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CONTINUITY WITH RESPECT TO DATA AND PARAMETERS OF WEAK
SOLUTIONS TO A STEFAN-LIKE PROBLEM

A. MUNTEAN

Abstract. We study a reaction-diffusion system with moving boundary describing a prototypical fast

reaction-diffusion scenario arising in the chemical corrosion of concrete-based materials. We prove the
continuity with respect to data and parameters of weak solutions to the resulting moving-boundary
system of partial differential equations.

1. Introduction

Recently we have established the existence and uniqueness of weak solutions to a two-phase
reaction-diffusion system with a free boundary where an aggressive fast reaction is concentrated;
see [12, 13] for these results and [9] for a larger picture of the chemical corrosion issue motivat-
ing this work – the concrete carbonation problem. Details about the chemo-physical problem, its
civil engineering importance as well as some aspects of what mathematics can say concerning the
prediction of the speed of the involved deterioration mechanism are reported in [10]. Within this
framework, we focus on the continuity with respect to data and parameters of weak solutions to
the mathematical model in question. It is worth mentioning that relatively general results on con-
tinuous dependence of solutions of scalar Stefan-like problems were proved in the past by several
authors (see, for instance, [3, 6, 2, 1] and [17]). Particularly, we mention the contributions by
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Mohamed [14] and Pawell [16] who study the continuous dependence problem for (scalar) moving-
boundary descriptions of some non-corrosive chemical reactions taking place in concrete. Since
here we deal with a non-linearly coupled system of semi-linear parabolic PDEs in two moving a
priori unknown phases, whose motion is driven by a non-equilibrium moving-boundary condition
of kinetic type, none of these formulations seem to be applicable. The working framework we have
chosen to prove the stability estimate is that one prepared in [13].

This note is organized in the following fashion: In Section 2, we present the moving-boundary
system and shortly comment on the underlying physics. Preliminary technical information (like
function spaces used, our concept of weak formulations, review of known basic estimates, a local
existence and uniqueness result for weak solutions) is detailed in Section 3. We state the main
result (that is Theorem 4.1) in Section 4 and prove it in Section 5.

2. The moving-boundary problem

We investigate the moving-boundary problem of finding the vector of concentrations (ū1, . . . , ū6)t

and the interface position s(t) which satisfy for all t ∈ ST :=]0, T [ (0 < T <∞ fixed) the equations
(φφwūi),t + (−Diνi2φφwūi,x)x = fi,Henry, x ∈]0, s(t)[, i ∈ {1, 2},

(φφwū3),t + (−D3φφwū3,x)x = fDiss, x ∈]s(t), L[
(φφwū4),t = fPrec + fReacΓ, x = s(t) ∈ Γ(t),

(φū5),t + (−D5φū5,x)x = 0, x ∈]0, s(t)[,
(φū6),t + (−D6φū6,x)x = 0, x ∈]s(t), L[,

(2.1)
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φφwνi2ūi(x, 0) = ûi0(x), i ∈ I := I1 ∪ I2, x ∈ Ω(0),(2.2)

φφwū4(x, 0) = û40(x), x ∈ Ω(0),(2.3)

φφwνi2ūi(0, t) = λi(t), i ∈ I1 := {1, 2, 5},(2.4)

ū5(s(t), t) = ū6(s(t), t),(2.5)

ūi,x(L, t) = 0, i ∈ I2 := {3, 6},(2.6) 
[j1 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū1]Γ(t),

[ji · n]Γ(t) = η̃Γ(s(t), t)δ5i + s′(t)[φφwνi2ūi]Γ(t), i ∈ {2, 5, 6},
[j3 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφwū3]Γ(t),

(2.7)

and

s′(t) = α
η̃Γ(s(t), t)

φφwū3(s(t), t)
=: ψ̃Γ(s(t), t), s(0) = s0 > 0.(2.8)

In (2.7), n is the outer normal to the interface Γ(t), while [A]Γ(t) denotes the jump in the quantity
A across Γ(t). For fixing ideas, we assume that the only relevant chemistry intervening here is the
so called carbonation reaction (details are given in [4, 9] and references cited therein), that is

CO2(g → aq) + Ca(OH)2(s → aq) → CaCO3(aq → s) + H2O.(2.9)

In this framework, ū1 and ū2 denote the aqueous and respectively gaseous CO2 concentrations, ū3

is the concentration of dissolved Ca(OH)2, ū4 is the immobile rapidly precipitating species (here:
CaCO3(aq)), while ū5 and ū6 point out the moisture concentrations (produced via (2.9)) within
]0, s(t)[ and ]s(t), L[, respectively. The process can be briefly described as follows: Molecules of
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atmospheric CO2 penetrate concrete structures via the air-filled parts of the pores (see Fig. 1),
dissolve in pore water where they meet a lot of aqueous Ca(OH)2 ready to react via (2.9). There is
chemical evidence [4] showing that (2.9) is sufficiently fast so that the two spatial supports of the
reactants (CO2(aq) and Ca(OH)2(aq)) are separated by a sharp interface positioned at x = s(t).

