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SPECIAL REPRESENTATIONS OF THE BOREL AND
MAXIMAL PARABOLIC SUBGROUPS OF Gy(q)

M. GHORBANY

ABSTRACT. A square matrix over the complex field with a non-negative integral
trace is called a quasi-permutation matrix. For a finite group G, the minimal degree
of a faithful representation of G by quasi-permutation matrices over the complex
numbers is denoted by ¢(G), and r(G) denotes the minimal degree of a faithful
rational valued complex character of G. In this paper ¢(G) and r(G) are calculated
for the Borel and maximal parabolic subgroups of G2(q).

1. INTRODUCTION

Let G be a finite linear group of degree n, that is, a finite group of automorphisms of
an n-dimensional complex vector space. We shall say that G is a quasi-permutation
group if the trace of every element of G is a non-negative rational integer. The
reason for this terminology is that, if G is a permutation group of degree n, its
elements, considered as acting on the elements of a basis of an n-dimensional
complex vector space V', induce automorphisms of V' forming a group isomorphic
to G. The trace of the automorphism corresponding to an element = of G is equal
to the number of letters left fixed by x, and so is a non-negative integer. Thus, a
permutation group of degree n has a representation as a quasi-permutation group
of degree n (See [12]). In [4] the authors investigated further the analogy between
permutation groups and quasi-permutation groups. They also worked over the
rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field
C with non-negative integral trace. Thus every permutation matrix over C is a
quasi-permutation matrix. For a given finite group G, let ¢(G) be the minimal
degree of a faithful representation of G by complex quasi-permutation matrices.
By a rational valued character we mean a complex character y of G such that
x(g) € Q for all g € G. As the values of the characters of a complex representation
are algebraic numbers, a rational valued character is in fact integer valued. A
quasi-permutation representation of G is then simply a complex representation of

Received April 6, 2008; revised December 16, 2008.

2000 Mathematics Subject Classification. Primary 20C15.

Key words and phrases. Borel and parabolic subgroups; rational valued character; quasi-
permutation representations.



224 M. GHORBANY

G whose character values are rational and non-negative. The module of such a
representation will be called a quasi-permutation module.

We will call a homomorphism from G to GL(n, Q) a rational representation of
G and its corresponding character will be called a rational character of G. Let
r(G) denote the minimal degree of a faithful rational valued character of G.

Finding the above quantities has been carried out in some papers, for example in
[5], [6], [7] and [10] we found them for the groups GL(2, q), SU(3,¢*), PSU(3,¢?),
SL(3,q), PSL(3,q) and G2(2"™) respectively. In [3] we found the rational character
table and above values for the group PGL(2,q).

In this paper we will calculate ¢(G) and r(G) where G is a Borel subgroup or
the maximal parabolic subgroups of Ga(q).

2. NOTATION AND PRELIMINARIES

Let G = G2(q) be the Chevalley group of type G5 defined over K. An excellent
description of the group can be found in [11]. We summarize some properties of
the group. Let X be the set of roots of a simple Lie algebra of type G3. In some
fixed ordering the set of positive roots of ¥ can be written as

Yt ={a,b,a+b,2a +b,3a + b,3a + 2b}

and ¥ consists of the elements of ¥ and their negatives. For each r € X, let
2y (t),x_,(t) and w, be as in [11]. Moreover we denote the element h(x) of [11]
by h(z1, 22, 23), where x (&) = z; with 212923 = 1. Note that a = &, b =& — &
and &1 + & + €3 = 0. For simplicity of notation h(z*, 27, 27¢77) is also denoted by
hy(i,j, —i—j) for = ,0,w, etc. Let X, = {z,(t) | t € K} be the one-parameter
subgroup corresponding to a root 7. Set

H = {h(Zl,ZQ,Zg) | Z; € KX,legzg = 1},

U= XaXoXatbX2a+5X3a+bX3a+25,

B=HU, P=<B,w,> Q=<B,wp,>.
Then B = Ng(U) is a Borel subgroup and P and @ are the maximal parabolic
subgroups containing B.

