
JJ J I II

Go back

Full Screen

Close

Quit

SPECIAL REPRESENTATIONS OF THE BOREL AND MAXIMAL
PARABOLIC SUBGROUPS OF G2(q)

MARYAM GHORBANY

Abstract. A square matrix over the complex field with a non-negative integral trace is called a

quasi-permutation matrix. For a finite group G, the minimal degree of a faithful representation of G
by quasi-permutation matrices over the complex numbers is denoted by c(G), and r(G) denotes the
minimal degree of a faithful rational valued complex character of G. In this paper c(G) and r(G) are
calculated for the Borel and maximal parabolic subgroups of G2(q).

1. Introduction

Let G be a finite linear group of degree n, that is, a finite group of automorphisms of an n-
dimensional complex vector space. We shall say that G is a quasi-permutation group if the trace
of every element of G is a non-negative rational integer. The reason for this terminology is that,
if G is a permutation group of degree n, its elements, considered as acting on the elements of a
basis of an n-dimensional complex vector space V , induce automorphisms of V forming a group
isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal
to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation
group of degree n has a representation as a quasi-permutation group of degree n (See [12]). In [4]
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the authors investigated further the analogy between permutation groups and quasi-permutation
groups. They also worked over the rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-
negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For
a given finite group G, let c(G) be the minimal degree of a faithful representation of G by complex
quasi-permutation matrices. By a rational valued character we mean a complex character χ of G
such that χ(g) ∈ Q for all g ∈ G. As the values of the characters of a complex representation
are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation
representation of G is then simply a complex representation of G whose character values are rational
and non-negative. The module of such a representation will be called a quasi-permutation module.

We will call a homomorphism from G to GL(n, Q) a rational representation of G and its corre-
sponding character will be called a rational character of G. Let r(G) denote the minimal degree
of a faithful rational valued character of G.

Finding the above quantities has been carried out in some papers, for example in [5], [6], [7]
and [10] we found them for the groups GL(2, q), SU(3, q2), PSU(3, q2), SL(3, q), PSL(3, q) and
G2(2n) respectively. In [3] we found the rational character table and above values for the group
PGL(2, q).

In this paper we will calculate c(G) and r(G) where G is a Borel subgroup or the maximal
parabolic subgroups of G2(q).

2. Notation and preliminaries

Let G = G2(q) be the Chevalley group of type G2 defined over K. An excellent description of the
group can be found in [11]. We summarize some properties of the group. Let Σ be the set of roots
of a simple Lie algebra of type G2. In some fixed ordering the set of positive roots of Σ can be
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written as
Σ+ = {a, b, a + b, 2a + b, 3a + b, 3a + 2b}

and Σ consists of the elements of Σ+ and their negatives. For each r ∈ Σ, let xr(t), x−r(t) and
ωr be as in [11]. Moreover we denote the element h(χ) of [11] by h(z1, z2, z3), where χ(ξi) = zi

with z1z2z3 = 1. Note that a = ξ2, b = ξ1 − ξ2 and ξ1 + ξ2 + ξ3 = 0. For simplicity of notation
h(xi, xj , x−i−j) is also denoted by hx(i, j,−i− j) for x = γ, θ, ω, etc. Let Xr = {xr(t) | t ∈ K} be
the one-parameter subgroup corresponding to a root r. Set

H = {h(z1, z2, z3) | zi ∈ K×, z1z2z3 = 1},
U = XaXbXa+bX2a+bX3a+bX3a+2b,

B = HU, P =< B, ωa >, Q =< B, ωb > .

Then B = NG(U) is a Borel subgroup and P and Q are the maximal parabolic subgroups containing
B.

By [1], [8], [9], every irreducible character of B will be defined as an induced character of some
linear character of a subgroup. This implies that B is an M -group. The character tables of the
Borel subgroup B for different q are given in Tables I of [1], [8], [9].

The character tables of parabolic subgroups

P =< B, ωa >= B ∪BωaB, Q =< B, ωb >= B ∪BωbB

for different q are given in Tables [A.4, A.6], [III, IV], [II-2, III-2] of [1], [8], [9] respectively.
Now we give algorithms for calculation of r(G) and c(G) .

