VALUATIONS ON THE RING OF ARITHMETICAL FUNCTIONS

A. ZAHARESCU and M. ZAKI

Abstract

In this paper we study a class of nontrivial independent absolute values on the ring A of arithmetical functions over the field \mathbb{C} of complex numbers. We show that A is complete with respect to the metric structure obtained from each of these absolute values. We also consider an Artin-Whaples type theorem in this context.

1. Introduction

Let A denote the set of complex valued arithmetical functions $f: \mathbb{N} \rightarrow \mathbb{C}$, where \mathbb{N} is the set of positive integers. For $f, g \in A$ their Dirichlet convolution is defined by

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

for $n \in \mathbb{N}$. A is a ring with the usual addition of functions and Dirichlet convolution. It is known

Go back

Full Screen

Close that A is a unique factorization domain. This was proved by Cashwell and Everett [5]. Schwab and Silberberg [7] constructed an extension of A which is a discrete valuation ring, and in [8], they showed that A is a quasi-noetherian ring. Yokom [9] investigated the prime factorization of arithmetical functions in a certain subring of the regular convolution ring. He also determined a discrete valuation subring of the unitary ring of arithmetical functions. Some questions on the

* 4 4 \mid • \mid

Go back

Full Screen

Close

Quit
structure of the ring of arithmetical functions in several variables have been recently investigated by Alkan and the authors in [1], [2], [3]. Our aim in the present paper is to construct an infinite class of valuations on A which are independent of each other. To keep the exposition short and simple, we will restrict to the case of arithmetical functions of one variable, with values in \mathbb{C}. We construct these valuations as follows. Let P be the set of prime numbers. Fix a weight function $w: P \rightarrow \mathbb{R}$ such that for all $p \in P, w(p) \geq 0$. Given $n \in \mathbb{N}$ with prime factorization $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, we define $\Omega_{w}(n)=\alpha_{1} w\left(p_{1}\right)+\ldots+\alpha_{k} w\left(p_{k}\right)$. Also for $f \in A$, let $\operatorname{supp}(f)$ denote the support of f, so $\operatorname{supp}(f)=\{n \in \mathbb{N} \mid f(n) \neq 0\}$, and define

$$
V_{w}(f)=\inf _{n \in \operatorname{supp}(f)} \Omega_{w}(n),
$$

with the convention $\min (\emptyset)=\infty$. Then V_{w} is a valuation on A. Next, we extend V_{w} to a valuation, also denoted by V_{w}, on the field of fractions $\mathbb{K}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in A, g \neq 0\right\}$ of A by letting $V_{w}\left(\frac{f}{g}\right)=V_{w}(f)-V_{w}(g)$. We also fix a number $\rho \in(0,1)$ and define an absolute value $|\cdot|_{w}: \mathbb{K} \rightarrow \mathbb{R}$ by

$$
|x|_{w}=\rho^{V_{w}(x)} \text { if } x \neq 0, \quad \text { and } \quad|x|_{w}=0 \text { if } x=0 .
$$

In Section 2 we show that V_{w} is indeed a valuation, and so $|\cdot|_{w}$ is a non-archimedian absolute value. In Section 3 we show that A is complete with respect to the metric structure obtained from the absolute value $|\cdot|_{w}$.

Lastly, we take a finite number w_{1}, \ldots, w_{s} of weight functions on P for which the absolute values $|\cdot|_{w_{1}}, \ldots,|\cdot|_{w_{s}}$ are independent, and consider the completions $\mathbb{K}_{w_{1}}, \ldots, \mathbb{K}_{w_{s}}$ of \mathbb{K} with respect to $|\cdot|_{w_{1}}, \ldots,|\cdot|_{w_{s}}$. Define the function $\psi: \mathbb{K} \rightarrow \mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$ by $x \rightarrow \psi(x)=(x, \ldots, x)$. By the Artin-Whaples Theorem [4], we know that the topological closure of $\psi(\mathbb{K})$ in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$
fractions \mathbb{K}, a natural question to ask is what the topological closure of the image $\psi(A)$ of A under ψ is in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$. We show that this topological closure is $\psi(A)$ itself.

2. Absolute Values

Theorem 1.