By [1], [8], [9], every irreducible character of B will be defined as an induced

character of some linear character of a subgroup. This implies that B is an
M-group. The character tables of the Borel subgroup B for different ¢ are given

in Tables I of [1], [8], [9].
The character tables of parabolic subgroups

P =< B,w, >= BU Buw,B, Q =< B,wy, >= BU Bw,B

for different ¢ are given in Tables [A.4, A.6], [III, IV], [II-2, III-2] of [1], [8], [9]
respectively.
Now we give algorithms for calculation of 7(G) and ¢(G) .

Definition 2.1. Let x be a character of G such that, for all g € G, x(g9) € @
and x(g) > 0. Then we say that x is a non-negative rational valued character.
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Let n; for 0 < 4 < r be Galois conjugacy classes of irreducible complex characters
of G. For 0 < i < r let p; be a representative of the class n; with ¢, = 14. Write
v, = in@“xi, m; = mq(p;) and K; = ker ¢;. We know that K; = ker ¥;. For
I1C{0,1,2,---,r}, put K1 = N;erK;. By definition of r(G) and ¢(G) and using
the above notations we have:

r(G) =min{&(1) : £ = inl\lll, n; >0, Ky =1for I ={i,i#0,n; >0}}

i=1
¢(G) =min{{(1): £ = Znﬂl% n; >0, Ky =1for I ={i,i #0,n; >0}}
i=0

where ng = —min{{(g)|g € G} in the case of ¢(G).
In [2] we defined d(x), m(x) and ¢(x) (see Definition 3.4). Here we can redefine
it as follows:

Definition 2.2. Let y be a complex character of G such that ker y = 1 and
X = X1+ -+ xn for some x; € Irr(G). Then define

(1) 00 = L [F(x) b1,

0 if x =1g,
(2) m(x) = |min{zn: > x%(g9):g € G} otherwise,

i=1ael;(xi)
(3) clx) = X§ +m(x)lc.
=1 ael;(xi)
So
r(G) = min{d(x) : ker x = 1}
and

¢(G) = min{e(x)(1) : ker x = 1}.
We can see all the following statements in [2].

Corollary 2.3. Let x € Irr(G), then -, cp(,) X* is a rational valued char-
acter of G. Moreover c(x) is a non-negative rational valued character of G and
c(x) = d(x) +m(x).

Lemma 2.4. Let x € Irr(G), x # 1g. Then c(x)(1) > d(x) +1> x(1) + 1.
Lemma 2.5. Let x € Irr(G). Then
(1) e()(1) = d(x) = x(1);

<2

(2) e(x)(1) < 2d(x). Equality occurs if and only if Z(x)/ker x is of even order.
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3. QUASI—PERMUTATION REPRESENTATIONS

In this section we will calculate r(G) and ¢(G) for Borel and parabolic subgroups
of G2(q). First we shall determine the above quantities for a Borel subgroup.

Theorem 3.1. Let B be a Borel subgroup of Ga(q), then
(1) (B 2q(q = DI (x7(k)| if ¢ =3",
r _
¢*(q— 1)|T(x7(k))| otherwise,

2¢%|T k if ¢ = 3™,
@) C(B){ @D (e )>>| /4

@|T(x7(k))]  otherwise,

=1

(3) q]i)Ilgo r(B)

Proof. Since there are similar proofs for ¢ = 2™, ¢ = p™; p # 3, we will prove
only the case g = 2™.

In order to calculate r(B) and ¢(B), we need to determine d(x) and ¢(x)(1) for
all characters that are faithful or ﬂX ker y = 1.

