ideals and sequences of linear type, including those of two elements, is given by Cipu and Fiorentini [1]. We should also mention two papers by Planas-Vilanova, namely [9] and [10], where among other things two-generated ideals of linear type are considered.

2. Two-Generated ideals of linear type in local rings

We start with an example of a two-generated ideal in a local ring, which is of linear type, but cannot be minimally generated by a sequence of linear type.

Example 2.1. Let $R=k[[X, Y, U, V]] /\left(X U-Y V, X V, Y U, U^{2}, V^{2}, U V\right)=k[[x, y, u, v]]$, where k is a field and $I=(x, y)$. Then I is an ideal of linear type which cannot be minimally generated by a sequence of linear type.

Proof. Let $A=k[u, v]$ with $u^{2}=v^{2}=u v=0$. Then the ring $S=A[X, Y] /(v X$, $u Y, u X-v Y)$ is a symmetric algebra of an A-module (namely, $\left.A^{2} /(A(v, 0)+A(0, u)+A(u,-v))\right)$ and so its augmentation ideal is of linear type ([4]). Hence the "polynomial version" of the ideal I is of linear type and so I in the above ring R is of linear type.

Now note that $u x^{2}=0$ and $v y^{2}=0$. (Indeed, $u x^{2}=u x \cdot x=y v \cdot x=0$. Similarly $v y^{2}=0$.)
Every element of I has the form $f x+g y$, where f, g are power series in x, y, u and v. Suppose $f x+g y$ is a minimal generator of I and $(0: f x+g y)=\left(0:(f x+g y)^{2}\right)$. Since

$$
\begin{aligned}
& (f x+g y)^{2} \cdot u=\left(f^{2} x^{2}+2 f g x y+g^{2} y^{2}\right) \cdot u=f^{2} x^{2} u=0 \\
& (f x+g y)^{2} \cdot v=\left(f^{2} x^{2}+2 f g x y+g^{2} y^{2}\right) \cdot v=g^{2} y^{2} v=0
\end{aligned}
$$

we would have

$$
\begin{aligned}
& (f x+g y) \cdot u=f x u=0 \\
& (f x+g y) \cdot v=g y v=0
\end{aligned}
$$

Go back

Full Screen

Close
The first of these equalities would imply $f \in m_{R}$ (all terms that have either x, or y, or u, or v, when multiplied by $x u$ would give 0 and the constant term c would give $c x u \neq 0$, so there is no constant term) and the second one would imply $g \in m_{R}$. Hence $f x+g y \in m_{R} I$ and could not be a minimal generator, that is a contradiction.

The next theorem shows that by adding a very mild condition, namely that the ring is S_{1} (which means that the associated primes of the ring are minimal), we can guarantee that every two-generated ideal of linear type in a local ring can necessarily be minimally generated by a sequence of linear type.

44 4 • \mid •
Go back

Full Screen

Close
Theorem 2.2. Let R be a local S_{1} ring. Then every two generated ideal of R of linear type can be generated by a sequence of linear type of two elements.

Proof. For every element $a \in R$ we have $\operatorname{Ass}(R /(0: a)) \subset \operatorname{Ass}(R)=\operatorname{Min}(R)$ (the last equality since R is S_{1}). Hence all the associated primes of $(0: a)$ are of height 0 . Now (a) is of linear type if and only if $\left(0: a^{2}\right)=(0: a)$, i.e., if and only if a is in no associated prime of $(0: a)$, i.e., if and only if a is in no minimal prime of R containing $(0: a)$.

Let $Q_{1}, Q_{2}, \cdots, Q_{s}$ be the minimal primes of R that do not contain I. By the prime avoidance lemma we can choose an element a so that

$$
a \in I \backslash\left[\left(\cup_{i=1}^{s} Q_{i}\right) \cup m_{R} I\right] .
$$

We claim that a is in no minimal prime of R containing ($0: a$). Suppose the contrary. Let $P \in \operatorname{Min}(R)$ with $P \supset(0: a)$ and $a \in P$. Since a is in no minimal prime of R which does not contain I, we have $P \supset I$. But then, since I is of linear type, by [4, Proposition 2.4] $I R_{P}$ can be generated by ht $(P)=0$ elements, so $I R_{P}=0$. Hence $P R_{P} \supset(0: a)_{P}=(0: a / 1)=(0: 0)=R_{P}$, this is a contradiction. Thus (a) is of linear type. Now since $a \notin m_{R} I, a$ is a minimal generator of I, hence we can add one more generator $b \in I$ so that $\{a, b\}$ is a minimal system of generators of I and $\langle a, b\rangle$ is a sequence of linear type.

