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TWO-GENERATED IDEALS OF LINEAR TYPE

H. KULOSMAN

Abstract. We show that in a local S1 ring every two-generated ideal of linear type can be generated
by a two-element sequence of linear type and give an example which illustrates that the S1 condition

is essential. We also show that every Noetherian local ring in which every two-element sequence is of
linear type is an integrally closed integral domain and every two-generated ideal of it can be generated
by a two-element d-sequence. Finally, we investigate two-element c-sequences and characterize them
under some mild assumptions.

1. Introduction

Let R be a commutative ring, 〈a〉 = 〈a1, . . . , an〉 a sequence of elements of R,
I = (a1, . . . , an) the ideal generated by the ai’s and Ii = (a1, . . . , ai), i = 0, 1, . . . , n, the ideal
generated by the first i elements of the sequence. Let S(I) be the symmetric algebra of the ideal I,
R[It] =

⊕
i≥0 Iiti its Rees algebra and α : S(I) → R[It] the canonical map, which maps ai ∈ S1(I)

to ait. The ideal I is said to be an ideal of linear type if α is an isomorphism.
Let us mention a simple property of ideals of linear type that we are going to use later.

Lemma 1.1 ([3, Theorem 4(i)]). If I = (a1, . . . , an) is an ideal of linear type, then

In−1I
k−1 : ak

n = In−1 : an

for every k ≥ 1.
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Here the notation J : x, where J is an ideal and x an element of a commutative ring R, means
{r ∈ R| rx ∈ J}. We also use the notation (J : x) and [J : x] for the same thing.

We say that 〈a〉 is a d-sequence ([5]) if

[Ii−1 : ai] : aj = Ii−1 : aj(1)

for every i, j ∈ {1, 2, . . . , n} with j ≥ i. Equivalently

[Ii−1 : ai] ∩ I = Ii−1(2)

for every i ∈ {1, 2, . . . , n}.
The notion of a d-sequence is a useful tool in many questions in commutative algebra. Huneke [6]

and G. Valla [13], showed that ideals generated by d-sequences are of linear type, thus generalizing
a result of A. Micali [8], who proved the same statement for regular sequences.

We say that 〈a〉 is a sequence of linear type ([3]) if Ii is an ideal of linear type for every
i = 1, 2, . . . , n.

Conditions for a two-generated ideal to be of linear type are first investigated in detail by
Ratliff [11]. Similar type of results can also be found in Shimoda’s paper [12]. A nice overview of
results about ideals and sequences of linear type, including those of two elements, is given by Cipu
and Fiorentini [1]. We should also mention two papers by Planas-Vilanova, namely [9] and [10],
where among other things two-generated ideals of linear type are considered.

2. Two-generated ideals of linear type in local rings

We start with an example of a two-generated ideal in a local ring, which is of linear type, but
cannot be minimally generated by a sequence of linear type.
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Example 2.1. Let R = k[[X, Y, U, V ]]/(XU − Y V,XV, Y U,U2, V 2, UV ) = k[[x, y, u, v]], where
k is a field and I = (x, y). Then I is an ideal of linear type which cannot be minimally generated
by a sequence of linear type.

Proof. Let A = k[u, v] with u2 = v2 = uv = 0. Then the ring S = A[X, Y ]/(vX,
uY, uX − vY ) is a symmetric algebra of an A-module (namely, A2/(A(v, 0) + A(0, u) + A(u,−v)))
and so its augmentation ideal is of linear type ([4]). Hence the “polynomial version” of the ideal
I is of linear type and so I in the above ring R is of linear type.

Now note that ux2 = 0 and vy2 = 0. (Indeed, ux2 = ux · x = yv · x = 0. Similarly vy2 = 0.)
Every element of I has the form fx + gy, where f , g are power series in x,y,u and v. Suppose

fx + gy is a minimal generator of I and (0 : fx + gy) = (0 : (fx + gy)2). Since

(fx + gy)2 · u = (f2x2 + 2fgxy + g2y2) · u = f2x2u = 0,

(fx + gy)2 · v = (f2x2 + 2fgxy + g2y2) · v = g2y2v = 0,

we would have
(fx + gy) · u = fxu = 0,

(fx + gy) · v = gyv = 0.

The first of these equalities would imply f ∈ mR (all terms that have either x, or y, or u, or v,
when multiplied by xu would give 0 and the constant term c would give cxu 6= 0, so there is no
constant term) and the second one would imply g ∈ mR. Hence fx + gy ∈ mRI and could not be
a minimal generator, that is a contradiction. �

The next theorem shows that by adding a very mild condition, namely that the ring is S1

(which means that the associated primes of the ring are minimal), we can guarantee that every
two-generated ideal of linear type in a local ring can necessarily be minimally generated by a
sequence of linear type.
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Theorem 2.2. Let R be a local S1 ring. Then every two generated ideal of R of linear type can
be generated by a sequence of linear type of two elements.