Definition 2.1. Let χ be a character of G such that, for all g ∈ G, χ(g) ∈ Q and χ(g) ≥ 0.
Then we say that χ is a non-negative rational valued character.

Let ηi for 0 ≤ i ≤ r be Galois conjugacy classes of irreducible complex characters of G. For
0 ≤ i ≤ r let ϕi be a representative of the class ηi with ϕo = 1G. Write Ψi =

∑
χi∈ηi

χi,
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mi = mQ(ϕi) and Ki = kerϕi. We know that Ki = kerΨi. For I ⊆ {0, 1, 2, · · · , r}, put
KI = ∩i∈IKi. By definition of r(G) and c(G) and using the above notations we have:

r(G) = min{ξ(1) : ξ =
r∑

i=1

niΨi, ni ≥ 0, KI = 1 for I = {i, i 6= 0, ni > 0}}

c(G) = min{ξ(1) : ξ =
r∑

i=0

niΨi, ni ≥ 0, KI = 1 for I = {i, i 6= 0, ni > 0}}

where n0 = −min{ξ(g)|g ∈ G} in the case of c(G).
In [2] we defined d(χ), m(χ) and c(χ) (see Definition 3.4). Here we can redefine it as follows:

Definition 2.2. Let χ be a complex character of G such that kerχ = 1 and χ = χ1 + · · ·+ χn

for some χi ∈ Irr(G). Then define

(1) d(χ) =
n∑

i=1

|Γi(χi)|χi(1),

(2) m(χ) =


0 if χ = 1G,

|min{
n∑

i=1

∑
α∈Γi(χi)

χα
i (g) : g ∈ G}| otherwise,

(3) c(χ) =
n∑

i=1

∑
α∈Γi(χi)

χα
i + m(χ)1G.

So
r(G) = min{d(χ) : kerχ = 1}

and
c(G) = min{c(χ)(1) : ker χ = 1}.
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We can see all the following statements in [2].

Corollary 2.3. Let χ ∈ Irr(G), then
∑

α∈Γ(χ) χα is a rational valued character of G. Moreover
c(χ) is a non-negative rational valued character of G and c(χ) = d(χ) + m(χ).

Lemma 2.4. Let χ ∈ Irr(G), χ 6= 1G. Then c(χ)(1) ≥ d(χ) + 1 ≥ χ(1) + 1.

Lemma 2.5. Let χ ∈ Irr(G). Then

(1) c(χ)(1) ≥ d(χ) ≥ χ(1);

(2) c(χ)(1) ≤ 2d(χ). Equality occurs if and only if Z(χ)/ ker χ is of even order.

3. Quasi-permutation representations

In this section we will calculate r(G) and c(G) for Borel and parabolic subgroups of G2(q). First
we shall determine the above quantities for a Borel subgroup.

Theorem 3.1. Let B be a Borel subgroup of G2(q), then

(1) r(B) =

{
2q(q − 1)|Γ(χ7(k))| if q = 3n,

q2(q − 1)|Γ(χ7(k))| otherwise,

(2) c(B) =

{
2q2|Γ(χ7(k))| if q = 3n,

q3|Γ(χ7(k))| otherwise,

(3) lim
q→∞

c(B)
r(B)

= 1.
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Proof. Since there are similar proofs for q = 2n, q = pn; p 6= 3, we will prove only the case
q = 2n.

In order to calculate r(B) and c(B), we need to determine d(χ) and c(χ)(1) for all characters
that are faithful or

⋂
χ ker χ = 1.