Now we characterize local rings in which every two-element sequence is of linear type. (Note that every one-element sequence $\langle a\rangle$ in a ring R is of linear type if and only if R is reduced.)

Theorem 2.3. Let R be a Noetherian local ring in which every sequence $\langle a, b\rangle$ is of linear type. Then R is an integrally closed integral domain and every two generated ideal of R can be generated by a d-sequence of two elements.

Proof. We first show that R is an integral domain. Suppose the contrary. Let a, b be nonzero elements of R such that $a b=0$ (so $a, b \in m_{R}$) and let $I=(a, b)$. By the Costa-Kühl criterion ($[3$,

Theorem 1] or [7, Theorem 1.2]), the sequence

$$
0 \longrightarrow N \longrightarrow I \times I \xrightarrow{f} I^{2} \longrightarrow 0
$$

is exact, where $f(x, y)=a x+b y$ and N is the submodule of $I \times I$ generated by the trivial syzygy $(-b, a)$. Since $(b, 0) \in N$, we have $(b, 0)=r(-b, a)$ for some $r \in R$. So $r b=-b$ and $r a=0$. Since $a \neq 0, r \in m_{R}$. Hence $1+r$ is a unit and since $(1+r) b=0$, we have $b=0$, this is a contradiction. Thus R is an integral domain.

Now by [8, page 38, Proposition 1], $S(I)$ is an integral domain for every two generated ideal of R. Hence, by [2, Theorem 3], R is integrally closed. Finally, by [5, Proposition 1.5], every two-generated ideal of R can be generated by a d-sequence of two elements.

3. C-SEQUENCES OF TWO ELEMENTS

It was proved in [3] that d-sequences satisfy the following property:

$$
\left[I_{i-1} I^{k}: a_{i}\right] \cap I^{k}=I_{i-1} I^{k-1}
$$

for every $i \in\{1, \ldots, n\}$ and every $k \geq 1$. It was also proved ([3, Theorem 3]) that, if a sequence satisfies this property, it generates an ideal of linear type. We call the sequences that satisfy this property c-sequences.

Definition 3.1. We say that $\langle\mathbf{a}\rangle$ is a c-sequence if

$$
\begin{equation*}
\left[I_{i-1} I^{k}: a_{i}\right] \cap I^{k}=I_{i-1} I^{k-1} \tag{3}
\end{equation*}
$$

for every $i \in\{1, \ldots, n\}$ and every $k \geq 1$.
We say that a sequence is an unconditioned c-sequence if it is a c-sequence in any order.

For one-element sequences the notions of c- and d-sequences coincide, but already among twoelement sequences it is possible to find an example of a c -sequence that is not a d-sequence.

Example 3.2. Let $R=k[X, Y, Z, U] /\left(X U-Y^{2} Z\right)=k[x, y, z, u]$, where k is a field. Consider the sequence $\langle x, y\rangle$ and the ideal $I=(x, y)$. This sequence is not a d-sequence (since $z \in(x): y^{2}$ and $z \notin(x): y$), although I is an ideal of linear type (as it was shown in [13, Example 3.16]).

Let us show that $\langle x, y\rangle$ is a c -sequence. We should show two relations:

$$
\begin{aligned}
{[0: x] \cap I^{k} } & =0, & & k \geq 1 \\
{\left[x I^{k}: y\right] \cap I^{k} } & =x I^{k-1}, & & k \geq 1,
\end{aligned}
$$

the first of which is trivial since R is an integral domain. For the second one, note that $\left[x I^{k}\right.$: $y] \cap I^{k}=\left[x I^{k}: y\right] \cap\left(\left(x I^{k-1}+(y)^{k}\right)=\left[x I^{k}: y\right] \cap(y)^{k}+x I^{k-1}\right.$. So it is enough to prove that $\left[x I^{k}: y\right] \cap(y)^{k} \subset x I^{k-1}$. Let $\alpha=a y^{k}, a \in R$, be an element of $\left[x I^{k}: y\right] \cap(y)^{k}$. Then $a y^{k+1} \in x I^{k}$, i.e., $a \in x I^{k}: y^{k+1}=(x): y$ by Lemma 1.1. Hence $a y \in(x)$ and so $\alpha=a y^{k}=a y \cdot y^{k-1} \in x I^{k-1}$.