Now, by Corollary 2.3 and Lemmas 2.4, 2.5 and [9, Table I-1], for the Borel
subgroup B we have

d(x1) = T (ks D) xa (B, (1) + IF(X7( NIx7(k)(1) = ¢*(g— 1) +1
and  c(x1)(1) > ¢°

d(x2) = [T(x2 (k) [x2(k)(1) + T ( ( Nxr(k)(1) > (¢ = 1)(¢* + 1)
and  c(x2)(1) > q(¢” + 1),

d(xs) = [T(xa(k)Ixs(k) (1) + [T (xr (k) Ix7 (k) (1) > (¢ = 1)(¢* + 1)
and  ¢(xs)(1) > q(¢° + 1),

d(xa) = [T (xa(k)xa(k) (1) + [Tz (k) Ixr (B) (1) > q(¢® — 1)
and  c(xa)(1) = ¢*(¢+ 1),

d(xs) = [T'(xs5(k)) x5 (k)(1) + [T (x7(k))[x7(k)(1) = q(¢” — 1)
and  ¢(xs)(1) > ¢*(¢+ 1),

d(xe) = [I'(x6(k))Ixe(k)(1) + [T'(x7(k))[x7(k)(1) = q(¢” — 1)
and  c(xe)(1) > ¢*(g+ 1),

d(x7) = |D(01)[61 (1) + [C(xz (k) [x7 (k) (1) = (¢ = D(¢* + g — 1)

and  ¢(x7)(1) > q(¢® +q—1),

d(xs) = [I'(05)|03(1) + [L(x7(k))|x7(k)(1) = q(¢ — 1)(2¢ — 1)
and  c(xs)(1) > ¢*(29 - 1),

d(x9) = [D(X=083(k, )| (27083 (k, 1)) (1) +[T (Ocr (k) [xr (k) (1) > g(g — 1)(2g — 1)
and  c(xo)(1) > ¢°(2¢ — 1),



BOREL AND MAXIMAL PARABOLIC SUBGROUPS OF Ga(q) 227

d(x10) = [L(0a(r, $))[0a(r, 5)(1) + [Tz (k) e (k) (1) > w
L ¢Ba-Y

and  c¢(x10)(1) > 5
|

d(x11) = [I'(Zzekxbs(2)) (2 xeK95( D) + T (x7 (k) [x7(k)(1) > ¢*(g — 1)
and e(x11)(1) >
d(x12) = [L(xa(k, D) xa(k,D(1 )+ IT(62)[62(1) > ¢*(¢ — 1)* + 1
and  c(xi2)(1) 2 ¢°(q— 1) +2,
d(x13) = [T (x2(k))Ix2(k)(1) + [T(62)[02(1) > (¢ —1)(¢* — ¢ + 1)
and  c(x13)(1) > q(¢® — ¢* + 1),
d(x14) = T (xs(k))Ixs(k) (1) + [T(62)[02(1) > (¢ — 1)(¢* — ¢ + 1)
and  c(x1a)(1) 2 q(¢® — ¢* + 1),
d(x15) = [F'(xa(k))[xa(k)(1) + |F(92)|92( ) >qlg—1)(¢° —q+1)
and  c(x15)(1) > ¢*(¢° — g+ 1),
d(x16) = [T'(x5(k))x5(k)(1) + |F(92)|92( ) >qlg—1)(¢° —q+1)
and  c(xi6)(1) = ¢*(¢° —q+1),
d(x17) = |T'(xe(k))xe(k)(1) + |F(92)|92( ) > qlg—1)(¢° —q+1)
and  c(xi7)(1) > ¢*(¢* — g+ 1),
d(x1s) = |T(61)]61(1) + [T'(62)162(1) > (¢ — 1)*(¢° + 1)
and  c(xis)(1) 2 (g — 1)(¢° +1),
d(x19) = |T(63)]03(1) + [T'(62)|62(1) > q(qg — 1)* (g + 1)
and  ¢(x19)(1) > ¢*(¢ — 1)(g + 1),
d(x20) = [T (Z7_o83(k, )| (ZFoo83(k. 1)) (1) +[T(82)]02(1) > (g — 1)* (g + 1)
and  ¢(x20)(1) > ¢*(¢ — 1)(g + 1),

qlg—1)*(2¢ + 1)
2

d(xa1) = [T'(04(r,5))[04(r, 5)(1) + [T(62)]02(1) >
*(g—1)(2¢+1)

