

SPECIAL REPRESENTATIONS OF THE BOREL AND MAXIMAL PARABOLIC SUBGROUPS OF $G_2(q)$

MARYAM GHORBANY

ABSTRACT. A square matrix over the complex field with a non-negative integral trace is called a quasi-permutation matrix. For a finite group G, the minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by c(G), and r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper c(G) and r(G) are calculated for the Borel and maximal parabolic subgroups of $G_2(q)$.

1. INTRODUCTION

Let G be a finite linear group of degree n, that is, a finite group of automorphisms of an ndimensional complex vector space. We shall say that G is a quasi-permutation group if the trace of every element of G is a non-negative rational integer. The reason for this terminology is that, if G is a permutation group of degree n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector space V, induce automorphisms of V forming a group isomorphic to G. The trace of the automorphism corresponding to an element x of G is equal to the number of letters left fixed by x, and so is a non-negative integer. Thus, a permutation group of degree n has a representation as a quasi-permutation group of degree n (See [12]). In [4]

Quit

Go back

Full Screen

Close

Received April 6, 2008; revised December 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20C15.

 $Key\ words\ and\ phrases.$ Borel and parabolic subgroups; rational valued character; quasi-permutation representations.

the authors investigated further the analogy between permutation groups and quasi-permutation groups. They also worked over the rational field and found some interesting results.

By a quasi-permutation matrix we mean a square matrix over the complex field C with nonnegative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let c(G) be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. By a rational valued character we mean a complex character χ of Gsuch that $\chi(g) \in Q$ for all $g \in G$. As the values of the characters of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module.

We will call a homomorphism from G to GL(n, Q) a rational representation of G and its corresponding character will be called a rational character of G. Let r(G) denote the minimal degree of a faithful rational valued character of G.

Finding the above quantities has been carried out in some papers, for example in [5], [6], [7] and [10] we found them for the groups GL(2,q), $SU(3,q^2)$, $PSU(3,q^2)$, SL(3,q), PSL(3,q) and $G_2(2^n)$ respectively. In [3] we found the rational character table and above values for the group PGL(2,q).

In this paper we will calculate c(G) and r(G) where G is a Borel subgroup or the maximal parabolic subgroups of $G_2(q)$.

2. NOTATION AND PRELIMINARIES

Let $G = G_2(q)$ be the Chevalley group of type G_2 defined over K. An excellent description of the group can be found in [11]. We summarize some properties of the group. Let Σ be the set of roots of a simple Lie algebra of type G_2 . In some fixed ordering the set of positive roots of Σ can be

written as

$$\Sigma^{+} = \{a, b, a+b, 2a+b, 3a+b, 3a+2b\}$$

and Σ consists of the elements of Σ^+ and their negatives. For each $r \in \Sigma$, let $x_r(t), x_{-r}(t)$ and ω_r be as in [11]. Moreover we denote the element $h(\chi)$ of [11] by $h(z_1, z_2, z_3)$, where $\chi(\xi_i) = z_i$ with $z_1 z_2 z_3 = 1$. Note that $a = \xi_2$, $b = \xi_1 - \xi_2$ and $\xi_1 + \xi_2 + \xi_3 = 0$. For simplicity of notation $h(x^i, x^j, x^{-i-j})$ is also denoted by $h_x(i, j, -i-j)$ for $x = \gamma, \theta, \omega$, etc. Let $X_r = \{x_r(t) \mid t \in K\}$ be the one-parameter subgroup corresponding to a root r. Set

$$\begin{split} H &= \{h(z_1, z_2, z_3) \mid z_i \in K^{\times}, z_1 z_2 z_3 = 1\}, \\ U &= X_a X_b X_{a+b} X_{2a+b} X_{3a+b} X_{3a+2b}, \\ B &= HU, \quad P = < B, \omega_a >, \quad Q = < B, \omega_b >. \end{split}$$

Then $B = N_G(U)$ is a Borel subgroup and P and Q are the maximal parabolic subgroups containing B.

By [1], [8], [9], every irreducible character of B will be defined as an induced character of some linear character of a subgroup. This implies that B is an M-group. The character tables of the Borel subgroup B for different q are given in Tables I of [1], [8], [9].

The character tables of parabolic subgroups

 $P = \langle B, \omega_a \rangle = B \cup B\omega_a B, \qquad Q = \langle B, \omega_b \rangle = B \cup B\omega_b B$

for different q are given in Tables [A.4, A.6], [III, IV], [II-2, III-2] of [1], [8], [9] respectively. Now we give algorithms for calculation of r(G) and c(G).