Figure 1. Complete separation of reactants in the carbonation process. The task is to predict the depth at which
CO2 is able to penetrate until a given time t ∈ ST .

Remark 2.1. The complete segregation of the reactants and the fact that for this reaction-
diffusion scenario the associated Thiele modulus is much larger than unity motivates us to apply a
moving-boundary strategy in order to predict the penetration of front (here – a sharp interface) of
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CO2 in concrete. Conceptually similar reaction-diffusion problems with fast reaction and relatively
slow transport arise, for instance, in geochemistry [15].

Furthermore, ν12 = ν32 := 1, ν22 := φa

φw
, ν52 = ν62 := 1

φw
, νi` := 1 (i ∈ I, ` ∈ I − {2}), δij

(i, j ∈ I) is Kronecker’s symbol, ji := −Diνi`φφwūi (i, ` ∈ I1 ∪ I2) are the corresponding effective
diffusive fluxes and α > 0. The parameters Di, L and s0 are assumed to be constant and strictly
positive; the boundary data λi are prescribed in agreement with the environmental conditions to
which Ω =]0, L[ – a part of a concrete sample – is exposed. The interior boundary conditions
(2.7) are derived using an argument based on the pillbox lemma; see [7]. Following [18] (and
subsequent papers, e.g., [5]), equation (2.8) represents a non-equilibrium type of free boundary
condition that is called kinetic condition. For a derivation via the first principles of (2.8) for this
particular reaction-diffusion setting, we refer the reader to [10, Section 2.3.1].

The initial conditions ûi0 > 0 are determined by the chemistry of the cement. The hardened
mixture of aggregate, cement and water determines numerical ranges for the porosity φ > 0 and
also for the water and air fractions, φw > 0 and φa > 0. In this paper, we set φ, φa and φw to be
constant. The productions terms fi,Henry, fDiss, fPrec and fReacΓ are sources or sinks by Henry-
like interfacial transfer mechanisms (see [8] for a related application of Henry’s law), dissolution,
precipitation, and carbonation reactions. We assume

fi,Henry := (−1)iPi(φφwū1 −Qiφφaū2)
(Pi > 0, Qi > 0), i ∈ {1, 2},

fDiss := −S3,diss(φφwū3 − u3,eq),
S3,diss > 0, fPrec := 0, fReacΓ := η̃Γ.

(2.10)

In (2.10), η̃Γ(s(t), t) denotes the interface-concentrated reaction rate. It is defined in the follow-
ing fashion: Let ū = (ū1, . . . , ū6)t be the vector of concentrations and MΛ the set of parameters
Λ := (Λ1, . . . ,Λm)t chosen to describe the reaction rate. We assume that MΛ is a non-empty
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compact subset of Rm
+ . We introduce the function

(2.11)
η̄Γ : R6 ×MΛ → R+

by η̄Γ(ū(x, t),Λ) := kφφwū
p
1(x, t))ū

q
3(x, t), x = s(t).

In (2.11), m := 3 and Λ := {p, q, kφφw} ∈ R3
+. We define the reaction rate η̃Γ(s(t), t) by

η̃Γ(s(t), t) := η̄Γ(ū(s(t), t),Λ),(2.12)

where η̄Γ is given by (2.11) and represents the classical power-law ansatz. Note that some mass-
balance equations act in ]0, s(t)[, while other act in ]s(t), L[ or at Γ(t). All of the three space
regions are varying in time and they are a priori unknown. The system (2.1)–(2.12) forms the
sharp-interface carbonation model.

Remark 2.2.

(i) The local existence and uniqueness of weak solutions to the sharp-interface carbonation
model was reported in [13, Theorem 3.3], while the global solvability was addressed in [13,
Theorem 3.7]. In this paper, we show the continuity of the weak solution to (2.1)–(2.12)
with respect to initial data, boundary data and model parameters. The importance of our
result is twofold: (1) On one side, we complete the well-posedness study of (2.1)– –(2.12),
which has been started in [13]. (2) On the other side, we prepare a theoretical framework
for numerically testing the stability with respect to model parameters. Note that for the
carbonation problem many important material parameters are typically unknown. Our
stability estimates suggest that there is a little place of “playing games” with the most
critical parameters, i.e. those entering (2.8), e.g. It is worth mentioning that unsuitable
choices of reaction rates (and hence, of velocities) may produce the blow up in concentration
near the interface position (like in [11], e.g.).
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(ii) The strategy of the proof is the following: We subtract the weak formulation written in
terms of two different solutions compared within the same time interval ST . In order
to obtain the desired result, we make use of a lot of a priori knowledge of the solution
behavior. In particular, we essentially rely on positivity and L∞ bounds for all involved
concentrations (cf. [13, Theorem 4.2]) as well as energy estimates (cf. [13, Lemma 4.3]) the
weak solutions to (2.1)–(2.12). The result is obtained by conveniently applying Gronwall’s
inequality in combination with an interpolation inequality as well as with some particular
algebraic inequalities tailored to deal with the special non-linearities induced by Landau-like
transformations.