(i) For any $f, g \in A$, we have

$$
V_{w}(f+g) \geq \min \left(\left\{V_{w}(f), V_{w}(g)\right\}\right) .
$$

(ii) For any $f, g \in A$, we have

$$
V_{w}(f * g)=V_{w}(f)+V_{w}(g) .
$$

Proof. (i) Let $f, g \in A$. Since $\operatorname{supp}(f+g) \subseteq \operatorname{supp}(f) \cup \operatorname{supp}(g)$, we get that for any $n \in \operatorname{supp}(f+$ $g)$, either $n \in \operatorname{supp}(f)$, or $n \in \operatorname{supp}(g)$. Thus we have that $\Omega_{w}(n) \geq V_{w}(f)$, or $\Omega_{w}(n) \geq V_{w}(g)$ for any $n \in \operatorname{supp}(f+g)$. So, it follows immediately that

$$
V_{w}(f+g) \geq \min \left(\left\{V_{w}(f), V_{w}(g)\right\}\right) .
$$

(ii) Again let $f, g \in A$. Let $n \in \operatorname{supp}(f)$, and $m \in \operatorname{supp}(g)$. Suppose that k, and l satisfy the equations $\Omega_{w}(n)=k$, and $\Omega_{w}(m)=l$ respectively. Also assume that $V_{w}(f)=k$ and $V_{w}(g)=l$. Now,

$$
V_{w}(f)+V_{w}(g)=k+l .
$$

$$
0 \neq(f * g)(a)=\sum_{d \mid a} f(d) g\left(\frac{a}{d}\right) .
$$

44 4 - \mid •
Go back

Full Screen

Close

Quit
Therefore $f(d) \neq 0$, and $g\left(\frac{a}{d}\right) \neq 0$ for some $d \mid a$. It follows that for any $a \in \operatorname{supp}(f * g)$,

$$
\begin{aligned}
V_{w}(f)+V_{w}(g) & \leq \Omega_{w}(d)+\Omega_{w}\left(\frac{a}{d}\right) \\
& =\Omega_{w}(a) .
\end{aligned}
$$

So, $V_{w}(f)+V_{w}(g) \leq V_{w}(f * g)$.
To show the reverse inequality, we first define the following two sets.

$$
\mathfrak{C}_{f}=\left\{a \in \mathbb{N}: f(a) \neq 0 \quad \text { and } \quad \Omega_{w}(a)=k\right\}
$$

and

$$
\mathfrak{C}_{g}=\left\{b \in \mathbb{N}: g(b) \neq 0 \quad \text { and } \quad \Omega_{w}(b)=l\right\} .
$$

Let n be the smallest element of \mathfrak{C}_{f}. Also let m be the smallest element of \mathfrak{C}_{g}. Denote $u=n m$. We have that

$$
V_{w}(f)+V_{w}(g)=\Omega_{w}(n)+\Omega_{w}(m)=\Omega_{w}(u) .
$$

So if we show that $(f * g)(u) \neq 0$, then we will be done. To show that $(f * g)(u) \neq 0$, we consider the identity

$$
(f * g)(u)=\sum_{d e=n m} f(d) g(e)
$$

and show that all terms in this sum vanish except for the term $f(n) g(m)$ which is nonzero. Suppose that $f(d) g(e)$ is a nonzero term of the sum. Then note that none of the inequalities $\Omega_{w}(d)<k$ and $\Omega_{w}(e)<l$ can hold since otherwise the term $f(d) g(e)$ is zero. Also observe that if $\Omega_{w}(d)>k$, then $\Omega_{w}(e)<l$ and the latter inequality cannot hold as we have seen above. Similarly if $\Omega_{w}(e)>l$, then $\Omega_{w}(d)<k$ and again the latter inequality cannot hold. We conclude that $\Omega_{w}(d)=k$ and $\Omega_{w}(e)=l$. It follows that $d \in \mathfrak{C}_{f}$, and $e \in \mathfrak{C}_{g}$. Since we have $d \leq n$ and $e \leq m$, it is clear from the definition of n and n that $d=n$, and $e=m$. Hence, if $f(d) g(e)$ is a nonzero term of the sum, then it follows that $d=n$, and $e=m$. Thus (ii) holds, and this completes the proof of the theorem.
$44 \mid \ggg$
Go back

Full Screen

Close

Quit
It follows from the above theorem and [6, Proposition 3.1.10] that $|\cdot|_{w}$ is a non-archimedian absolute value on \mathbb{K}.