Now, by Corollary 2.3 and Lemmas 2.4, 2.5 and [9, Table I-1], for the Borel subgroup B we
have

d(χ1) = |Γ(χ1(k, l))|χ1(k, l)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q2(q − 1) + 1

and c(χ1)(1) ≥ q3 + 2,

d(χ2) = |Γ(χ2(k))|χ2(k)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ (q − 1)(q2 + 1)

and c(χ2)(1) ≥ q(q2 + 1),

d(χ3) = |Γ(χ3(k))|χ3(k)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ (q − 1)(q2 + 1)

and c(χ3)(1) ≥ q(q2 + 1),

d(χ4) = |Γ(χ4(k))|χ4(k)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q(q2 − 1)

and c(χ4)(1) ≥ q2(q + 1),

d(χ5) = |Γ(χ5(k))|χ5(k)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q(q2 − 1)

and c(χ5)(1) ≥ q2(q + 1),

d(χ6) = |Γ(χ6(k))|χ6(k)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q(q2 − 1)

and c(χ6)(1) ≥ q2(q + 1),

d(χ7) = |Γ(θ1)|θ1(1) + |Γ(χ7(k))|χ7(k)(1) ≥ (q − 1)(q2 + q − 1)

and c(χ7)(1) ≥ q(q2 + q − 1),
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d(χ8) = |Γ(θ3)|θ3(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q(q − 1)(2q − 1)

and c(χ8)(1) ≥ q2(2q − 1),

d(χ9) = |Γ(Σ2
l=0θ3(k, l))|(Σ2

l=0θ3(k, l))(1)+|Γ(χ7(k))|χ7(k)(1) ≥ q(q − 1)(2q − 1)

and c(χ9)(1) ≥ q2(2q − 1),

d(χ10) = |Γ(θ4(r, s))|θ4(r, s)(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q(q − 1)(3q − 1)
2

and c(χ10)(1) ≥ q2(3q − 1)
2

,

d(χ11) = |Γ(Σx∈Kθ5(x))|(Σx∈Kθ5(x))(1) + |Γ(χ7(k))|χ7(k)(1) ≥ q3(q − 1)

and c(χ11)(1) ≥ q4,

d(χ12) = |Γ(χ1(k, l))|χ1(k, l)(1) + |Γ(θ2)|θ2(1) ≥ q2(q − 1)2 + 1

and c(χ12)(1) ≥ q3(q − 1) + 2,

d(χ13) = |Γ(χ2(k))|χ2(k)(1) + |Γ(θ2)|θ2(1) ≥ (q − 1)(q3 − q2 + 1)

and c(χ13)(1) ≥ q(q3 − q2 + 1),

d(χ14) = |Γ(χ3(k))|χ3(k)(1) + |Γ(θ2)|θ2(1) ≥ (q − 1)(q3 − q2 + 1)

and c(χ14)(1) ≥ q(q3 − q2 + 1),

d(χ15) = |Γ(χ4(k))|χ4(k)(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)(q2 − q + 1)

and c(χ15)(1) ≥ q2(q2 − q + 1),
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d(χ16) = |Γ(χ5(k))|χ5(k)(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)(q2 − q + 1)

and c(χ16)(1) ≥ q2(q2 − q + 1),

d(χ17) = |Γ(χ6(k))|χ6(k)(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)(q2 − q + 1)

and c(χ17)(1) ≥ q2(q2 − q + 1),

d(χ18) = |Γ(θ1)|θ1(1) + |Γ(θ2)|θ2(1) ≥ (q − 1)2(q2 + 1)

and c(χ18)(1) ≥ q(q − 1)(q2 + 1),

d(χ19) = |Γ(θ3)|θ3(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)2(q + 1)

and c(χ19)(1) ≥ q2(q − 1)(q + 1),

d(χ20) =
∣∣Γ (

Σ2
l=0θ3(k, l)

)∣∣ (
Σ2

l=0θ3(k, l)
)
(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)2(q + 1)

and c(χ20)(1) ≥ q2(q − 1)(q + 1),

d(χ21) = |Γ(θ4(r, s))|θ4(r, s)(1) + |Γ(θ2)|θ2(1) ≥ q(q − 1)2(2q + 1)
2

and c(χ21)(1) ≥ q2(q − 1)(2q + 1)
2

,

d(χ22) = |Γ (Σx∈Kθ5(x))| (Σx∈Kθ5(x)) (1) + |Γ(θ2)|θ2(1) ≥ 2q2(q − 1)2

and c(χ22)(1) ≥ 2q3(q − 1),

d(χ7(k)) = |Γ(χ7(k))|χ7(k)(1) ≥ q2(q − 1)

and c(χ7)(k)(1) ≥ q3,

d(θ2) = |Γ(θ2)|θ2(1) = q2(q − 1)2

and c(θ2(1) = q3(q − 1),
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An overall picture is provided by the Table I on the next page.