Definition 2.1. Let χ be a character of G such that, for all $g \in G$, $\chi(g) \in Q$ and $\chi(g) \ge 0$. Then we say that χ is a non-negative rational valued character.

Let η_i for $0 \leq i \leq r$ be Galois conjugacy classes of irreducible complex characters of G. For $0 \leq i \leq r$ let φ_i be a representative of the class η_i with $\varphi_o = 1_G$. Write $\Psi_i = \sum_{\chi_i \in \eta_i} \chi_i$,

 $m_i = m_Q(\varphi_i)$ and $K_i = \ker \varphi_i$. We know that $K_i = \ker \Psi_i$. For $I \subseteq \{0, 1, 2, \dots, r\}$, put $K_I = \bigcap_{i \in I} K_i$. By definition of r(G) and c(G) and using the above notations we have:

$$r(G) = \min\{\xi(1) : \xi = \sum_{i=1}^{r} n_i \Psi_i, \quad n_i \ge 0, \quad K_I = 1 \text{ for } I = \{i, i \ne 0, n_i > 0\}\}$$
$$c(G) = \min\{\xi(1) : \xi = \sum_{i=0}^{r} n_i \Psi_i, \quad n_i \ge 0, \quad K_I = 1 \text{ for } I = \{i, i \ne 0, n_i > 0\}\}$$

where $n_0 = -\min\{\xi(g)|g \in G\}$ in the case of c(G). In [2] we defined $d(\chi)$, $m(\chi)$ and $c(\chi)$ (see Definition 3.4). Here we can redefine it as follows:

Definition 2.2. Let χ be a complex character of G such that ker $\chi = 1$ and $\chi = \chi_1 + \cdots + \chi_n$ for some $\chi_i \in Irr(G)$. Then define

(1)
$$d(\chi) = \sum_{i=1}^{n} |\Gamma_i(\chi_i)| \chi_i(1),$$

(2)
$$m(\chi) = \begin{cases} 0 & \text{if } \chi = 1_G, \\ |\min\{\sum_{i=1}^{n} \sum_{\alpha \in \Gamma_i(\chi_i)} \chi_i^{\alpha}(g) : g \in G\}| & \text{otherwise,} \end{cases}$$

(3)
$$c(\chi) = \sum_{i=1}^{n} \sum_{\alpha \in \Gamma_i(\chi_i)} \chi_i^{\alpha} + m(\chi) \mathbf{1}_G.$$

	C	
i	Э	О

$$r(G) = \min\{d(\chi) : \ker \chi = 1\}$$

and

$$c(G) = \min\{c(\chi)(1) : \ker \chi = 1\}.$$

~			
(J	IJ	Ī	ì
_	_	-	1

> >>

▲ |

Go back

Full Screen

Close

We can see all the following statements in [2].

Corollary 2.3. Let $\chi \in Irr(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi) = d(\chi) + m(\chi)$.

Lemma 2.4. Let $\chi \in Irr(G)$, $\chi \neq 1_G$. Then $c(\chi)(1) \ge d(\chi) + 1 \ge \chi(1) + 1$.

Lemma 2.5. Let $\chi \in Irr(G)$. Then

(1) c(χ)(1) ≥ d(χ) ≥ χ(1);
(2) c(χ)(1) ≤ 2d(χ). Equality occurs if and only if Z(χ)/ ker χ is of even order.

3. QUASI-PERMUTATION REPRESENTATIONS

In this section we will calculate r(G) and c(G) for Borel and parabolic subgroups of $G_2(q)$. First we shall determine the above quantities for a Borel subgroup.

Theorem 3.1. Let B be a Borel subgroup of $G_2(q)$, then

(1)
$$r(B) = \begin{cases} 2q(q-1)|\Gamma(\chi_7(k))| & if \ q = 3^n, \\ q^2(q-1)|\Gamma(\chi_7(k))| & otherwise, \end{cases}$$

(2)
$$c(B) = \begin{cases} 2q^2 |\Gamma(\chi_7(k))| & \text{if } q = 3^n, \\ q^3 |\Gamma(\chi_7(k))| & \text{otherwise,} \end{cases}$$

(3)
$$\lim_{q \to \infty} \frac{c(B)}{r(B)} = 1.$$

>

Go back

Full Screen

Close

Quit

44

Proof. Since there are similar proofs for $q = 2^n$, $q = p^n$; $p \neq 3$, we will prove only the case $q = 2^n$.