3. Completeness and Topological Closure

Define a distance d_{w} on \mathbb{K} by putting for $x, y \in \mathbb{K}, d_{w}(x, y)=|x-y|_{w}$, and consider also the restriction of this distance to A.

Theorem 2. The metric space $\left(A, d_{w}\right)$ with respect to the distance d_{w} defined above is complete.
Proof. Let $\left(f_{n}\right)_{n \geq 0}$ be a Cauchy sequence in A. Then for each $\varepsilon>0$, there exists $N=N_{\epsilon} \in \mathbb{N}$ such that $\left|f_{m}-f_{n}\right|_{w}<\epsilon$ for all $m, n \geq N_{\varepsilon}$. For each $k \in \mathbb{N}$, taking $\varepsilon=\rho^{k}$, there exists $N_{k} \in \mathbb{N}$ such that $\left|f_{m}-f_{n}\right|_{w}<\rho^{k}$ for all $m, n \geq N_{k}$. Equivalently, $V_{w}\left(f_{m}-f_{n}\right)>k$ for all $m, n \geq N_{k}$, i.e., we have that for all $m, n \geq N_{k}$,

$$
f_{m}(l)=f_{n}(l)
$$

whenever $\Omega_{w}(l) \leq k$, for all $l \in \mathbb{N}$. We choose for each $k \in \mathbb{N}$, the smallest natural number N_{k} with the above property such that

$$
N_{1}<N_{2}<\ldots<N_{k}<N_{k+1}<\ldots
$$

Let us define $f: \mathbb{N} \rightarrow \mathbb{C}$ as follows. Given $l \in \mathbb{N}$, let k be the smallest positive integer such that $k>\Omega_{w}(l)$. We set $f(l)=f_{N_{k}}(l)$. Then f is the limit of the sequence $\left(f_{n}\right)_{n \geq 0}$. This completes the proof of Theorem 2.

Remark 1. Let w, w^{\prime} be weight functions on P. If the absolute values $|\cdot|_{w},|\cdot|_{w^{\prime}}$, correspondingly the valuations $V_{w}, V_{w^{\prime}}$, arising from w and w^{\prime} respectively are dependent, then there exists a constant C such that $w(p)=C w^{\prime}(p)$ for all primes p.

44 4 | \bullet •
Go back

Full Screen

Close

Quit
Proof. Let w, w^{\prime} be weight functions on P. If $V_{w}, V_{w^{\prime}}$ are dependent on \mathbb{K}, then there exists a constant C such that $V_{w}(x)=C V_{w^{\prime}}(x)$ for all $x \in \mathbb{K}$. For each prime number p, define $\delta_{p} \in A$ by

$$
\delta_{p}(n)= \begin{cases}1 & \text { if } n=p \\ 0 & \text { else }\end{cases}
$$

for all $n \in \mathbb{N}$. Then $V_{w}\left(\delta_{p}\right)=w(p)$, and $V_{w^{\prime}}\left(\delta_{p}\right)=w^{\prime}(p)$. Hence $w(p)=C w^{\prime}(p)$ for all primes p as claimed.

We have seen that each weight function $w: P \rightarrow \mathbb{R}$ on the set P of prime numbers gives rise, via the function $|.|_{w}$, to an absolute value on \mathbb{K}. We denote by \mathbb{K}_{w} the completion of \mathbb{K} with respect to the absolute value $|\cdot|_{w}$.

Let $s>0$ be an integer. Let w_{1}, \ldots, w_{s} be weight functions on P. Suppose that the absolute values $|\cdot|_{w_{1}}, \ldots,|\cdot|_{w_{s}}$, corresponding to the valuations $V_{w_{1}}, \ldots, V_{w_{s}}$ on \mathbb{K}, are independent. Consider the product topology on $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$. Define the function $\psi: \mathbb{K} \rightarrow \mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$ by $x \rightarrow \psi(x)=(x, \ldots, x)$. Then the topological closure of $\psi(\mathbb{K})$ in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$ coincides with $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$. We would like to identify the topological closure of the image $\psi(A)$ of A under ψ in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$. For a subset F of $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$ we denote by \bar{F} the topological closure of F in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$. Then $\overline{\psi(A)} \subseteq A \times \cdots \times A$ since A is complete with respect to each absolute value $|\cdot|_{w_{i}}(i=1, \ldots, s)$.