3. Technical preliminaries

3.1. Fixing the moving boundary

We take advantage of the 1D geometry and immobilize the moving boundary via the fixed-domain
transformations (also called Landau’s transformations)

(x, t) ∈ [0, s(t)]× S̄T 7−→ (y, t) ∈ [a, b]× S̄T , y =
x

s(t)
, i ∈ I1,(3.1)

(x, t) ∈ [s(t), L]× S̄T 7−→ (y, t) ∈ [a, b]× S̄T , y = a+
x− s(t)
L− s(t)

, i ∈ I2,(3.2)

where t ∈ ST is arbitrarily fixed. We introduce the notation ui(y, t) := ûi(x, t) − λi(t) for all
y ∈ [a, b] and t ∈ ST . Further, let ûi := φφwūi, i ∈ {1, 3, 4}, û2 := φφaū2, ûi := φūi, i ∈ {5, 6} and
write down the original moving-boundary system (2.1)–(2.12) on fixed domains. As a result of this
procedure, we obtain the transformed PDEs system (3.3)–(3.13). The model equations have the
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forms

(ui + λi),t −
(Diui,y),y

s2(t)
= fi(u+ λ) + y

s′(t)
s(t)

ui,y, i ∈ I1,(3.3)

(ui + λi),t −
(Diui,y),y

(L− s(t))2
= fi(u+ λ) + (2− y)

s′(t)
L− s(t)

ui,y, i ∈ I2,(3.4)

where u is the concentration vector (u1, u2, u3, u5, u6)t and λ represents the boundary data (λ1,λ2,λ3,λ5,λ6)t.
We make use of λ3 and λ6 only for notational simplicity (λ3 := λ6 := 0). The vectors of concen-
trations u0 and λ are assumed to be compatible, i.e.

u0i(0) = λi(0), and hence ûi(0) = 0 for i ∈ I1.(3.5)

Our initial boundary and interface conditions are now:

(3.6)
ui(y, 0) = ui0(y), i ∈ I1 ∪ I2, ui(a, t) = 0,

i ∈ I1, ui,y(b, t) = 0, i ∈ I2,

−D1

s(t)
u1,y(1) = ηΓ(1, t) + s′(t)(u1(1) + λ1),(3.7)

−D2

s(t)
u2,y(1) = s′(t)(u2(1) + λ2),(3.8)

−D3

L− s(t)
u3,y(1) = −ηΓ(1, t) + s′(t)(u3(1) + λ3),(3.9)

−D5

s(t)
u5,y(1) +

D6

L− s(t)
u6,y(1) = ηΓ(1, t), u5(1) + λ5 = u6(1) + λ6,(3.10)

where ηΓ(1, t) denotes the reaction rate that acts in the y-t plane. We also mention that ui0(y) =
ûi0(x) − λi(0), where x = ys0, y ∈ [0, 1] for i ∈ I1, and x = s0 + (y − 1)(L − s0), y ∈ [1, 2] for
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i ∈ I2. The vectors of concentrations u0 and λ are assumed to be compatible, i.e.

u0i(0) = λi(0), and hence, ûi(0) = 0 for i ∈ I1.(3.11)

The formulation is completed with two ordinary differential equations

s′(t) = ψΓ(1, t) and v′4(t) = f4(v4(t)) a.e. t ∈ ST ,(3.12)

where v4(t) := û4(s(t), t) for t ∈ ST , for which we take

s(0) = s0 > 0, v4(0) = û40.(3.13)

3.2. Function spaces. Weak formulation

The definition and properties of the function spaces used here can be found in [19], e.g. For
each i ∈ I1 ∪ I2, we denote Hi := L2(a, b) and set [a, b] := [0, 1] for i ∈ I1 and [a, b] := [1, 2]
for i ∈ I2. Moreover, H :=

∏
i∈I1∪I2

Hi and V :=
∏

i∈I1∪I2
Vi, where Vi are the Sobolev spaces

Vi := {u ∈ H1(a, b) : ui(a) = 0}, i ∈ I1 and Vi := H1(a, b), i ∈ I2. In addition, | · | := || · ||L2(a,b)

and || · || := || · ||H1(a,b). If (Xi : i ∈ I) is a sequence of given sets Xi, then X |I1∪I2| denotes
the product

∏
i∈I1∪I2

Xi := X1 × X2 × X3 × X5 × X6. Let ϕ := (ϕ1, ϕ2, ϕ3, ϕ5, ϕ6)t ∈ V be an
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arbitrary test function and take t ∈ ST . The weak formulation of (3.3)–(3.13) reads as follows:

