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MYTHICAL NUMBERS

MIRO BÁZLIK

Dedicated to Dušan Dudák

1. Introduction

In this paper we show that the three prime numbers 3, 7 and 13, which repeatedly occur in various
myths, in the Bible, in fables and fairy tales, possess a remarkable property, distinguishing them
from other integers.

The n-th prime is denoted as usual by pn; additionally we put p0 = 1. In case of a more
complicated argument we sometimes use the alternative notation P (n) = pn. Further we denote
by

S(x) =
∑
p≤x

p

the sum of all primes less than or equal to any real number x. Hence

S(x) =
n∑

i=1

pi

where pn is the biggest prime less than or equal to x.

Received September 3, 2008.

2000 Mathematics Subject Classification. Primary 11A41.



JJ J I II

Go back

Full Screen

Close

Quit

Let us write in a table the initial segments of the following four sequences: the nonnegative
integers n, the prime numbers pn in their natural order, the sequence P (pn) of the prime numbers
with prime subscripts, and the sequence S(pn) of sums of primes up to the n-th prime pn.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
pn 1 2 3 5 7 11 16 17 19 23 29 31 37 41

P (pn) 2 3 5 11 17 31 41 59 67 83 109 127 157 179
S(pn) 0 2 5 10 17 28 41 58 77 100 129 160 297 138

Table 1.

We can see that the items P (pn) and S(pn) in the third and fourth row of Table 1 coincide just
for n = 2, n = 4 and n = 6. This means that by adding all the prime numbers up to x = pn

in the second row of the table we obtain the prime number px = P (x) in the third row just for
x = 3, x = 7 and x = 13. Strengthening this observation to all positive integers x leads us to the
formulation of the theorem, which will be proved in what follows.

Theorem. The prime numbers 3, 7 and 13 are the only integers x ≥ 1 satisfying the equation

(1.1)
∑
p≤x

p = px.

In view of the following scheme
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it may seem natural to refer to integers x satisfying (1.1) as to “transcending”. However, since
these three solutions are exactly the primes 3, 7, 13, we shall call them “mythical”. The verification
that they satisfy (1.1) is straightforward:

2 + 3 = 5 = p3,

2 + 3 + 5 + 7 = 17 = p7,

2 + 3 + 5 + 7 + 11 + 13 = 41 = p13.

Before we prove the Theorem, let us discuss the “mythical trinity” more closely. Recall that
3 = p2, 7 = p4 and 13 = p6. This means that the number 3 is doubly distinguished by (1.1).
Namely, it satisfies (1.1) (hence, it “transcends”), on the other hand, equation (1.1) is satisfied
exactly by the first three primes with even indices p2, p4 and p6.

Looking at the four sequences n, pn, P (pn) and S(pn), again, we may try to iterate the idea of
“transcending”. More precisely, we modify (1.1) as follows:

(1.2)
x∑

i=0

pi = P (px),

where we now include the summand p0 = 1 which was not included in (1.1). It is natural to
consider (1.2) only for prime numbers x which satisfy (1.1):
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3∑
i=0

pi = 1 + 2 + 3 + 5 = 11 = p5 = P (p3),

7∑
i=0

pi = 1 + 2 + 3 + 5 + 7 + 11 + 13 + 17 = 59 = p17 = P (p7),

13∑
i=0

pi = 239 = p52 6= 179 = p41 = P (p13).

In conclusion, the number 13 does not satisfy the “second order transcendency” equation (1.2).
Hence, from the trinity which advanced from the first round, the number 13 fails to transcend
again. This perhaps could justify the belief in the “unlucky” 13.

To finish the introduction, let us have a look at the “third order transcendency”. The corre-
sponding equation reads as follows:

(1.3)
x∑

i=0

ppi
= P (ppx

).

If we consider the validity of (1.3) for x = 3 and x = 7, we find that

3∑
i=0

ppi
= 2 + 3 + 5 + 11 = 21 6= P (pp3) = p11 = 31,(1.4)

7∑
i=0

ppi
= 2 + 3 + 5 + 11 + 17 + 31 + 41 + 59 = 169 6= P (pp7) = p59 = 277.(1.5)
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This means that while only the number 13 fails at the “second transcendency”, the remaining
two numbers fail at the “third transcendency”. However, it is worth noticing that the sums yield
21 = 3 · 7 in (1.4), and 169 = 132 in (1.5). Thus the results can be expressed by means of numbers
from our trinity, again.

2. Proof of the Theorem

Let π(x) denote the number of prime numbers which are less than or equal to x, log x be the
natural logarithm of x, and bxc be the (lower) integer part of x. Then

(2.1)
∑
p≤x

p =
x∑

n=1

(π(n) − π(n − 1))n = −
x∑

n=1

π(n) + π(x)(bxc + 1).