For the character χ7(k), k ∈ R0 as |R0| = q − 1, so |Γ(χ7(k))| ≤ q − 1, where Γ(χ7(k)) =
Γ(Q(χ7(k)) : Q). Therefore we have

q2(q − 1) ≤ d(χ7(k)) ≤ q2(q − 1)2.

Now by Table I and the above equality we have

min{d(χ) : kerχ = 1} = d(χ7(k)) = q2(q − 1)|Γ(χ7(k))| and

min{c(χ)(1) : ker χ = 1} = c(χ7(k))(1) = q3|Γ(χ7(k))|.

The quasi-permutation representations of Borel subgroup of G2(3n) are constructed by the same
method. In this case by [8, Table I] we have

ker χ7(k)
⋂

ker χ6(k) = 1.

Now, it is not difficult to calculate the values of d(χ) and c(χ)(1), so

min{d(χ) : kerχ = 1} = |Γ(χ7(k))|χ7(k)(1) + |Γ(χ6(k))|χ6(k)(1)

= 2q(q − 1)|Γ(χ7(k))| = 2q(q − 1)|Γ(χ6(k))| and

min{c(χ)(1) : ker χ = 1} = 2q2|Γ(χ7(k))| = 2q2|Γ(χ6(k))|
(Since |Γ(χ7(k))| = |Γ(χ6(k))|).

By parts (1) and (2) we have

c(B)
r(B)

=


q2

q(q − 1)
if q = 3n,

q3

q2(q − 1)
otherwise.
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Hence lim
q→∞

c(B)
r(B)

= 1. Therefore the result follows. �

The following theorem gives the quasi-permutation representations of a maximal parabolic sub-
group P .

Theorem 3.2.
A. Let P be a maximal parabolic subgroup of G2(pn), p 6= 3, then

(1) r(P ) = q2(q − 1),

(2) c(P ) = q3,

(3) lim
q→∞

c(P )
r(P )

= 1.

B. Let P be a maximal parabolic subgroup P of G2(3n), then

(1) r(P ) = q(q − 1)(q + 2),

(2) c(P ) = q2(q + 1),

(3) lim
q→∞

c(P )
r(P )

= 1.

Proof. A. Similar to the proof of Theorem 3.1, in order to calculate r(P ) and c(P ) we need to
determine d(χ) and c(χ)(1) for all characters that are faithful or

⋂
χ ker χ = 1.
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Table I.
χ d(χ) c(χ)(1)

χ1 ≥ q2(q − 1) + 1 ≥ q3 + 2

χ2 ≥ (q − 1)(q2 + 1) ≥ q(q2 + 1)

χ3 ≥ (q − 1)(q2 + 1) ≥ q(q2 + 1)

χ4 ≥ q(q2 − 1) ≥ q2(q + 1)

χ5 ≥ q(q2 − 1) ≥ q2(q + 1)

χ6 ≥ q(q2 − 1) ≥ q2(q + 1)

χ7 ≥ (q − 1)(q2 + q − 1) ≥ q(q2 + q − 1)

χ8 ≥ q(q − 1)(2q − 1) ≥ q2(2q − 1)

χ9 ≥ q(q − 1)(2q − 1) ≥ q2(2q − 1)

χ10 ≥ q(q − 1)(3q − 1)/2 ≥ q2(3q − 1)/2

χ11 ≥ q3(q − 1) ≥ q4

χ12 ≥ q2(q − 1)2 + 1 ≥ q3(q − 1) + 2

χ13 ≥ (q − 1)(q3 − q2 + 1) ≥ q(q3 − q2 + 1)

χ14 ≥ (q − 1)(q3 − q2 + 1) ≥ q(q3 − q2 + 1)

χ15 ≥ q(q − 1)(q2 − q + 1) ≥ q2(q2 − q + 1)

χ16 ≥ q(q − 1)(q2 − q + 1) ≥ q2(q2 − q + 1)