(3.14)



a(s, u, ϕ) :=
1
s

∑
i∈I1

(Diui,y, ϕi,y) +
1

L− s

∑
i∈I2

(Diui,y, ϕi,y),

bf (u, s, ϕ) := s
∑
i∈I1

(fi(u), ϕi) + (L− s)
∑
i∈I2

(fi(u), ϕi),

e(s′, u, ϕ) :=
∑

i∈I1∪I2

gi(s, s′, u(1))ϕi(1),

h(s′, u,y, ϕ) := s′
∑
i∈I1

(yui,y, ϕi) + s′
∑
i∈I2

((2− y)ui,y, ϕi),

for any u ∈ V and λ ∈ W 1,2(ST )|I1∪I2|. The term a(·) incorporates the diffusive part of the
model, bf (·) comprises volume productions, e(·) sums up reaction terms acting on Γ(t) and h(·) is
a non-local term due to fixing the domain. The interface terms gi(i ∈ I1 ∪ I2) are given by

 g1(s, s′, u) := ηΓ(1, t) + s′(t)u1(1), g2(s, s′, u) := s′(t)u2(1),
g3(s, s′, u) := ηΓ(1, t)− s′(t)u3(1), g5(s, s′, u) := ηΓ(1, t),
g6(s, s′, u) := 0,

(3.15)

whereas the volume terms fi (i ∈ I) are defined as

(3.16)

 f1(u) := P1(Q1u2 − u1), f4(û) := +η̃Γ(s(t), t),
f2(u) := −P2(Q2u2 − u1), f5(u) := 0,
f3(u) := S3,diss(u3,eq − u3), f6(u) := 0.
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The initial and boundary data as well as the model parameters are assumed to satisfy the following
set of restrictions:

λ ∈W 1,2(ST )|I1∪I2|, λ(t) ≥ 0 a.e. t ∈ S̄T ,(3.17)

u3,eq ∈ L∞(ST ), u3,eq(t) ≥ 0 a.e. t ∈ S̄T ,(3.18)

u0 ∈ L∞(a, b)|I1∪I2|, u0(y) + λ(0) ≥ 0 a.e. y ∈ [a, b],(3.19)

û40 ∈ L∞(0, s0), û4(x, 0) > 0 a.e. x ∈ [0, s0],(3.20)

s0 > 0, L0 < L < +∞, s0 < L0,(3.21)
min{S3,diss, P1, Q1, P2, Q2, D`(` ∈ I1 ∪ I2)} > 0.(3.22)

We denote

m0 := min{s0, L− L0}, M0 := max{L0, L− s0}.(3.23)

Set

K :=
∏

i∈I1∪I2

[0, ki],(3.24)

and, for fixed Λ ∈MΛ, we take

MηΓ := max
ū∈K

{η̄Γ(ū,Λ)}.(3.25)

In (3.24), we set

(3.26)


ki := max{ui0(y) + λi(t), λi(t) : y ∈ [a, b], t ∈ S̄T }, i = 1, 2, 3, 6,
k4 := max{û40(x) +MηΓT : x ∈ [0, s(t)], t ∈ S̄T },
k5 := max{u50(y) + λ5(t), λ6(t), κ : y ∈ [a, b], t ∈ S̄T },
k6 := k5,
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where

κ :=
L0

D5 −MηΓLL0

(
MηΓ +

L

2
|λ5,t|∞ + 1

)
.(3.27)

Definition 3.1 (Local Weak Solution; cf. [10, 13]). We call the triple (u, v4, s) a local weak
solution to the problem (3.3)–(3.13) if there is a δ ∈]0, T ] with Sδ :=]0, δ[ such that

s0 < s(δ) ≤ L0,(3.28)

v4 ∈W 1,4(Sδ), s ∈W 1,4(Sδ),(3.29)

u ∈W 1
2 (Sδ; V,H) ∩ [S̄δ 7→ L∞(a, b)]|I1∪I2|,(3.30)

For all ϕ ∈ V and a.e. t ∈ Sδ we have

s
∑
i∈I1

(ui,t(t), ϕi) + (L− s)
∑
i∈I2

(ui,t(t), ϕi) + a(s, u, ϕ) + e(s′, u+ λ, ϕ)

= bf (u+ λ, s, ϕ) + h(s′, u,y, ϕ)− s
∑
i∈I1

(λi,t(t), ϕi)− (L− s)
∑
i∈I2

(λi,t(t), ϕi),

s′(t) = ηΓ(1, t), v′4(t) = f4(v4(t)) a.e. t ∈ Sδ,
u(0) = u0 ∈ H, s(0) = s0, v4(0) = û40.