Using the following inequalities (see [1, page 228])

π(x) <
x

log x

(
1 +

3
2 log x

)
for x > 1,

π(x) >
x

log x

(
1 +

1
2 log x

)
for x ≥ 59,

(2.2)
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we obtain from (2.1) that

∑
p≤x

p = −
x∫

2

π(u)du + π(x)(bxc + 1)

> −
x∫

2

u

log u

(
1 +

3
2 log u

)
du + π(x)(bxc + 1)

> −
x∫

2

udu

log u
− 3

2

x∫
2

udu

log2 u
+ x

x

log x

(
1 +

1
2 log x

)
.(2.3)

Integrating by parts we see that
x∫

2

udu

log u
=

x2

2 log x
− 22

2 log 2
+

1
2

x∫
2

udu

log2 u
,

therefore (2.3) yields:

(2.4)
∑
p≤x

p >
x2

2 log x
+

x2

2 log2 x
− 2

x∫
2

udu

log2 u
+

2
log 2

.

Since the function u log−2 u is decreasing for 1 < u ≤ e2 and increasing for u ≥ e2, it holds that

x∫
2

udu

log2 u
=

e2∫
2

udu

log2 u
+

x∫
e2

udu

log2 u
< (e2 −2)

2
log2 2

+ (x − e2)
x

log x
.
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The last inequality and (2.4) imply now that

(2.5)
∑
p≤x

p >
x

2 log x
− 3

2
x2

log2 x
+

2 e2 x

log2 x
− B for x ≥ 59,

where

B =
2

log 2

(
2

log 2
(e2 −2) − 1

)
.

Using the upper bound (see [1, page 247])

pn < n log n + n log log n for n ≥ 6,

we have

(2.6)
∑
p≤x

p − pbxc > x(f(x) − g(x)) for x ≥ 59,

where

f(x) =
x

2 log x
− 3

2
x

log2 x
+

2 e2

log2 x
− 1

x
B,

g(x) = log x + log log x.

We shall show that there is an x0 > 59 such that f(x) − g(x) > 0 for x > x0. To this end it
suffices to find an x0 > 0 such that f(x0) > g(x0) and the function f(x) − g(x) is increasing for
x ≥ x0. Since

f ′(x) =
1

2 log x

(
1 − 4

log x

)
+

1
log3 x

(
6 − 4 e2

x

)
+

1
x2

B,
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we obtain that

(2.7) f ′(x) ≥ 1
2 log x

(
1 − 4

log x

)
+

2
log3 x

+
1
x2

B for x ≥ e2 .

Using (2.7) we now see that

f ′(x) − g′(x) ≥ 1
2 log x

(
1 − 4

log x

)
+

2
log3 x

+
B

x2
− 1

x

(
1 +

1
log x

)
=

1
2 log x

[
1 −

(
4

log x
+

2
x

)]
+

(
2

log3 x
− 1

x

)
+

B

x2
for x ≥ e2 .

Therefore, if x0 ≥ e2 is such that

2x > log3 x for x ≥ x0,(2.8)

and
2
x

+
4

log x
< 1 for x ≥ x0,(2.9)

then

f ′(x) − g′(x) > 0 for x ≥ x0,

It suffices to choose x0 = e5 ≈ 143.413 > 59 because then

f(x0) ≈ 362.436 > g(x0) ≈ 6.609,

as well as
2
x0

+
4

log x0
=

2
e5

+
4
5

<
1
24

+
4
5

< 1

and (2.9) holds. Clearly, (2.8) is satisfied too. Hence f(x) − g(x) is increasing for x ≥ x0.
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Thus for every integer x ≥ 149 we have ∑
p≤x

p > px.

Notice that 149 = p35. It remains to show that among the integers 1 ≤ x ≤ p35 just the primes 3,
7 and 13 satisfy (1.1). To this end notice that for each n ≥ 0 the condition pn ≤ x < pn+1 implies

S(x) =
∑
p≤x

p =
n∑

i=1

pi = S(pn).

Using a computer let us extend Table 1 up to n = 35 and by adding a fifth row containing the
initial segment of the sequence P (pn+1 − 1). Now, any column of the new Table 2 corresponds to
the interval pn ≤ x < pn+1.

As readily seen, for n ≥ 10, i.e. for x ≥ 29, we already have

P (pn) < P (pn+1 − 1) < S(pn) = S(x),

whenever pn ≤ x < pn+1, exactly as for n ≥ 35, i.e. for x ≥ 149.
On the other hand, for n ∈ {0, 1, 3, 5, 7}, i.e. for x ∈ {1; 2; 5, 6; 11, 12; 17, 18} we have

S(x) = S(pn) < P (pn) < P (pn+1 − 1),

excluding any counterexample pn ≤ x < pn+1 to (1.1), as well.
Finally, for n ∈ {8, 9} we have