~—

and c(x21)(1

(1) = :
d(x22) = | (Swerbs(2))] (Erexbs(2)) (1) +[L(02)]02(1) = 2¢°(q — 1)?
and  c(x22)(1) 2 2¢°(¢ - 1),
d(x7(k)) = |T'(x7(k))|x7(k)(1) = (q— 1)
and  c(x7)(k)(1) =
d(62) = [T'(02)]02(1) = qz(q - 1)

and  ¢(62(1) = ¢*(¢— 1),
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An overall picture is provided by the Table I on the next page.

For the character x7(k), k € Ry as |Ro| = ¢ — 1, so |I'(x7(k))| < ¢ — 1, where
D(x7(k)) = T(Q(x7(k)) : Q). Therefore we have

¢*(¢ 1) < d(xz(k)) < ¢*(q - 1)*.
Now by Table I and the above equality we have
min{d(x) : ker x = 1} = d(xz(k)) = ¢*(¢ — 1)|T(x7(k))|
and
min{c(x)(1) : kerx = 1} = c(x7(k))(1) = ¢*[T (x7 (k))I-

The quasi-permutation representations of Borel subgroup of G5(3™) are con-
structed by the same method. In this case by [8, Table I] we have

ker x7 (k) [ ker xg(k) = 1.
Now, it is not difficult to calculate the values of d(x) and ¢(x)(1), so
min{d(x) : kerx = 1} = [T(x7(k))[x7 (k) (1) + [T'(xs (%)) x6 (k) (1)
=2q(q = DT (x7(k))[ = 29(q = DT (xs (k)|
and
min{c(x)(1) - kerx = 1} = 2¢%|T(x7 (k)| = 2¢*[T (xs (k)]
(Since [(x7 (k)| = [T'(xs(k))])-

By parts (1) and (2) we have
2

if ¢ =23"
eB) _ ) qlg-1) Ha=en
r(B) qu otherwise.
¢*(g—1)
. ¢(B)
Hence lim = 1. Therefore the result follows. O
g—o0 7(B)

The following theorem gives the quasi-permutation representations of a maximal
parabolic subgroup P.

Theorem 3.2.

A. Let P be a mazimal parabolic subgroup of G2(p™), p # 3, then
(1) r(P)=¢q*(¢—1),
(2) e(P) = ¢,

) Tim 22

q—oc (P

=1
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Table I
| x Jd [ 00 (1)
X1 |>¢*(g—1)+1 > ¢ +2
x2 | > (=D +1) >q(g®+1)
xs | > (=1 +1) >q(q® +1)
Xa | >qlg®—1) >q’(g+1)
xs | >aqlg® —1) > (g +1)
X |>qlq®—1) >q’(q+1)
xr |2 @@= +q—1) |>q(¢®+q—1)
xs | >qlg—1)(2¢—1) >q°(2q—1)
Xo | >qlg—1)(2¢—1) >q*(2q—1)
xio | >qlg—1)Bg—1)/2 |>4¢*(8¢—1)/2
xi1 | >¢*(g—1) > g
xiz |>¢*(qg—1)°+1 >q’(q—1)+2
xi3 | > (=) - +1)|>q(¢® —¢*+1)
xia | >(q=D(@ - +1)|>q(d® — > +1)
xis | >qlg=1)(¢* —q+1)|>¢*(® —q+1)
xi6 | >qlg—1)(¢* —q+1)|>¢*(® —q+1)
xi7 | >qlg—1)(¢" —g+1) ZqQ(QQ—qﬂLl)
xis | > (g—1)*(¢ +1) >q(q—1)(¢° +1)
X9 | >qlg—1)%*(g+1) > q2(q—1)( +1)
x20 | >qlg—1)%(g+1) ¢lg=1)(g+1)
xa1 |>q(g—1)*(2¢+1)/2 | > ¢* (g —1)(2¢+1)/2
X2z | >2¢%(g—1)° % (¢—1)
x7(k) | > ¢*(q—1) > q°
02 |=q¢*(¢g—1)° =4¢’(¢g—1)