χ17 ≥ q(q − 1)(q2 − q + 1) ≥ q2(q2 − q + 1)
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χ d(χ) c(χ)(1)

χ18 ≥ (q − 1)2(q2 + 1) ≥ q(q − 1)(q2 + 1)

χ19 ≥ q(q − 1)2(q + 1) ≥ q2(q − 1)(q + 1)

χ20 ≥ q(q − 1)2(q + 1) ≥ q2(q − 1)(q + 1)

χ21 ≥ q(q − 1)2(2q + 1)/2 ≥ q2(q − 1)(2q + 1)/2

χ22 ≥ 2q2(q − 1)2 ≥ 2q3(q − 1)

χ7(k) ≥ q2(q − 1) ≥ q3

θ2 = q2(q − 1)2 = q3(q − 1)

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the
faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table (II-2)], for the maximal
parabolic subgroup P of G2(2n) we have

d(χ7(k)) = |Γ(χ7(k))|χ7(k)(1) ≥ q2(q2 − 1) and c(χ7)(k)(1) ≥ q3(q + 1),

d(χ8(k)) = |Γ(χ8(k))|χ8(k)(1) ≥ q2(q − 1)2 and c(χ8)(k)(1) ≥ q3(q − 1),

d(θ7) = |Γ(θ7)|θ7(1) = q2(q − 1) and c(θ7(1)) = q3,

d(θ8) = |Γ(θ8)|θ8(1) = q3(q − 1) and c(θ8(1)) = q4.

The values are set out in the following table

Table II.

χ d(χ) c(χ)(1)

χ7(k) ≥ q2(q2 − 1) ≥ q3(q + 1)

θ8(k) ≥ q2(q − 1)2 ≥ q3(q − 1)

θ7 = q2(q − 1) = q3

θ8 = q3(q − 1) = q4
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Now, by Table II we have

min{d(χ) : kerχ = 1} = d(χ7(k)) = q2(q − 1)) and

min{c(χ)(1) : ker χ = 1} = c(χ7(k))(1) = q3.

By the same method for the maximal parabolic subgroup P of G2(pn), p 6= 3 and by [1, Table
A.6], Table III is constructed.

Table III.

χ d(χ) c(χ)(1)

P χ7(k) ≥ q2(q2 − 1) ≥ q3(q + 1)

P θ8(k) ≥ q2(q − 1)2 ≥ q3(q − 1)

P θ7 = q2(q − 1) = q3

P θ8 = q3(q − 1) = q4

P θ9 = q2(q − 1)2/2 = q3(q − 1)/2

P θ10 = q2(q − 1)2/2 = q3(q − 1)/2

P θ11 = q2(q2 − 1)/2 = q3(q + 1)/2

P θ12 = q2(q2 − 1)/2 = q3(q + 1)/2

Now by Table III we have

min{d(χ) : kerχ = 1} = d(χ7(k)) = q2(q − 1)) and

min{c(χ)(1) : ker χ = 1} = c(χ7(k))(1) = q3.
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B. The quasi-permutation representations of maximal parabolic subgroup P of G2(3n) are
constructed by the same method in Theorem 3.1. In this case, by [8, Table III ], we have

ker θ11

⋂
ker χ6(k) = 1.

This helps us to calculate

min{d(χ) : kerχ = 1} = q(q − 1)(q + 1) and

min{c(χ)(1) : ker χ = 1} = q2(q + 1).

For the both parts, it is elementary to see that lim
q→∞

c(P )
r(P )

= 1. Therefore the result follows. �

In the following theorem, we construct r(G) and c(G) of another parabolic subgroup Q of G2(q).

Theorem 3.3.
A. Let Q be a maximal parabolic subgroup of G2(pn), p 6= 3, then

(1) r(Q) = q(q2 − 1)|Γ(χ7(k))|,

(2) c(Q) = q3|Γ(χ7(k))|,

(3) lim
q→∞

c(Q)
r(Q)

= 1.

B. Let Q be a maximal parabolic subgroup of G2(3n), then

(1) r(Q) = q(q − 1)(q + 2),

(2) c(Q) = q2(q + 1),
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(3) lim
q→∞

c(Q)
r(Q)

= 1.