For one-element sequences the notions of a sequence of linear type and a c-sequence coincide. For two-element sequences, every c-sequence $\langle a, b\rangle$ is a sequence of linear type. Indeed, the $k=1$ condition for a c-sequence implies $(0: a) \cap(a)=0$, which is equivalent with $(0: a)=\left(0: a^{2}\right)$. Hence (a) is an ideal of linear type. Also (a, b) is of linear type since every c-sequence generates an ideal of linear type by the above mentioned [3, Theorem 3]. Now we show that the notion of a sequence of linear type is strictly weaker than the notion of a c-sequence.

Example 3.3. Let $R=k[X, Y, U, V] /\left(U X, V X, U Y, U^{2}, V^{2}, U V\right)=k[x, y, u, v]$ where k is a field. Then $\langle x, y\rangle$ is a sequence of linear type which is not a c-sequence.

Indeed, let us first show that $I=(x, y)$ is an ideal of linear type. We can write

$$
R=A[X, Y] /(u X, v X, u Y),
$$

4 4 | \mid •

Go back

Full Screen
where $A=k[u, v]$ with $u^{2}=v^{2}=u v=0$. Hence R is a symmetric algebra of an A-module (namely $A^{2} /(A(u, 0)+A(v, 0)+A(0, u))$ and so (by [4, page 87]) its augmentation ideal $I=(x, y)$ is an ideal of linear type.

Also it is easy to verify that $(0: x)=\left(0: x^{2}\right)=(u, v)$. Thus $\langle x, y\rangle$ is a sequence of linear type.
But $(0: x) \cap(x, y)$ contains a nonzero element $v y$ and thus the first condition for $\langle x, y\rangle$ to be a c -sequence is not satisfied.

Now we characterize two-element c-sequences under some mild assumptions.
Theorem 3.4. Let $I=(a, b)$ be an ideal of R. Suppose $(0: a) \cap I=0$. Then the following conditions are equivalent:
(i) I is of linear type,
(ii) $\langle a, b\rangle$ is a sequence of linear type,
(iii) $\langle a, b\rangle$ is a c-sequence,
and they imply the following conditions:
(iv) $a I^{k} \cap b I^{k}=a b I^{k-1}, k \geq 1$,
(v) $a I^{k-1} \cap(b)^{k} \subset a(b)^{k-1}, k \geq 1$.

If we also suppose that $(0: b) \cap I=0$, then all five conditions are equivalent to each other.
Proof. (i) \Rightarrow (iii): Assume I that is of linear type. Since the first condition for $\langle a, b\rangle$ to be a c-sequence, namely $(0: a) \cap I=0$, is assumed, we only need to show the second condition, namely

$$
\left[a I^{k}: b\right] \cap I^{k} \subset a I^{k-1}, \quad k \geq 1,
$$

or equivalently

$$
\left[a I^{k}: b\right] \cap\left[a I^{k-1}+(b)^{k}\right] \subset a I^{k-1}, \quad k \geq 1
$$

Since $a I^{k-1} \subset a I^{k}: b$, this is equivalent with

$$
\left[a I^{k}: b\right] \cap(b)^{k}+a I^{k-1} \subset a I^{k-1}, \quad k \geq 1,
$$

i.e., with

$$
\left[a I^{k}: b\right] \cap(b)^{k} \subset a I^{k-1}, \quad k \geq 1
$$

Let $x=r b^{k}, r \in R$, be such that $x b=r b^{k+1} \in a I^{k}$. Then $r \in a I^{k}: b^{k+1}$ and so by Lemma 1.1, $r \in(a): b$, i.e., $r b \in(a)$. Hence $x=r b^{k}=r b b^{k-1} \in a I^{k-1}$.
(iii) \Rightarrow (ii) and (ii) \Rightarrow (i): clear.
(ii) $\Rightarrow(\mathrm{v})$: Let $x=r b^{k} \in a I^{k-1} \cap(b)^{k}$.Then $r \in a I^{k-1}: b^{k}=(a): b$ by Lemma 1.1. Hence $r b \in(a)$ and so $x=r b^{k} \in a(b)^{k-1}$.
$(\mathrm{v}) \Rightarrow(\mathrm{iv}):$ We have

