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VALUATIONS ON THE RING
OF ARITHMETICAL FUNCTIONS

A. ZAHARESCU and M. ZAKI

Abstract. In this paper we study a class of nontrivial independent absolute values on the ring A of

arithmetical functions over the field C of complex numbers. We show that A is complete with respect
to the metric structure obtained from each of these absolute values. We also consider an Artin-Whaples
type theorem in this context.

1. Introduction

Let A denote the set of complex valued arithmetical functions f : N → C, where N is the set of
positive integers. For f, g ∈ A their Dirichlet convolution is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
for n ∈ N. A is a ring with the usual addition of functions and Dirichlet convolution. It is known
that A is a unique factorization domain. This was proved by Cashwell and Everett [5]. Schwab
and Silberberg [7] constructed an extension of A which is a discrete valuation ring, and in [8],
they showed that A is a quasi-noetherian ring. Yokom [9] investigated the prime factorization of
arithmetical functions in a certain subring of the regular convolution ring. He also determined a
discrete valuation subring of the unitary ring of arithmetical functions. Some questions on the
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structure of the ring of arithmetical functions in several variables have been recently investigated
by Alkan and the authors in [1], [2], [3]. Our aim in the present paper is to construct an infinite
class of valuations on A which are independent of each other. To keep the exposition short and
simple, we will restrict to the case of arithmetical functions of one variable, with values in C. We
construct these valuations as follows. Let P be the set of prime numbers. Fix a weight function
w : P → R such that for all p ∈ P, w(p) ≥ 0. Given n ∈ N with prime factorization n = pα1

1 . . . pαk

k ,
we define Ωw(n) = α1w(p1) + . . .+ αkw(pk). Also for f ∈ A, let supp(f) denote the support of f ,
so supp(f) = {n ∈ N|f(n) 6= 0}, and define

Vw(f) = inf
n∈supp(f)

Ωw(n),

with the convention min(∅) = ∞. Then Vw is a valuation on A. Next, we extend Vw to a
valuation, also denoted by Vw, on the field of fractions K =

{
f
g |f, g ∈ A, g 6= 0

}
of A by letting

Vw

(
f
g

)
= Vw(f)−Vw(g). We also fix a number ρ ∈ (0, 1) and define an absolute value |.|w : K → R

by

|x|w = ρVw(x) if x 6= 0, and |x|w = 0 if x = 0.

In Section 2 we show that Vw is indeed a valuation, and so |.|w is a non-archimedian absolute
value. In Section 3 we show that A is complete with respect to the metric structure obtained from
the absolute value |.|w.

Lastly, we take a finite number w1, . . . , ws of weight functions on P for which the absolute values
|.|w1 , . . . , |.|ws are independent, and consider the completions Kw1 , . . . ,Kws of K with respect to
|.|w1 , . . . , |.|ws . Define the function ψ : K → Kw1 × · · · × Kws by x → ψ(x) = (x, . . . , x). By the
Artin-Whaples Theorem [4], we know that the topological closure of ψ(K) in Kw1 × · · · × Kws

coincides with Kw1 × · · · × Kws
. Since we are more interested in the ring A than in its field of



JJ J I II

Go back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

fractions K, a natural question to ask is what the topological closure of the image ψ(A) of A under
ψ is in Kw1 × · · · ×Kws

. We show that this topological closure is ψ(A) itself.

2. Absolute Values

Theorem 1.

(i) For any f, g ∈ A, we have

Vw(f + g) ≥ min({Vw(f), Vw(g)}).

(ii) For any f, g ∈ A, we have

Vw(f ∗ g) = Vw(f) + Vw(g).

Proof. (i) Let f, g ∈ A. Since supp(f+g) ⊆ supp(f)∪supp(g), we get that for any n ∈ supp(f+
g), either n ∈ supp(f), or n ∈ supp(g). Thus we have that Ωw(n) ≥ Vw(f), or Ωw(n) ≥ Vw(g) for
any n ∈ supp(f + g). So, it follows immediately that

Vw(f + g) ≥ min({Vw(f), Vw(g)}).

(ii) Again let f, g ∈ A. Let n ∈ supp(f), and m ∈ supp(g). Suppose that k, and l satisfy the
equations Ωw(n) = k, and Ωw(m) = l respectively. Also assume that Vw(f) = k and Vw(g) = l.
Now,

Vw(f) + Vw(g) = k + l.

Let a be a positive integer such that a ∈ supp(f ∗ g). Then,

0 6= (f ∗ g)(a) =
∑
d|a

f(d)g
(a
d

)
.
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Therefore f(d) 6= 0, and g
(

a
d

)
6= 0 for some d|a. It follows that for any a ∈ supp(f ∗ g),

Vw(f) + Vw(g) ≤ Ωw(d) + Ωw

(a
d

)
= Ωw(a).

So, Vw(f) + Vw(g) ≤ Vw(f ∗ g).
To show the reverse inequality, we first define the following two sets.