Theorem 3. The topological closure of $\psi(A)$ in $\mathbb{K}_{w_{1}} \times \cdots \times \mathbb{K}_{w_{s}}$ is $\psi(A)$ itself.
Proof. We have already seen that $\overline{\psi(A)} \subseteq A \times \cdots \times A$. Let $f_{1}, \ldots, f_{s} \in A \times \cdots \times A$, and assume that $\left(f_{1}, \ldots, f_{s}\right) \in \overline{\psi(A)}$. We want to show that $\left(f_{1}, \ldots, f_{s}\right) \in \psi(A)$. By the above assumption we know that there exists a sequence $\left(h_{n}\right)_{n \in \mathbb{N}}$ in A such that $\psi\left(h_{n}\right)$ converges to $\left(f_{1}, \ldots, f_{s}\right)$. So for
each $i \in\{1, \ldots, s\}$, we have that $\left|h_{n}-f_{i}\right|_{w_{i}} \rightarrow 0$ as $n \rightarrow \infty$, correspondingly, $V_{w_{i}}\left(h_{n}-f_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Fix $m=p_{1}^{\alpha_{1}} \ldots P_{u}^{\alpha_{u}}$. Also fix $j \in\{1, \ldots, s\}$. Since $V_{w_{i}}\left(h_{n}-f_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$, there exists $N_{j} \in \mathbb{N}$ such that

$$
V_{w_{j}}\left(h_{n}-f_{j}\right)>\alpha_{1} w_{j}\left(p_{1}\right)+\alpha_{2} w_{j}\left(p_{2}\right)+\cdots+\alpha_{u} w_{j}\left(p_{u}\right) \quad \text { for all } n>N_{j} .
$$

for all $n>N_{j}$. Let N be the maximum of N_{1}, \ldots, N_{s}. Then, for all $j \in\{1, \ldots, s\}$, and all $n>N$, we have that

$$
V_{w_{j}}\left(h_{n}-f_{j}\right)>\alpha_{1} w_{j}\left(p_{1}\right)+\alpha_{2} w_{j}\left(p_{2}\right)+\cdots+\alpha_{u} w_{j}\left(p_{u}\right) .
$$

Thus, $m \notin \operatorname{supp}\left(h_{n}-f_{j}\right)$ and therefore, $h_{n}(m)=f_{j}(m)$ for all $j \in\{1, \ldots, s\}$, and all $n>$ N. Hence, $f_{1}(m)=f_{2}(m) \cdots=f_{s}(m)$. Since m is arbitrary, it follows that the arithmetical functions $f_{1}, f_{2}, \ldots, f_{s}$ are identical, and hence $\left(f_{1}, \ldots, f_{s}\right) \in \psi(A)$. This completes the proof of the theorem.

1. Alkan E., Zaharescu A., Zaki M., Arithmetical functions in several variables, Int. J. Number Theory $\mathbf{1}(3)$ (2005), 383-399.
2. \qquad , Unitary convolution for arithmetical functions in several variables, Hiroshima Math. J. 36(3) (2006), 113-124.
3. , Multidimensional averages and Dirichlet convolution, Manuscripta Math. 123(3) (2007), $251-267$.
4. Lang S., Algebra, 3rd edition. Graduate Texts in Mathematics, No. 211, Springer-Verlag 2002.
5. Cashwell E. D., Everett C. J., The ring of number-theoretic functions, Pacific J. Math. 9 (1959), $975-985$.
6. Karpilovsky G., Field theory, Marcel Dekker Inc. 1988, New York, Basel.
7. Schwab E. D., Silberberg G., A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno), 36 (2000), 103-109.
8. , The Valuated ring of the Arithmetical Functions as a Power Series Ring, Arch. Math. (Brno), $\mathbf{3 7}$ (2001), 77-80.

Go back

Full Screen

Close

Quit
9. Yokom K.L., Totally multiplicative functions in regular convolution rings, Canadian Math. Bulletin 16 (1973), 119-128.
A. Zaharescu, Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL, 61801, USA, e-mail: zaharesc@math.uiuc.edu
M. Zaki, Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL, 61801, USA, e-mail: mzaki@math.uiuc.edu