3.3. Assumptions of the model parameters and constitutive reaction-rate law

The only assumptions that are needed are the following:
(A) Fix Λ ∈MΛ. Let η̄Γ(ū,Λ) > 0, if ū1 > 0 and ū3 > 0, and η̄Γ(ū,Λ) = 0, otherwise. For any

fixed ū1 ∈ R, η̄Γ is bounded.
(B) The reaction rate η̄Γ : R6×MΛ → R+ is locally Lipschitz. This restricts the choice of p and

q in (2.11).
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(C1) 1 > k3 ≥ maxS̄T
{|u3,eq(t)| : t ∈ S̄T }; D5 −MηΓL > 0;

(C2) P1Q1k2 ≤ P1k1; P2k1 ≤ P2Q2k2.

Remark 3.2.

(i) We refer to reader to [10] to see a possible physical interpretation of the restrictions (A)–(C).
(ii) For our convenience, we define the constants K1 = K3 := 0, and K2 and K4 via (3.44) and

(5.6), respectively.

By (A) and (B), we deduce that ηΓ(0,Λ) = 0 for all Λ ∈ MΛ. For all ū ∈ R6 there is an
ε-neighborhood Uε(ū) and a positive constant Cη = Cη(Λ, λ, ε, Tfin) such that the inequality

η̄Γ(ū(s(t), t),Λ) ≤ Cη|ū(s(t), t)|(3.31)

holds for all t ∈ ST . (3.31) can be reformulated as

ηΓ(1, t) ≤ Cη|u(1, t)| for all t ∈ ST .(3.32)

Note also that there exists a function cg = cg(Cη) such that

|e(s′, u(1), ϕ(1))| ≤ cg|u(1)||ϕ(1)| for all ϕ ∈ V(3.33)

and a constant cf = cf (Cη,K1) > 0 such that

|bf (u, s, ϕ)| ≤ cf
(
|u3,eq|2∞ + |u|2 + |ϕ|2

)
for all ϕ ∈ V,(3.34)

where K1 > 0 is a constant depending on the material parameters entering fi (i ∈ I), i.e. P1,
P2, Q1, Q2, and S3,diss. The exact structure of cg, cf and K1 is dictated by the definition of the
production terms fi and gi (i ∈ I), see (3.16) and (3.15). Since ψΓ(1, t) has essentially the same
structure as ηΓ(1, t), it also satisfies (A) and (B).
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3.4. Known results

In this section, we list a couple of known results (see [10, 13]) which will be extensively used in
section 5.

Lemma 3.3 (Some Basic Estimates). Let cξ > 0, ξ > 0, θ ∈ [ 12 , 1[ and s ∈W 1,1(Sδ).

(i) There exists the constant ĉ = ĉ(θ) > 0 such that

|ui|∞ ≤ ĉ|ui|1−θ||ui||θ(3.35)

for all ui ∈ Vi, where i ∈ I1 ∪ I2.
(ii) It holds

|ui|1−θ||ui||θ ≤ ξ||ui||+ cξ|ui|(3.36)

for all ui ∈ Vi, where i ∈ I1 ∪ I2.
(iii) Let ϕ ∈ V with ϕ = (ϕ1, . . . , ϕ6)t, t ∈ Sδ, ĉ as in (i), and ξ, cξ as in (ii). Then, for i ∈ I1

and j ∈ I2, we have the following inequalities:
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|s′(t)|
s(t)

(yϕi,y, ϕi) =
1
2
|s′(t)|
s(t)

{ϕi(1)2 − |ϕi|2} ≤
1
2
|s′(t)|
s(t)

{ĉ2|ϕi|2(1−θ)||ϕi||2θ−|ϕi|2};

|s′(t)|
s(t)

|ϕi(1)|2 ≤ |s′(t)|
s(t)

|ϕi|2∞ ≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ × s(t)

2θ−1
1−θ |s′(t)|

1
1−θ |ϕi|2;

|ϕi(1)|2

s2(t)
≤ 1
s2(t)

|ϕi|2∞ ≤ ĉ2s(t)2θ−2|ϕi|2(1−θ)
(
s(t)−1||ϕi||

)2θ

≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ |s(t)|

2(θ−1)
1−θ |ϕi|2;

|ϕi(1)|2

s(t)
≤ ξ

s2(t)
||ϕi||2 + cξ ĉ

2
1−θ |s(t)|

2θ−1
1−θ |ϕi|2

|s′(t)|
L− s(t)

((2− y)ϕj,y, ϕj) =
1
2
|s′(t)|
L− s(t)

|ϕj(1)|2 +
1
2
|s′(t)|
L− s(t)

|ϕj |2.

Theorem 3.4 (Positivity and L∞-Estimates). Let the triple (u, v4, s) as in Definition 3.1 satisfy
the assumptions (A)–(C2). Then the following statements hold:

(i) (Positivity) u(t) + λ(t) ≥ 0 in V for all t ∈ Sδ.

(ii) (L∞-estimates) Let ` ∈ I1 ∪ I2 be arbitrarily fixed. There exists a constant k` > 0 (see
(3.26)) such that u`(t) + λ`(t) ≤ k` in V` (` ∈ I − {4, 5}) for all t ∈ Sδ. In addition, there
exists a constant k5 > 0 such that u5(t) ≤ k5y a.e. y ∈ [0, 1] and all t ∈ Sδ.