Cf = {a ∈ N : f(a) 6= 0 and Ωw(a) = k}
and

Cg = {b ∈ N : g(b) 6= 0 and Ωw(b) = l}.
Let n be the smallest element of Cf . Also let m be the smallest element of Cg. Denote u = nm.
We have that

Vw(f) + Vw(g) = Ωw(n) + Ωw(m) = Ωw(u).
So if we show that (f ∗ g)(u) 6= 0, then we will be done. To show that (f ∗ g)(u) 6= 0, we consider
the identity

(f ∗ g)(u) =
∑

de=nm

f(d)g(e)

and show that all terms in this sum vanish except for the term f(n)g(m) which is nonzero. Suppose
that f(d)g(e) is a nonzero term of the sum. Then note that none of the inequalities Ωw(d) < k and
Ωw(e) < l can hold since otherwise the term f(d)g(e) is zero. Also observe that if Ωw(d) > k, then
Ωw(e) < l and the latter inequality cannot hold as we have seen above. Similarly if Ωw(e) > l,
then Ωw(d) < k and again the latter inequality cannot hold. We conclude that Ωw(d) = k and
Ωw(e) = l. It follows that d ∈ Cf , and e ∈ Cg. Since we have d ≤ n and e ≤ m, it is clear from the
definition of n and n that d = n, and e = m. Hence, if f(d)g(e) is a nonzero term of the sum, then
it follows that d = n, and e = m. Thus (ii) holds, and this completes the proof of the theorem. �
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It follows from the above theorem and [6, Proposition 3.1.10] that |.|w is a non-archimedian
absolute value on K.

3. Completeness and Topological Closure

Define a distance dw on K by putting for x, y ∈ K, dw(x, y) = |x − y|w, and consider also the
restriction of this distance to A.

Theorem 2. The metric space (A, dw) with respect to the distance dw defined above is complete.

Proof. Let (fn)n≥0 be a Cauchy sequence in A. Then for each ε > 0, there exists N = Nε ∈ N
such that |fm − fn|w < ε for all m,n ≥ Nε. For each k ∈ N, taking ε = ρk, there exists Nk ∈ N
such that |fm − fn|w < ρk for all m,n ≥ Nk. Equivalently, Vw(fm − fn) > k for all m,n ≥ Nk,
i.e., we have that for all m,n ≥ Nk,

fm(l) = fn(l)

whenever Ωw(l) ≤ k, for all l ∈ N. We choose for each k ∈ N, the smallest natural number Nk

with the above property such that

N1 < N2 < . . . < Nk < Nk+1 < . . . .

Let us define f : N → C as follows. Given l ∈ N, let k be the smallest positive integer such that
k > Ωw(l). We set f(l) = fNk

(l). Then f is the limit of the sequence (fn)n≥0. This completes the
proof of Theorem 2. �

Remark 1. Let w,w′ be weight functions on P . If the absolute values |.|w, |.|w′ , correspond-
ingly the valuations Vw, Vw′ , arising from w and w′ respectively are dependent, then there exists a
constant C such that w(p) = Cw′(p) for all primes p.
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Proof. Let w,w′ be weight functions on P . If Vw, Vw′ are dependent on K, then there exists a
constant C such that Vw(x) = CVw′(x) for all x ∈ K. For each prime number p, define δp ∈ A by

δp(n) =

{
1 if n = p

0 else

for all n ∈ N. Then Vw(δp) = w(p), and Vw′(δp) = w′(p). Hence w(p) = Cw′(p) for all primes p as
claimed. �

We have seen that each weight function w : P → R on the set P of prime numbers gives rise, via
the function |.|w, to an absolute value on K. We denote by Kw the completion of K with respect
to the absolute value |.|w.

Let s > 0 be an integer. Let w1, . . . , ws be weight functions on P . Suppose that the absolute
values |.|w1 , . . . , |.|ws , corresponding to the valuations Vw1 , . . . , Vws on K, are independent. Consider
the product topology on Kw1 × · · · × Kws . Define the function ψ : K → Kw1 × · · · × Kws by
x → ψ(x) = (x, . . . , x). Then the topological closure of ψ(K) in Kw1 × · · · × Kws

coincides with
Kw1 ×· · ·×Kws

. We would like to identify the topological closure of the image ψ(A) of A under ψ
in Kw1 × · · · ×Kws

. For a subset F of Kw1 × · · · ×Kws
we denote by F the topological closure of

F in Kw1 × · · · ×Kws . Then ψ(A) ⊆ A× · · · ×A since A is complete with respect to each absolute
value |.|wi (i = 1, . . . , s).

Theorem 3. The topological closure of ψ(A) in Kw1 × · · · ×Kws is ψ(A) itself.

Proof. We have already seen that ψ(A) ⊆ A×· · ·×A. Let f1, . . . , fs ∈ A×· · ·×A, and assume
that (f1, . . . , fs) ∈ ψ(A). We want to show that (f1, . . . , fs) ∈ ψ(A). By the above assumption we
know that there exists a sequence (hn)n∈N in A such that ψ(hn) converges to (f1, . . . , fs). So for
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each i ∈ {1, . . . , s}, we have that |hn − fi|wi
→ 0 as n → ∞, correspondingly, Vwi

(hn − fi) → ∞
as n→∞.

Fix m = pα1
1 · · ·Pαu

u . Also fix j ∈ {1, . . . , s}. Since Vwi(hn − fi) → ∞ as n → ∞, there exists
Nj ∈ N such that

Vwj (hn − fj) > α1wj(p1) + α2wj(p2) + · · ·+ αuwj(pu) for all n > Nj .

for all n > Nj . Let N be the maximum of N1, . . . , Ns. Then, for all j ∈ {1, . . . , s}, and all n > N ,
we have that

Vwj
(hn − fj) > α1wj(p1) + α2wj(p2) + · · ·+ αuwj(pu).

Thus, m 6∈ supp(hn − fj) and therefore, hn(m) = fj(m) for all j ∈ {1, . . . , s}, and all n >
N . Hence, f1(m) = f2(m) · · · = fs(m). Since m is arbitrary, it follows that the arithmetical
functions f1, f2, . . . , fs are identical, and hence (f1, . . . , fs) ∈ ψ(A). This completes the proof of
the theorem. �
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