B. Let P be a maximal parabolic subgroup P of G2(3™), then

(1) r(P)=q(g—1)(qg+2),

(2) e(P)=q¢*(qg+1),
_ooP)
®) Jim T =L

229

Proof. A. Similar to the proof of Theorem 3.1, in order to calculate r(P) and
¢(P) we need to determine d(x) and ¢(x)(1) for all characters that are faithful or

N, ker x = 1.

Now, in this case, since the degrees of faithful characters are minimal, so we
consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and
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[9, Table (II-2)], for the maximal parabolic subgroup P of G3(2") we have
d(x7(k)) = L0z (R)x7(k)(1) = ¢*(¢* = 1) and  c(x7)(k)(1) = ¢*(q + 1),
d(xs(k)) = [C(xs(k)xs(k)(1) > ¢*(¢ = 1)*  and  c(xs)(k)(1) > ¢°(g— 1),

d(67) = [L(67)167(1) = ¢°(q — 1) and  ¢(6-(1)) = ¢°,
d(0s) = [D(05)10s(1) = ¢°(¢ — 1) and  c(0s(1)) = ¢*.

The values are set out in the following table

Table II
| x [do0 B
x7(k) | > (" —1) | > ¢*(q+1)
0s(k) | > ¢*(q—1)* | > ¢* (¢ — 1)
07 |=d*(q—1) |=¢°
bs |=4¢*(q-1) |=4¢*

Now, by Table IT we have
min{d(x) : ker x = 1} = d(x7(k)) = ¢*(¢ — 1)) and

min{c(x)(1) : kerx = 1} = c(x7(k))(1) = ¢*.

By the same method for the maximal parabolic subgroup P of Ga(p™), p # 3
and by [1, Table A.6], Table IIT is constructed.

Table III
| x [dw [ cb0(D) |
pxrk) [ >¢* (¢ —1) [>4¢*(a+1)
pls(k) [>¢°(¢—1)* |>d’(g—1)
Pl |=q¢*(q—1) =q
pOs = qg(q - 1) =q"
Pl |=q*(q—1)*/2|=¢*(¢—1)/2
pbo |=d*(¢—1)%/2|=¢*(g—1)/2
P | = (*—1)/2|=¢*(g+1)/2
bz |=q (¢ —1)/2|=¢*(g+1)/2

Now by Table IIT we have
min{d(y) : ker x = 1} = d(x7(k)) = q2(q —-1)) and

minfe(x)(1) : ker x = 1} = e(x7(k))(1) = ¢*.
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B. The quasi-permutation representations of maximal parabolic subgroup P of
G2(3™) are constructed by the same method in Theorem 3.1. In this case, by [8,
Table IIT |, we have

ker 911 m ker Xﬁ(k’) =1.
This helps us to calculate
min{d(x) : kerx =1} =q(¢—1)(¢+ 1) and

min{c(x)(1) : ker x = 1} = ¢*(¢ + 1).

= 1. Therefore the

c(P
For the both parts, it is elementary to see that lim E §
g—oo T

result follows. O

In the following theorem, we construct 7(G) and ¢(G) of another parabolic
subgroup @ of Ga2(q).