(iii) (Localization of the interface)

s0 ≤ s(t) ≤ s0 + δMηΓ for all t ∈ Sδ, where MηΓ is given in (3.26).

(iv) (Positivity and boundedness of v4 at Γ(t))

0 < û40 ≤ v4(t) ≤ û40 + δMηΓ for all t ∈ Sδ.
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Lemma 3.5 (Energy Estimates). Assume that (A)–(C2) hold and let the triple (u, v4, s) be as
in Definition 3.1. The following statements hold a.e. in Sδ:

|u(t) + λ(t)|2 ≤ α(t) exp
(∫ t

0

β(τ)dτ
)

;(3.37)

|u(t) + λ(t)|2 ≤ α(t) +
∫ t

0

β(s)α(s) exp
(∫ t

s

β(τ)dτ
)

ds;(3.38) ∫ t

0

||u(τ) + λ(τ)||2dτ ≤ d−1
0 α(t) exp

(∫ t

t0

β(τ)dτ
)
,(3.39)

where

d0 := min
{

min
i∈I1

s0Di

L2m0
, min

i∈I2

(L− L0)Di

(L− s0)2m0

}
, m0 as in (3.23).(3.40)

The factors a(t), α(t) and β(t) are given by

a(t) :=
(s′(t))2

2
+

(L− s(t))2K2

2
,(3.41)

α(t) := |ϕ(0)|2 +
2
m0

∫ t

0

a(τ)dτ,(3.42)

β(t) :=

[
s′(t)

2
+K2

(
2 +

D3

L− s(t)
+
s′(t)

2

)2
]

1
m0

,(3.43)

whereas

K2 := 1 + (S3,diss|u3,eq|∞)2 +
LP1Q1

2
+ cξ ĉ

4.(3.44)
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Furthermore, we have

u ∈ L2(Sδ,V), u,t ∈ L2(Sδ,V∗), u ∈ C(S̄δ,H).(3.45)

Theorem 3.6 (Local Existence and Uniqueness). Assume the hypotheses(A)–(C2) and let the
conditions (3.17)–(3.2) be satisfied. Then the following assertions hold:

(a) There exists a δ ∈]0, T [ such that the problem (3.3)–(3.13) admits a unique local solution on
Sδ in the sense of Definition 3.1;

(b) 0 ≤ ui(y, t)+λi(t) ≤ ki a.e. y ∈ [a, b] (i ∈ I1 ∪ I2) for all t ∈ Sδ. Moreover, 0 ≤ û4(x, t) ≤ k4

a.e. x ∈ [0, s(t)] for all t ∈ Sδ;
(c) v4, s ∈W 1,∞(Sδ).

4. Main result

Select i ∈ {1, 2} and let (u(i), v
(i)
4 , si) be two weak solutions on Sδ in the sense of Definition 3.1.

They correspond to the sets of data

Di := (u(i)
0 , λ(i),Ξ(i),Υ(i),Λ(i))t,

where u(i)
0 , λ(i), Ξ(i), Υ(i), and Λ(i) denote the respective initial data, boundary data, and the model

parameters describing diffusion, dissolution mechanisms and carbonation reaction, respectively.
In this context, we have Ξ(i) := (D(i)

` (` ∈ I1 ∪ I2), P
(i)
k (k ∈ {1, 2}), Q(i)

k (k ∈ {1, 2}), S(i)
3,diss)

t ⊂
MΞ and Υ(i) = (u(i)

3,eq) ⊂MΥ, i ∈ {1, 2}. Here MΞ and MΥ are compact subsets of R10
+ and L2(Sδ).

Set ∆u := u(2) − u(1), ∆v4 := v
(2)
4 − v

(1)
4 , ∆s := s2 − s1, ∆λ := λ(2) − λ(1), ∆u0 := u

(2)
0 − u

(1)
0 ,

∆Ξ := Ξ(2)−Ξ(1), ∆Υ := Υ(2)−Υ(1), ∆Λ := Λ(2)−Λ(1), and ∆ηΓ := η̃
(2)
Γ −η̃(1)

Γ := η̄
(2)
Γ (ū(2),Λ(2))−

η̄
(1)
Γ (ū(1),Λ(1)). The Lipschitz condition of ηΓ reads: There exists a constant cL = cL(D1,D2) > 0

such that the inequality |∆ηΓ| ≤ cL(|∆u|+ |∆Λ|) holds locally pointwise, see (B).
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Having these notations available, we can state now the main result of the paper.