P (pn) < S(x) = S(pn) < P (pn+1 − 1),

so that a counterexample pn ≤ x < pn+1 could perhaps occur. Fortunately, for n = 8, we have
p8 = 19, so that all the primes

p19 = 67, p20 = 71, p21 = 73, p22 = 79
differ from the sum S(x) = 77 for 19 ≤ x < 23.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pn 1 2 3 5 7 11 13 17 19 23 29 31 37 41 43

P (pn) 2 3 5 11 17 31 41 59 67 83 109 127 157 179 191
S(pn) 0 2 5 10 17 28 41 58 77 100 129 160 197 238 281

P (pn+1 − 1) 2 3 7 13 29 37 53 61 79 107 113 151 173 181 199

n 15 16 17 18 19 20 21 22 23 24 25 26
pn 47 53 59 61 67 71 73 79 83 89 97 101

P (pn) 211 241 277 283 331 353 367 401 431 461 509 547
S(pn) 328 381 440 501 568 639 712 791 874 963 1060 1161

P (pn+1 − 1) 239 271 281 317 349 359 397 421 457 503 541 557

n 27 28 29 30 31 32 33 34 35
pn 103 107 109 113 127 131 137 139 149

P (pn) 563 587 599 617 709 739 773 797 859
S(pn) 1264 1371 1480 1593 1720 1851 1988 2127 2276

P (pn+1 − 1) 577 593 613 701 733 769 787 857 863

Table 2.
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Similarly, for n = 9, we have p9 = 23, and all the primes

p23 = 83, p24 = 89, p25 = 97, p26 = 101, p27 = 103, p28 = 107

are distinct from the sum S(x) = 100 for 23 ≤ x < 29, again.
There remain the columns for n ∈ {2, 4, 6}, corresponding to our mythical numbers and their

“prime interval companions” x ∈ {3, 4; 7, 8, 9, 10; 13, 14, 15, 16}.
2

Perhaps it is worthwhile to notice the “almost mythical” number x = 26 = 2 · 13 for which the
sum ∑

p≤26

p = 100

and the prime p26 = 101 differ just by 1.

3. Supplement

In our opinion, the so-called natural numbers tell us about laws of this world a lot more than
we are able to admit or comprehend. So for example, the recently proved Fermat’s theorem on
nonexistence of nontrivial integer solutions of the equation

(3.1) xn + yn = zn

for n > 2, together with the long ago known fact that there are infinitely many integer solutions
of this equation for n = 2, seem apparently related in a strange or even mysterious way to the
validity of the Pythagorean theorem which is essentially the basis of the Euclidean geometry.

Similarly, we can mention the theorem saying that the Diofantic equation

(3.2) n = x2 + y2 + z2 + u2
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has an integer solution for every natural number n. Probably its most elegant proof makes use of
the multiplicative property of the quaternion norm given by

|q|2 = q q∗ = q2
0 + q2

1 + q2
2 + q2

3 ,

where q = q0+q1i+q2j+q3k is an arbitrary quaternion and q∗ = q0−q1i−q2j−q3k is its adjoint. On
the other hand, this result seems essential to allow for the very existence of Hamilton’s quaternions
as a four-dimensional non-commutative and associative division algebra over reals with the above
norm. A deep theorem states that there are up to isomorphisms just three continuous associative
division algebras over the field of reals: the real numbers themselves, the complex numbers, and
the quaternions, with dimensions 1, 2 and 4, respectively. Moreover, the quaternion multiplication,
through the formula

p q = 〈p, q〉 + p0~q + q0~p + (~p × ~q),

is closely related to the spatial vector product ~p × ~q of the vector parts ~p = p1i + p2j + p3k,
~q = q1i + q2j + q3k of the quaternions p, q, and their pseudoscalar product

〈p, q〉 = p0q0 − p1q1 − p2q2 − p3q3,

determining the geometry of the Minkowski’s four-dimensional time-space in Einstein’s Special
Theory of Relativity.

We find it very interesting that the equation (1.1) specifies precisely the three prime numbers
3, 7 and 13. As if equations (3.1) and (3.2) decided about geometry and physics and (1.1) about
myths.

We add the following to the latter: Analogously to the definition of the factorial n! = 1 ·2 · . . . ·n,
we introduce the summarial

n!
+

= 1 + 2 + . . . + n.
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If we then compute the summarials of the three solutions of (1.1), we obtain

3!
+

= 6, 7!
+

= 28, 13!
+

= 91.

The first two summarials are the first two perfect numbers. The third one is not perfect, however,
both the number as well as the sum of its proper divisors can be expressed as products

91 = 7 · 13, 1 + 7 + 13 = 21 = 3 · 7
of pairs of the mythical primes. This means that the last summarial does not give rise to perfection
but just to some kind of “quasiperfection” —the number 13 returns in some sense, accompanied
with 3 and 7.

We see that the three solutions of (1.1) satisfy many remarkable relations and this is perhaps
the reason why they became selected.

Acknowledgment. At the end I would like to thank two people who contributed to the
creation of this work. The first one is my oldest nephew Dušan Dudák († 7/28/2008), a computer
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