Proof. For every element a ∈ R we have Ass(R/(0 : a)) ⊂ Ass(R) = Min(R) (the last equality
since R is S1). Hence all the associated primes of (0 : a) are of height 0. Now (a) is of linear type
if and only if (0 : a2) = (0 : a), i.e., if and only if a is in no associated prime of (0 : a), i.e., if and
only if a is in no minimal prime of R containing (0 : a).

Let Q1, Q2, · · · , Qs be the minimal primes of R that do not contain I. By the prime avoidance
lemma we can choose an element a so that

a ∈ I \ [(∪s
i=1Qi) ∪mRI].

We claim that a is in no minimal prime of R containing (0 : a). Suppose the contrary. Let
P ∈ Min(R) with P ⊃ (0 : a) and a ∈ P . Since a is in no minimal prime of R which does not
contain I, we have P ⊃ I. But then, since I is of linear type, by [4, Proposition 2.4] IRP can be
generated by ht(P ) = 0 elements, so IRP = 0. Hence PRP ⊃ (0 : a)P = (0 : a/1) = (0 : 0) = RP ,
this is a contradiction. Thus (a) is of linear type. Now since a /∈ mRI, a is a minimal generator of
I, hence we can add one more generator b ∈ I so that {a, b} is a minimal system of generators of
I and 〈a, b〉 is a sequence of linear type. �

Now we characterize local rings in which every two-element sequence is of linear type. (Note
that every one-element sequence 〈a〉 in a ring R is of linear type if and only if R is reduced.)

Theorem 2.3. Let R be a Noetherian local ring in which every sequence 〈a, b〉 is of linear type.
Then R is an integrally closed integral domain and every two generated ideal of R can be generated
by a d-sequence of two elements.

Proof. We first show that R is an integral domain. Suppose the contrary. Let a, b be nonzero
elements of R such that ab = 0 (so a, b ∈ mR) and let I = (a, b). By the Costa-Kühl criterion ([3,
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Theorem 1] or [7, Theorem 1.2]), the sequence

0 −→ N −→ I × I
f−→ I2 −→ 0

is exact, where f(x, y) = ax + by and N is the submodule of I × I generated by the trivial syzygy
(−b, a). Since (b, 0) ∈ N , we have (b, 0) = r(−b, a) for some r ∈ R. So rb = −b and ra = 0. Since
a 6= 0, r ∈ mR. Hence 1 + r is a unit and since (1 + r)b = 0, we have b = 0, this is a contradiction.
Thus R is an integral domain.

Now by [8, page 38, Proposition 1], S(I) is an integral domain for every two generated ideal
of R. Hence, by [2, Theorem 3], R is integrally closed. Finally, by [5, Proposition 1.5], every
two-generated ideal of R can be generated by a d-sequence of two elements. �

3. c-sequences of two elements

It was proved in [3] that d-sequences satisfy the following property:

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1

for every i ∈ {1, . . . , n} and every k ≥ 1. It was also proved ([3, Theorem 3]) that, if a sequence
satisfies this property, it generates an ideal of linear type. We call the sequences that satisfy this
property c-sequences.

Definition 3.1. We say that 〈a〉 is a c-sequence if

[Ii−1I
k : ai] ∩ Ik = Ii−1I

k−1(3)

for every i ∈ {1, . . . , n} and every k ≥ 1.

We say that a sequence is an unconditioned c-sequence if it is a c-sequence in any order.
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For one-element sequences the notions of c- and d-sequences coincide, but already among two-
element sequences it is possible to find an example of a c-sequence that is not a d-sequence.

Example 3.2. Let R = k[X, Y, Z, U ]/(XU − Y 2Z) = k[x, y, z, u], where k is a field. Consider
the sequence 〈x, y〉 and the ideal I = (x, y). This sequence is not a d-sequence (since z ∈ (x) : y2

and z /∈ (x) : y), although I is an ideal of linear type (as it was shown in [13, Example 3.16]).
Let us show that 〈x, y〉 is a c-sequence. We should show two relations:

[0 : x] ∩ Ik = 0, k ≥ 1[
xIk : y

]
∩ Ik = xIk−1, k ≥ 1,

the first of which is trivial since R is an integral domain. For the second one, note that [xIk :
y] ∩ Ik=[xIk : y] ∩ ((xIk−1 + (y)k) = [xIk : y] ∩ (y)k + xIk−1. So it is enough to prove that
[xIk : y]∩ (y)k ⊂ xIk−1. Let α = ayk, a ∈ R, be an element of [xIk : y]∩ (y)k. Then ayk+1 ∈ xIk,
i.e., a ∈ xIk : yk+1 = (x) : y by Lemma 1.1. Hence ay ∈ (x) and so α = ayk = ay · yk−1 ∈ xIk−1.