Theorem 4.1. Let (u(i), v
(i)
4 , si)(i ∈ {1, 2}) be two local weak solutions on Sδ in the sense

of Definition 3.1 satisfying the assumptions of Theorem 3.6. Let (u(i)
0 , λ(i),Λ(i)) be the vector of

initial, boundary and reaction data. Then the function H×W 1,2(Sδ)|I1∪I2| ×MΞ ×MΥ ×MΛ →
W 1

2 (Sδ,V,H)×W 1,4(Sδ)2, which maps (u0, λ,Ξ,Υ,Λ)t into (u, v4, s)t, is Lipschitz in the following
sense: There exists a constant c = c(δ, s0, û40, L, ki, cL, δ) > 0 (i ∈ I1 ∪ I2) such that

‖∆u‖2W 1
2 (Sδ,V,H)∩L∞(Sδ,H) + ‖∆v4‖2W 1,4(Sδ)∩L∞(Sδ) + ||∆s||2W 1,4(Sδ)∩L∞(Sδ)

≤ c
(
‖∆u0‖2H∩L∞([a,b]|I1∪I2|) + ‖∆λ‖2

(W 1,2(Sδ)∩L∞(Sδ))|I1∪I2|

)
+ c

(
max
MΞ

|∆Ξ|2 + ||∆Υ||2MΥ∩L∞(Sδ) + max
MΛ

|∆Λ|2
)
.

(4.1)

We prove Theorem 4.1 in Section 5. A direct consequence of this result is the stability of the
moving boundary as stated in the next result.

Corollary 4.2 (Stability of the Interface). Assume that the hypotheses of Theorem 4.1 are
satisfied. Then the function H ×W 1,2(Sδ)|I1∪I2| ×MΞ ×MΛ → W 1,4(Sδ), which maps the data
(u0, λ,Ξ,Υ,Λ)t into the position of the interface s, is Lipschitz in the following sense: There exists
a constant c = c(δ, s0, û40, L, ki, cL, δ) > 0 such that

‖∆s‖2W 1,4(Sδ)∩L∞(Sδ) ≤ c
(
‖∆u0‖2H∩L∞([a,b]|I1∪I2|)+‖∆λ‖

2
(W 1,2(Sδ)∩L∞(Sδ))|I1∪I2|

)
+ c

(
max
MΞ

|∆Ξ|2 + ||∆Υ||2MΥ∩L∞(Sδ) + max
MΛ

|∆Λ|2
)
.(4.2)

Putting together the statements of Theorem 4.1 with those of [13, Theorem 3.3 and Theorem
3.4], the well-posedness of the moving boundary system described in Section 1 is shown.
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5. Proof of Theorem 4.1

Let (u(i), v
(i)
4 , si)(i ∈ {1, 2}) be two weak solutions on Sδ (in the sense of Definition 3.1), which

satisfy the assumptions of Theorem 3.6. We want to show that the function H×W 1,2(Sδ)|I1∪I2|×
MΞ×MΥ×MΛ →W 1

2 (Sδ,V,H)×W 1,4(Sδ)2 that maps (u0, λ,Ξ,Υ,Λ)t into (u, v4, s)t is Lipschitz
continuous in the sense of (4.1). By (3.2), the positions si(t), i = 1, 2 of the interfaces Γi(t)
(i ∈ {1, 2}) satisfy the geometrical restriction

0 < si0 := si(0) ≤ si(t) ≤ Li0 < L for i ∈ {1, 2} and t ∈ Sδ.

Denoting s0 := max{s10, s20} and L0 := min{L10, L20}, the common space domain traveled by the
interfaces Γi(t) is Ω :=]s0, L0[. Within this frame we only discuss the case s0 < L0. Set

L∗ := min
t∈S̄δ

{min{si(t), L− si(t)} : i = 1, 2},(5.1)

D0 := min{D(i)
j : j ∈ I1 ∪ I2, i ∈ {1, 2}} > 0.(5.2)

We subtract the weak formulation (3.31) for the solution (u(1), v
(1)
4 , s1) from the weak formulation

written in terms of (u(2), v
(2)
4 , s2). Choosing w = (u(2) − u(1))t + (λ(2) − λ(1))t ∈ V (i.e. wj =

u
(2)
j − u

(1)
j + λ

(2)
j − λ

(1)
j ∈ Vj for each j ∈ I1 ∪ I2) as test function, we obtain

s2
∑
i∈I1

1
2

d
dt
|wi(t)|2 + (L− s2))

∑
i∈I2

1
2

d
dt
|wi(t)|2

+
1
s2

∑
i∈I1

‖
√
Di

(2)
wi‖2 +

1
(L− s2)

∑
i∈I2

‖
√
Di

(2)
wi‖2 ≤

5∑
`=1

J`,

(5.3)
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where the terms J` (` ∈ {1, . . . , 5}) are defined by

J1 := ∆s
∑
i∈I1

(u(1)
i,t , wi)−∆s

∑
i∈I2

(u(1)
i,t , wi)

J2 :=
∆s
s1s2

∑
i∈I1

(D(1)
i u

(1)
i,y , wi,y)− ∆s

(L− s1)(L− s2)

∑
i∈I2

(D(1)
i u

(1)
i,y , wi,y)