$$
\begin{aligned}
a I^{k} \cap b I^{k} & =a I^{k} \cap b\left(a I^{k-1}+(b)^{k}\right) \\
& =a I^{k} \cap\left(a b I^{k-1}+(b)^{k+1}\right) \\
& =a I^{k} \cap(b)^{k+1}+a b I^{k-1} \\
& \subset a(b)^{k}+a b I^{k-1} \\
& =a b I^{k-1},
\end{aligned}
$$

where the the inclusion follows from the assumption (v).
(iv) \Rightarrow (iii): Assume now that $(0: b) \cap I=0$ and suppose that (iv) holds. Let $k \geq 1$ and let

Go back

Full Screen $x \in\left[a I^{k}: b\right] \cap I^{k}$. Then $b x \in a I^{k}$ and also $b x \in b I^{k}$. So $b x \in a I^{k} \cap b I^{k} \subset a b I^{k-1}$ by the assumption. Hence $b x=a b y, y \in I^{k-1}$. Now $b(x-a y)=0$ and, since $x-a y \in I$ and $(0: b) \cap I=0$, we have $x=a y \in a I^{k-1}$. Hence $\langle a, b\rangle$ is a c-sequence.

Remark 3.5. All five of the above conditions are equivalent, for example, when R is an integral domain.

Corollary 3.6 ([2, Theorem 2]). Let R be an integral domain, $a, b, \in R, I=(a, b)$. Then $S_{R}(I)$ is an integral domain if and only if $a I^{k} \cap b I^{k}=a b I^{k-1}$ for all $k \geq 1$.

Proof. Follows from Theorem 3.4 and [8, Proposition 1].
Corollary 3.7. In an integral domain every two-generated ideal of linear type, is generated by an unconditioned c-sequence of two elements.

Remark 3.8. This is an analogue of [5, Proposition 1.5] which says that in an integrally closed integral domain every two-generated ideal is generated by a d-sequence of two elements.

Acknowledgment. I would like to thank the referee for a very careful reading of the paper and valuable comments.

1. Cipu M. and Fiorentini M., Ubiquity of Relative Regular Sequences and Proper Sequences, K-theory 8 (1994), 81-106.
2. Costa D., On the Torsion-Freeness of the Symmetric Powers of an Ideal, J. Algebra 80 (1983), 152-158.
3. , Sequences of linear type, J. Algebra 94 (1985), 256-263.
4. Herzog J., Simis A. and Vasconcelos W., Koszul homology and blowing-up rings, Proc. Trento Comm. Alg. Conf, Lect. Notes Pure Appl. Math. 84, Dekker, N.Y. 1983, 79-169.
5. Huneke C., The theory of d-sequences and powers of ideals, Adv. Math. 46 (1982), 249-279.
6. \qquad On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268-275.
7. Kühl M., On the symmmetric algebra of an ideal, Manus. math. 37 (1982), 49-60.
8. Micali A., Sur les Algebres Universelles, Ann. Inst. Fourier (Grenoble), 14 (1964), 33-88.
9. Planas-Vilanova F., Rings of weak dimension one and syzygetic ideals, Proc. A.M.S. 124 (1996), $3015-3017$.
10. \qquad , On the module of effective relations of a standard algebra, Math. Proc. Camb. Phil. Soc. 124 (1998), 215-229.
11. Ratliff L. J., Jr., Conditions for $\operatorname{ker}(R[x] \rightarrow R[c / b])$ to have a linear base, Proc. A.M.S. 39(1973), 509-514.

Close
12. Shimoda Y., A note on Rees algebras of two-dimensional local domains, J. Math. Kyoto Univ. 19 (1979), 327-333.
13. Valla G., On the symmetric and Rees algebras of an ideal, Manus. Math. 30 (1980), 239-255.
H. Kulosman, Department of Mathematics, University of Louisville Louisville, KY 40292 U.S.A.,
e-mail: h0kulo01@louisville.edu

Go back

Full Screen

Close

Quit

[^0]: Received January 6, 2008; revised June 16, 2008.

[^1]: Key words and phrases. ideal of linear type; sequence of linear type; d-sequence; c-sequence.