Proof. A) As we have mentioned before, in order to calculate r(Q) and c(Q) we need to deter-
mine d(χ) and c(χ)(1) for all characters that are faithful or

⋂
χ ker χ = 1.

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the
faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table III-2] for the maximal
parabolic subgroup Q of G2(2n) we have

d(χ7(k)) = |Γ(χ7(k))|χ7(k)(1) ≥ q(q2 − 1) and c(χ7)(k)(1) ≥ q3,

d(θ2) = |Γ(θ2)|θ2(1) ≥ q(q − 1)(q2 − 1) and c(θ2(1) ≥ q3(q − 1),

d(Σ2
l=0θ2(k, l)) = |Γ(Σ2

l=0θ2(k, l))|(Σ2
l=0θ2(k, l))(1) ≥ q(q − 1)(q2 − 1) and

c(Σ2
l=0θ2(k, l)(1) ≥ q4(q − 1),

d(Σx∈Xθ3(x)) = |Γ(Σx∈Xθ3(x))|(Σx∈Xθ3(x))(1) = q2(q − 1)(q2 − 1) and

c(Σx∈Xθ3(x))(1) = q4(q − 1)

The values are set out in Table IV.
For the character χ7(k), k ∈ R0 as |R0| = q − 1, so |Γ(χ7(k))| ≤ q − 1, where Γ(χ7(k)) =

Γ(Q(χ7(k)) : Q). Therefore we have

q(q2 − 1) ≤ d(χ7(k)) ≤ q(q − 1)(q2 − 1).

Now, by Table IV we have

min{d(χ) : kerχ = 1} = d(χ7(k)) = mq(q2 − 1) and

min{c(χ)(1) : ker χ = 1} = c(χ7(k))(1) = mq3, where m = |Γ(χ7(k))|.
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Table IV.

χ d(χ) c(χ)(1)

χ7(k) ≥ q(q2 − 1) ≥ q3

χ8(k) ≥ q(q − 1)(q2 − 1) ≥ q3(q − 1)

Σ2
l=0θ2(k, l) ≥ q(q − 1)(q2 − 1) ≥ q3(q − 1)

Σx∈Xθ3(x) = q2(q − 1)(q2 − 1) = q4(q − 1)

For the maximal parabolic subgroup Q of G2(pn), p 6= 3, by the same method and [1, Table A.6],
Table V is constructed.

Table V.

χ d(χ) c(χ)(1)

Qχ7(k) ≥ q(q2 − 1) ≥ q3

Σ2
l=0 Qθ2(k, l) ≥ q(q − 1)(q2 − 1) ≥ q3(q − 1)

Σx∈F∗
q Qθ3(x) ≥ q(q − 1)2(q2 − 1) ≥ q4(q − 1)2

Σx∈Fq Qθ4(x) = q2(q − 1)(q2 − 1) = q4(q − 1)

Qθ5(k) +Q θ6(k) ≥ q(q − 1)(q2 − 1) ≥ q3(q − 1)

For the character Qχ7(k), k ∈ R0 as |R0| = q − 1, so |Γ(Qχ7(k))| ≤ q − 1, where Γ(Qχ7(k)) =
Γ(Q(Qχ7(k)) : Q). Therefore we have

q(q2 − 1) ≤ d(χ7(k)) ≤ q(q − 1)(q2 − 1).
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Now, by Table V we have

min{d(χ) : kerχ = 1} = d(Qχ7(k)) = mq(q2 − 1) and

min{c(χ)(1) : ker χ = 1} = c(Qχ7(k))(1) = mq3, where m = |Γ(Qχ7(k))|.

B. The quasi-permutation representations of maximal parabolic subgroup Q of G2(3n) are
constructed by the same method as in Theorem 3.1. In this case, by Table III of [8], we have

ker θ11

⋂
ker χ6(k) = 1.

This helps us to obtain

min{d(χ) : kerχ = 1} = q(q − 1)(q + 2) and

min{c(χ)(1) : ker χ = 1} = q2(q + 1).

It is obviously that also in this case lim
q→∞

c(Q)
r(Q)

= 1. Therefore the result follows. �
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