In order to calculate r(B) and c(B), we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \ker \chi = 1$.

Now, by Corollary 2.3 and Lemmas 2.4, 2.5 and [9, Table I-1], for the Borel subgroup B we have

$$\begin{split} d(\chi_1) &= |\Gamma(\chi_1(k,l))|\chi_1(k,l)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q^2(q-1) + 1 \\ &\text{and} \quad c(\chi_1)(1) \ge q^3 + 2, \\ d(\chi_2) &= |\Gamma(\chi_2(k))|\chi_2(k)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge (q-1)(q^2+1) \\ &\text{and} \quad c(\chi_2)(1) \ge q(q^2+1), \\ d(\chi_3) &= |\Gamma(\chi_3(k))|\chi_3(k)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge (q-1)(q^2+1) \\ &\text{and} \quad c(\chi_3)(1) \ge q(q^2+1), \\ d(\chi_4) &= |\Gamma(\chi_4(k))|\chi_4(k)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q(q^2-1) \\ &\text{and} \quad c(\chi_4)(1) \ge q^2(q+1), \\ d(\chi_5) &= |\Gamma(\chi_5(k))|\chi_5(k)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q(q^2-1) \\ &\text{and} \quad c(\chi_5)(1) \ge q^2(q+1), \\ d(\chi_6) &= |\Gamma(\chi_6(k))|\chi_6(k)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q(q^2-1) \\ &\text{and} \quad c(\chi_6)(1) \ge q^2(q+1), \\ d(\chi_7) &= |\Gamma(\theta_1)|\theta_1(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge (q-1)(q^2+q-1) \\ &\text{and} \quad c(\chi_7)(1) \ge q(q^2+q-1), \end{split}$$

$$\begin{split} d(\chi_8) &= |\Gamma(\theta_3)|\theta_3(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q(q-1)(2q-1) \\ &\text{and} \quad c(\chi_8)(1) \ge q^2(2q-1), \\ d(\chi_9) &= |\Gamma(\Sigma_{l=0}^2\theta_3(k,l))|(\Sigma_{l=0}^2\theta_3(k,l))(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q(q-1)(2q-1) \\ &\text{and} \quad c(\chi_9)(1) \ge q^2(2q-1), \\ d(\chi_{10}) &= |\Gamma(\theta_4(r,s))|\theta_4(r,s)(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge \frac{q(q-1)(3q-1)}{2} \\ &\text{and} \quad c(\chi_{10})(1) \ge \frac{q^2(3q-1)}{2}, \\ d(\chi_{11}) &= |\Gamma(\Sigma_{x\in K}\theta_5(x))|(\Sigma_{x\in K}\theta_5(x))(1) + |\Gamma(\chi_7(k))|\chi_7(k)(1) \ge q^3(q-1) \\ &\text{and} \quad c(\chi_{11})(1) \ge q^4, \\ d(\chi_{12}) &= |\Gamma(\chi_1(k,l))|\chi_1(k,l)(1) + |\Gamma(\theta_2)|\theta_2(1) \ge q^2(q-1)^2 + 1 \\ &\text{and} \quad c(\chi_{12})(1) \ge q^3(q-1) + 2, \\ d(\chi_{13}) &= |\Gamma(\chi_2(k))|\chi_2(k)(1) + |\Gamma(\theta_2)|\theta_2(1) \ge (q-1)(q^3-q^2+1) \\ &\text{and} \quad c(\chi_{13})(1) \ge q(q^3-q^2+1), \\ d(\chi_{14}) &= |\Gamma(\chi_4(k))|\chi_3(k)(1) + |\Gamma(\theta_2)|\theta_2(1) \ge q(q-1)(q^2-q+1) \\ &\text{and} \quad c(\chi_{15})(1) \ge q^2(q^2-q+1), \end{split}$$

An overall picture is provided by the Table I on the next page.