For one-element sequences the notions of a sequence of linear type and a c-sequence coincide.
For two-element sequences, every c-sequence 〈a, b〉 is a sequence of linear type. Indeed, the k = 1
condition for a c-sequence implies (0 : a) ∩ (a) = 0, which is equivalent with (0 : a) = (0 : a2).
Hence (a) is an ideal of linear type. Also (a, b) is of linear type since every c-sequence generates
an ideal of linear type by the above mentioned [3, Theorem 3]. Now we show that the notion of a
sequence of linear type is strictly weaker than the notion of a c-sequence.

Example 3.3. Let R = k[X, Y, U, V ]/(UX, V X, UY,U2, V 2, UV ) = k[x, y, u, v] where k is a
field. Then 〈x, y〉 is a sequence of linear type which is not a c-sequence.

Indeed, let us first show that I = (x, y) is an ideal of linear type. We can write

R = A[X, Y ]/(uX, vX, uY ),
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where A = k[u, v] with u2 = v2 = uv = 0. Hence R is a symmetric algebra of an A-module (namely
A2/(A(u, 0) + A(v, 0) + A(0, u)) and so (by [4, page 87]) its augmentation ideal I = (x, y) is an
ideal of linear type.

Also it is easy to verify that (0 : x) = (0 : x2) = (u, v). Thus 〈x, y〉 is a sequence of linear type.
But (0 : x) ∩ (x, y) contains a nonzero element vy and thus the first condition for 〈x, y〉 to be a

c-sequence is not satisfied.

Now we characterize two-element c-sequences under some mild assumptions.

Theorem 3.4. Let I = (a, b) be an ideal of R. Suppose (0 : a) ∩ I = 0. Then the following
conditions are equivalent:

(i) I is of linear type,
(ii) 〈a, b〉 is a sequence of linear type,
(iii) 〈a, b〉 is a c-sequence,

and they imply the following conditions:
(iv) aIk ∩ bIk = abIk−1, k ≥ 1,
(v) aIk−1 ∩ (b)k ⊂ a(b)k−1, k ≥ 1.

If we also suppose that (0 : b) ∩ I = 0, then all five conditions are equivalent to each other.

Proof. (i) ⇒(iii): Assume I that is of linear type. Since the first condition for 〈a, b〉 to be a
c-sequence, namely (0 : a)∩ I = 0, is assumed, we only need to show the second condition, namely

[aIk : b] ∩ Ik ⊂ aIk−1, k ≥ 1,

or equivalently
[aIk : b] ∩ [aIk−1 + (b)k] ⊂ aIk−1, k ≥ 1.

Since aIk−1 ⊂ aIk : b, this is equivalent with

[aIk : b] ∩ (b)k + aIk−1 ⊂ aIk−1, k ≥ 1,
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i.e., with
[aIk : b] ∩ (b)k ⊂ aIk−1, k ≥ 1.

Let x = rbk, r ∈ R, be such that xb = rbk+1 ∈ aIk. Then r ∈ aIk : bk+1 and so by Lemma 1.1,
r ∈ (a) : b, i.e., rb ∈ (a). Hence x = rbk = rbbk−1 ∈ aIk−1.
(iii)⇒ (ii) and (ii)⇒(i): clear.
(ii)⇒(v): Let x = rbk ∈ aIk−1 ∩ (b)k.Then r ∈ aIk−1 : bk = (a) : b by Lemma 1.1. Hence rb ∈ (a)
and so x = rbk ∈ a(b)k−1.
(v)⇒(iv): We have

aIk ∩ bIk = aIk ∩ b(aIk−1 + (b)k)

= aIk ∩ (abIk−1 + (b)k+1)

= aIk ∩ (b)k+1 + abIk−1

⊂ a(b)k + abIk−1

= abIk−1,

where the the inclusion follows from the assumption (v).
(iv)⇒(iii): Assume now that (0 : b) ∩ I = 0 and suppose that (iv) holds. Let k ≥ 1 and let
x ∈ [aIk : b]∩Ik. Then bx ∈ aIk and also bx ∈ bIk. So bx ∈ aIk∩bIk ⊂ abIk−1 by the assumption.
Hence bx = aby, y ∈ Ik−1. Now b(x− ay) = 0 and, since x− ay ∈ I and (0 : b) ∩ I = 0, we have
x = ay ∈ aIk−1. Hence 〈a, b〉 is a c-sequence. �

Remark 3.5. All five of the above conditions are equivalent, for example, when R is an integral
domain.

Corollary 3.6 ([2, Theorem 2]). Let R be an integral domain, a, b,∈ R, I = (a, b). Then
SR(I) is an integral domain if and only if aIk ∩ bIk = abIk−1 for all k ≥ 1.
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Proof. Follows from Theorem 3.4 and [8, Proposition 1]. �

Corollary 3.7. In an integral domain every two-generated ideal of linear type, is generated by
an unconditioned c-sequence of two elements.

Remark 3.8. This is an analogue of [5, Proposition 1.5] which says that in an integrally closed
integral domain every two-generated ideal is generated by a d-sequence of two elements.
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