Theorem 3.3.
A. Let Q be a mazimal parabolic subgroup of G2(p™), p # 3, then

(1) 7(Q) = q(¢® = V|T (xz(K))l,
(2) e(Q) = T (x7(k))l,
(@)
RN
B. Let Q be a mazimal parabolic subgroup of G2(3"™), then
(1) r(Q) =alg—1)(¢+2),
(2) (@) =¢*(a+1),
(@)
RN

Proof. A) As we have mentioned before, in order to calculate 7(Q) and ¢(Q)
we need to determine d(x) and c(x)(1) for all characters that are faithful or

N, ker x = 1.

Now, in this case, since the degrees of faithful characters are minimal, so we
consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and |9,
Table I11-2] for the maximal parabolic subgroup @ of G2(2") we have

d(x7(k)) = [T (x7(k))Ix7(k)(1) > q(¢* —1) and c(x7)(k)(1) > ¢°,
d(62) = [T(62)02(1) > q(q — 1)(¢° — 1) and c(62(1) > ¢*(q — 1),
d(S7_o02(k, 1)) = [T (3702 (K, D)(ZF_0b2(k, 1)(1) > g(g — 1)(¢> — 1) and
(X7l (K, D)(1) > ¢* (g — 1),
) (

) (

=1.

=1.

d(Zaexb3(z)) = T (Seexb3(2)(Zaexbs(z))(1) = ¢*(¢ — 1)(¢> — 1) and
(Seexbs(x))(1) = q* (g — 1)
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The values are set out in Table IV.
For the character x7(k), k € Ry as |Ro| = ¢ — 1, so |T'(x7(k))| < ¢ — 1, where
D(x7(k)) = T(Q(x7(k)) : Q). Therefore we have

q(q* = 1) < d(x7(k)) < qlq = 1)(¢* — 1).
Now, by Table IV we have
min{d(x) : ker x = 1} = d(x7(k)) = mq(¢* — 1) and
min{c(x)(1) : ker xy = 1} = ¢(x7(k))(1) = mq®, where m = |T'(x7(k))|.

Table IV
d(x) c(x)(1)
x7(k)  |>aq(d®—1) > ¢
xs(k)  |>qlg—1)(*—1) |>¢*(g—1)
Siob2(k, 1) | > qlg—1)(¢° —1) |>q*(¢—1)
Seexbs(z) | = (g—1)(¢* 1) |=q"(¢g—1)

For the maximal parabolic subgroup @ of Ga(p™), p # 3, by the same method
and [1, Table A.6], Table V is constructed.

Table V
X d(x) c(x)(1)
axr(k) >q(q> — 1) >q°
Yo @ba(k,l) | >qlg—1)(¢* —1) |>¢*(g—1)
Seery @3(x) | >qlg—1)%(¢* —1) | >q*(¢—1)°
Seer, @a(r) |=¢*(¢—1)(¢" —1)|=q"(q—1)
QOs(k) +q 0s(k) | > q(g—1)(¢* = 1) |>¢*(q—1)

For the character gx7(k), k € Ry as |Ro| = ¢ — 1, so [T'(gxz(k))| < ¢ —1,
where T'(gx7(k)) = T'(Q(gx7(k)) : Q). Therefore we have
a(q® = 1) < d(xr(k)) < ala = 1)(@* — 1).
Now, by Table V we have
min{d(x) : ker x = 1} = d(gx7(k)) = mq(¢* — 1) and
min{c(x)(1) : kerx = 1} = c(ox7(k))(1) = mq®, where m = |['(gx7(k))|.
B. The quasi-permutation representations of maximal parabolic subgroup @ of

G2(3™) are constructed by the same method as in Theorem 3.1. In this case, by
Table III of [8], we have

ker 17 () ker xg(k) = 1.
This helps us to obtain
min{d(x) : kerx =1} = q(¢ — 1)(¢ + 2) and
min{c(x)(1) : ker y = 1} = ¢*(¢ + 1).
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It is obviously that also in this case lim ;Eg; = 1. Therefore the result follows.
g—00
O
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