For the character $\chi_7(k)$, $k \in R_0$ as $|R_0| = q - 1$, so $|\Gamma(\chi_7(k))| \leq q - 1$, where $\Gamma(\chi_7(k)) = \Gamma(Q(\chi_7(k)) : Q)$. Therefore we have

$$q^{2}(q-1) \le d(\chi_{7}(k)) \le q^{2}(q-1)^{2}.$$

Now by Table I and the above equality we have

$$\min\{d(\chi) : \ker \chi = 1\} = d(\chi_7(k)) = q^2(q-1)|\Gamma(\chi_7(k))| \quad \text{and} \\ \min\{c(\chi)(1) : \ker \chi = 1\} = c(\chi_7(k))(1) = q^3|\Gamma(\chi_7(k))|.$$

The quasi-permutation representations of Borel subgroup of $G_2(3^n)$ are constructed by the same method. In this case by [8, Table I] we have

$$\ker \chi_7(k) \bigcap \ker \chi_6(k) = 1.$$

it is not difficult to calculate the values of
$$d(\chi)$$
 and $c(\chi)(1)$, so

$$\min\{d(\chi) : \ker \chi = 1\} = |\Gamma(\chi_7(k))|\chi_7(k)(1) + |\Gamma(\chi_6(k))|\chi_6(k)(1) \\ = 2q(q-1)|\Gamma(\chi_7(k))| = 2q(q-1)|\Gamma(\chi_6(k))|$$
and

$$\min\{c(\chi)(1) : \ker \chi = 1\} = 2q^2|\Gamma(\chi_7(k))| = 2q^2|\Gamma(\chi_6(k))| \\ (\text{Since } |\Gamma(\chi_7(k))| = |\Gamma(\chi_6(k))|).$$

By parts (1) and (2) we have

Now.

$$\frac{c(B)}{r(B)} = \begin{cases} \frac{q^2}{q(q-1)} & \text{if } q = 3^n, \\ \frac{q^3}{q^2(q-1)} & \text{otherwise.} \end{cases}$$

Hence
$$\lim_{q \to \infty} \frac{c(B)}{r(B)} = 1$$
. Therefore the result follows.

The following theorem gives the quasi-permutation representations of a maximal parabolic subgroup P.

Theorem 3.2.

A. Let P be a maximal parabolic subgroup of $G_2(p^n)$, $p \neq 3$, then

- (1) $r(P) = q^2(q-1),$
- $(2) \ c(P) = q^3,$
- (3) $\lim_{q\to\infty}\frac{c(P)}{r(P)}=1.$
- **B.** Let P be a maximal parabolic subgroup P of $G_2(3^n)$, then
 - (1) r(P) = q(q-1)(q+2),
 - $(2) \ c(P) = q^2(q+1),$
 - (3) $\lim_{q\to\infty}\frac{c(P)}{r(P)}=1.$

Proof. A. Similar to the proof of Theorem 3.1, in order to calculate r(P) and c(P) we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \ker \chi = 1$.

T_{n}	ิ่ม	0	т
та	D	e	1.

χ	$d(\chi)$	$c(\chi)(1)$
χ_1	$\ge q^2(q-1) + 1$	$\geq q^3 + 2$
χ_2	$\geq (q-1)(q^2+1)$	$\ge q(q^2 + 1)$
χ_3	$\geq (q-1)(q^2+1)$	$\ge q(q^2 + 1)$
χ_4	$\geq q(q^2 - 1)$	$\geq q^2(q+1)$
χ_5	$\geq q(q^2 - 1)$	$\geq q^2(q+1)$
χ_6	$\geq q(q^2 - 1)$	$\geq q^2(q+1)$
χ7	$\geq (q-1)(q^2+q-1)$	$\geq q(q^2 + q - 1)$
χ_8	$\ge q(q-1)(2q-1)$	$\ge q^2(2q-1)$
χ_9	$\ge q(q-1)(2q-1)$	$\geq q^2(2q-1)$
χ_{10}	$\geq q(q-1)(3q-1)/2$	$\ge q^2(3q-1)/2$
χ_{11}	$\geq q^3(q-1)$	$\geq q^4$
χ_{12}	$\geq q^2(q-1)^2 + 1$	$\geq q^3(q-1)+2$
χ_{13}	$\ge (q-1)(q^3 - q^2 + 1)$	$\geq q(q^3 - q^2 + 1)$
χ_{14}	$\ge (q-1)(q^3 - q^2 + 1)$	$\ge q(q^3 - q^2 + 1)$
χ_{15}	$\geq q(q-1)(q^2-q+1)$	$\geq q^2(q^2 - q + 1)$
χ_{16}	$\geq q(q-1)(q^2-q+1)$	$\geq q^2(q^2 - q + 1)$
χ_{17}	$\geq q(q-1)(q^2-q+1)$	$\geq q^2(q^2 - q + 1)$

χ	$d(\chi)$	$c(\chi)(1)$
χ_{18}	$\ge (q-1)^2(q^2+1)$	$\ge q(q-1)(q^2+1)$
χ_{19}	$\ge q(q-1)^2(q+1)$	$\geq q^2(q-1)(q+1)$
χ_{20}	$\ge q(q-1)^2(q+1)$	$\geq q^2(q-1)(q+1)$
χ_{21}	$\geq q(q-1)^2(2q+1)/2$	$\ge q^2(q-1)(2q+1)/2$
χ_{22}	$\geq 2q^2(q-1)^2$	$\geq 2q^3(q-1)$
$\chi_7(k)$	$\geq q^2(q-1)$	$\geq q^3$
θ_2	$=q^2(q-1)^2$	$=q^3(q-1)$

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table (II-2)], for the maximal parabolic subgroup P of $G_2(2^n)$ we have

$$\begin{aligned} \chi_7(k)) &= |\Gamma(\chi_7(k))| \chi_7(k)(1) \ge q^2(q^2 - 1) & \text{and} & c(\chi_7)(k)(1) \ge q^3(q + 1), \\ \chi_8(k)) &= |\Gamma(\chi_8(k))| \chi_8(k)(1) \ge q^2(q - 1)^2 & \text{and} & c(\chi_8)(k)(1) \ge q^3(q - 1), \\ d(\theta_7) &= |\Gamma(\theta_7)| \theta_7(1) = q^2(q - 1) & \text{and} & c(\theta_7(1)) = q^3, \\ d(\theta_8) &= |\Gamma(\theta_8)| \theta_8(1) = q^3(q - 1) & \text{and} & c(\theta_8(1)) = q^4. \end{aligned}$$

The values are set out in the following table

d(d)

Table II.

χ	$d(\chi)$	$c(\chi)(1)$
$\chi_7(k)$	$\ge q^2(q^2 - 1)$	$\ge q^3(q+1)$
$\theta_8(k)$	$\ge q^2(q-1)^2$	$\geq q^3(q-1)$
θ_7	$= q^2(q-1)$	$=q^3$
θ_8	$= q^3(q-1)$	$=q^4$

Go back

> >

44 4

Now, by Table II we have

$$\min\{d(\chi) : \ker \chi = 1\} = d(\chi_7(k)) = q^2(q-1)) \quad \text{and}$$
$$\min\{c(\chi)(1) : \ker \chi = 1\} = c(\chi_7(k))(1) = q^3.$$

By the same method for the maximal parabolic subgroup P of $G_2(p^n)$, $p \neq 3$ and by [1, Table A.6], Table III is constructed.

χ	$d(\chi)$	$c(\chi)(1)$
$_P\chi_7(k)$	$\geq q^2(q^2 - 1)$	$\geq q^3(q+1)$
$_P heta_8(k)$	$\ge q^2(q-1)^2$	$\geq q^3(q-1)$
$_P heta_7$	$= q^2(q-1)$	$=q^3$
$_P heta_8$	$= q^3(q-1)$	$=q^4$
$_P heta_9$	$=q^2(q-1)^2/2$	$= q^3(q-1)/2$
$_{P} heta_{10}$	$=q^2(q-1)^2/2$	$= q^3(q-1)/2$
$_{P} heta_{11}$	$=q^2(q^2-1)/2$	$= q^3(q+1)/2$
$_{P} heta_{12}$	$=q^2(q^2-1)/2$	$= q^3(q+1)/2$

Table III.

Quit

Now by Table III we have

$$\min\{d(\chi) : \ker \chi = 1\} = d(\chi_7(k)) = q^2(q-1)) \quad \text{and}$$
$$\min\{c(\chi)(1) : \ker \chi = 1\} = c(\chi_7(k))(1) = q^3.$$

B. The quasi-permutation representations of maximal parabolic subgroup P of $G_2(3^n)$ are constructed by the same method in Theorem 3.1. In this case, by [8, Table III], we have

$$\ker \theta_{11} \bigcap \ker \chi_6(k) = 1.$$

This helps us to calculate

$$\min\{d(\chi) : \ker \chi = 1\} = q(q-1)(q+1) \quad \text{and}$$
$$\min\{c(\chi)(1) : \ker \chi = 1\} = q^2(q+1).$$

For the both parts, it is elementary to see that $\lim_{q \to \infty} \frac{c(P)}{r(P)} = 1$. Therefore the result follows. \Box

In the following theorem, we construct r(G) and c(G) of another parabolic subgroup Q of $G_2(q)$.

Theorem 3.3.

A. Let Q be a maximal parabolic subgroup of $G_2(p^n)$, $p \neq 3$, then

(1)
$$r(Q) = q(q^2 - 1)|\Gamma(\chi_7(k))|$$

(2) $c(Q) = q^3 |\Gamma(\chi_7(k))|,$

(3)
$$\lim_{q \to \infty} \frac{c(Q)}{r(Q)} = 1.$$

B. Let Q be a maximal parabolic subgroup of $G_2(3^n)$, then

(1)
$$r(Q) = q(q-1)(q+2)$$

(2) $c(Q) = q^2(q+1),$

(3)
$$\lim_{q \to \infty} \frac{c(Q)}{r(Q)} = 1.$$

Proof. A) As we have mentioned before, in order to calculate r(Q) and c(Q) we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \ker \chi = 1$.

Now, in this case, since the degrees of faithful characters are minimal, so we consider just the faithful characters and by Corollary 2.3, Lemmas 2.4, 2.5 and [9, Table III-2] for the maximal parabolic subgroup Q of $G_2(2^n)$ we have

$$\begin{aligned} d(\chi_{7}(k)) &= |\Gamma(\chi_{7}(k))|\chi_{7}(k)(1) \geq q(q^{2}-1) \text{ and } c(\chi_{7})(k)(1) \geq q^{3}, \\ d(\theta_{2}) &= |\Gamma(\theta_{2})|\theta_{2}(1) \geq q(q-1)(q^{2}-1) \text{ and } c(\theta_{2}(1) \geq q^{3}(q-1), \\ d(\Sigma_{l=0}^{2}\theta_{2}(k,l)) &= |\Gamma(\Sigma_{l=0}^{2}\theta_{2}(k,l))|(\Sigma_{l=0}^{2}\theta_{2}(k,l))(1) \geq q(q-1)(q^{2}-1) \text{ and } \\ c(\Sigma_{l=0}^{2}\theta_{2}(k,l)(1) \geq q^{4}(q-1), \\ d(\Sigma_{x \in X}\theta_{3}(x)) &= |\Gamma(\Sigma_{x \in X}\theta_{3}(x))|(\Sigma_{x \in X}\theta_{3}(x))(1) = q^{2}(q-1)(q^{2}-1) \text{ and } \\ c(\Sigma_{x \in X}\theta_{3}(x))(1) &= q^{4}(q-1). \end{aligned}$$

The values are set out in Table IV.

For the character $\chi_7(k)$, $k \in R_0$ as $|R_0| = q - 1$, so $|\Gamma(\chi_7(k))| \leq q - 1$, where $\Gamma(\chi_7(k)) = \Gamma(Q(\chi_7(k)) : Q)$. Therefore we have

$$q(q^2 - 1) \le d(\chi_7(k)) \le q(q - 1)(q^2 - 1).$$

Now, by Table IV we have

 $\min\{d(\chi) : \ker \chi = 1\} = d(\chi_7(k)) = mq(q^2 - 1)$ and $\min\{c(\chi)(1) : \ker \chi = 1\} = c(\chi_7(k))(1) = mq^3,$ where $m = |\Gamma(\chi_7(k))|.$

Table IV.

χ	$d(\chi)$	$c(\chi)(1)$
$\chi_7(k)$	$\geq q(q^2 - 1)$	$\geq q^3$
$\chi_8(k)$	$\ge q(q-1)(q^2-1)$	$\geq q^3(q-1)$
$\Sigma_{l=0}^2 \theta_2(k,l)$	$\geq q(q-1)(q^2-1)$	$\geq q^3(q-1)$
$\sum_{x \in X} \theta_3(x)$	$= q^2(q-1)(q^2-1)$	$= q^4(q-1)$

For the maximal parabolic subgroup Q of $G_2(p^n)$, $p \neq 3$, by the same method and [1, Table A.6], Table V is constructed.

Table V.

χ	$d(\chi)$	$c(\chi)(1)$
$_Q\chi_7(k)$	$\geq q(q^2 - 1)$	$\geq q^3$
$\Sigma_{l=0}^2 Q \theta_2(k,l)$	$\geq q(q-1)(q^2-1)$	$\geq q^3(q-1)$
$\Sigma_{x \in F_q^*} Q \theta_3(x)$	$\geq q(q-1)^2(q^2-1)$	$\ge q^4(q-1)^2$
$\sum_{x \in F_q} Q \theta_4(x)$	$= q^2(q-1)(q^2-1)$	$= q^4(q-1)$
$_Q heta_5(k) +_Q heta_6(k)$	$\geq q(q-1)(q^2-1)$	$\ge q^3(q-1)$

For the character $_Q\chi_7(k)$, $k \in R_0$ as $|R_0| = q - 1$, so $|\Gamma(_Q\chi_7(k))| \le q - 1$, where $\Gamma(_Q\chi_7(k)) = \Gamma(Q(_Q\chi_7(k)) : Q)$. Therefore we have

$$q(q^2 - 1) \le d(\chi_7(k)) \le q(q - 1)(q^2 - 1).$$

Now, by Table V we have

$$\min\{d(\chi) : \ker \chi = 1\} = d(Q\chi_7(k)) = mq(q^2 - 1) \quad \text{and} \\ \min\{c(\chi)(1) : \ker \chi = 1\} = c(Q\chi_7(k))(1) = mq^3, \quad \text{where} \ m = |\Gamma(Q\chi_7(k))|.$$

B. The quasi-permutation representations of maximal parabolic subgroup Q of $G_2(3^n)$ are constructed by the same method as in Theorem 3.1. In this case, by Table III of [8], we have

$$\ker \theta_{11} \bigcap \ker \chi_6(k) = 1.$$

This helps us to obtain

$$\min\{d(\chi) : \ker \chi = 1\} = q(q-1)(q+2) \quad \text{and} \\ \min\{c(\chi)(1) : \ker \chi = 1\} = q^2(q+1).$$

It is obviously that also in this case $\lim_{q \to \infty} \frac{c(Q)}{r(Q)} = 1$. Therefore the result follows.

- 1. An J. and Huang S. C., Character tables of parabolic subgroups of the Chevalley groups of type G₂, Comm. Algebra, **34** (2006), 1763–1792.
 - Behravesh H., Quasi-permutation representations of p-groups of class 2, J. London Math. Soc. 55(2) (1997), 251–260.
 - **3.** Behravesh H., Daneshkhah A., Darafsheh M. R. and Ghorbany M., The rational character table and quasipermutation representations of the group PGL(2,q), Ital. J. Pure Appl. Math. **11** (2001), 9–18.
 - Burns J. M., Goldsmith B., Hartley B. and Sandling R., On quasi-permutation representations of finite groups, Glasgow Math. J. 36 (1994), 301–308.
 - Darafsheh M. R., Ghorbany M., Daneshkhah A. and Behravesh H., Quasi-permutation representation of the group GL(2, q), J. Algebra 243 (2001), 142–167.

Go back

Full Screen

Close

- 6. Darafsheh M. R. and Ghorbany M., Quasi-permutation representations of the groups $SU(3, q^2)$ and $PSU(3, q^2)$, Southwest Asian Bulletin of Mathemetics **26** (2002), 395–406.
- Darafsheh M.R. and Ghorbany M., Quasi-permutation representations of the groups SL(3,q) and PSL(3,q), Iran. J. Sci. Technol. Trans. A Sci. 26(A1) (2002), 145–154.
- 8. Enomoto H., The characters of the finite Chevalley group $G_2(q), q = 3^f$, Japan. J. Math. 2(2) (1976), 191–248.
- **9.** Enomoto H. and Yamada H., The characters of $G_2(2^n)$, Japan. J. Math. **12**(2) (1986), 326–377.
- 10. Ghorbany M., Special representations of the group $G_2(2^n)$ with minimal degrees, Southwest Asian Bulletin of Mathemetics **30** (2006), 663–670.
- 11. Ree R., A family of simple groups associated with the simple Lie algebra of type (G_2) , Amer. J. Math. 83 (1961), 432–462.
- 12. Wong W. J., Linear groups analogous to permutation groups, J. Austral. Math. Soc (Sec. A) 3 (1963), 180-184.

Maryam Ghorbany, Department of Mathematics, Iran University of Science and Technology, Emam, Behshahr, Mazandaran, Iran, *e-mail*: m-ghorbani@iust.ac.ir