+
|∆D|
s1

∑
i∈I1

(u(1)
i,y , wi,y) +

|∆D|
L− s1

∑
i∈I2

(u(1)
i,y , wi,y),

J3 := s2

[
P

(2)
1 (Q(2)

1 u
(2)
2 − u

(2)
1 , w1)− P

(2)
2 (Q(2)

2 u
(2)
2 − u

(2)
1 , w2)

]
− s1

[
P

(1)
1 (Q(1)

1 u
(1)
2 − u

(1)
1 , w1)− P

(1)
2 (Q(1)

2 u
(1)
2 − u

(1)
1 , w2)

]
+ (L− s2)S

(2)
3,diss(u

(2)
3,eq−u

(2)
3 , w3)− (L− s1)S

(1)
3,diss(u

(1)
3,eq−u

(1)
3 , w3)

J4 :=
[
η
(2)
Γ +s′2u

(2)
1 (1)

]
w1(1)−s′2u

(2)
2 (1)w2(1)(5.4)

+
[
η
(2)
Γ −s′2u

(2)
3 (1)

]
w3(1)−η(2)

Γ w5(1)

−
[
η
(1)
Γ + s′1u

(1)
1 (1)

]
w1(1) + s′1u

(1)
2 (1)w2(1)

−
[
η
(1)
Γ − s′1u

(1)
3 (1)

]
w3(1) + η

(1)
Γ w5(1)

+
1
s2

∑
i∈I1

D
(2)
i |wi(1)|2 +

1
L− s2

∑
i∈I2

D
(2)
i |wi(1)|2
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J5 := s′2
∑
i∈I1

(yu(2)
i,y , wi) + s′2

∑
i∈I2

((2− y)u(2)
i,y , wi)

− s′1
∑
i∈I1

(yu(1)
i,y , wi)− s′1

∑
i∈I2

((2− y)u(1)
i,y , wi).

To simplify the writing of the estimates, we employ the constant K4, which is given by

K4 := 1+ cξcξ̄
(
ĉk̄

) 2
1−θ + k̄2 + k̄4ĉ4 + 2cξk̄2 + max

{
1,
L

2

}
+ cξ + (ĉ2c̃)

1
1−θ + cξ

∑
i∈I1∪I2

(
D

(1)
i

)2

+
[
(k1 + k2)P

(2)
1 Q

(2)
1

]2

+ (LQ(2)
1 k2)2 + (P (2)

1 k2)2 + 2
(
P

(2)
1 Q

(2)
1

)2

.

(5.5)

Note that K4 is finite and depends on k` (` ∈ I1 ∪ I2), cξ, c̃, cξ̄, θ, and δ. To estimate the above
terms |J`| (` ∈ {1, . . . , 5}) we use all of the estimates that we have already possed, that is positivity,
maximum, and energy estimates. We obtain

|J1| ≤
|∆s|2

2
|w1,t|2 +

|w|2

2
.

|J2| ≤ 2ξ
∑
i∈I1

‖wi‖2

s22
+ 2ξ

∑
i∈I2

‖wi‖2

(L− s2)2

+K4

(
1
s21

+
1

(L− s1)2

)
‖u(1)

1 ‖2|∆s|2

+K4

[(
s2
s1

)2

+
(
L− s2
L− s1

)2
]
‖u(1)

1 ‖2|∆D|2

(5.6)
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(5.7) |J3| ≤
3
2
|∆s|2 +

L

2
(
|∆S3,diss|2 + |∆u3,eq|2∞

)
+ |∆P |2 + |∆Q|2 +K4|w|2.

Since MηΓ <∞, then there exists a constant c̃ ∈ R∗
+ such that

c̃ > 1 + 3Cη + 4k2
2 + k2

3 + 2MηΓ +
L− L0 + s0
s0(L− L0)

∑
i∈I1∪I2

Di.(5.8)

Using (5.9), we obtain

|J4| ≤ |∆Λ|2 +
3
2
|∆s|2 + c̃|w(1)|2

≤ |∆Λ|2 +
3
2
|∆s|2 + c̃ĉ2s2θ

2

∑
i∈I1

‖wi‖2θ

s2θ
2

|wi|2(1−θ)

+ c̃ĉ2(L− s2)2θ
∑
i∈I2

‖wi‖2θ

(L− s2)2θ
|wi|2(1−θ)

≤ ξ
∑
i∈I1

‖wi‖2

s22
+ ξ

∑
i∈I2

‖wi‖2

(L− s2)2
+ |∆Λ|2 +

3
2
|∆s|2

+K4

[
s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

]
|w|2.

(5.9)
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Furthermore, it holds

J5 = h(s′2, u
(2)
,y , w)− h(s′1, u

(1)
,y , w)

= s2
s′2
s2

∑
i∈I1

(yu(2)
i,y , wi)− s1

s′1
s1

∑
i∈I1

(yu(1)
i,y , wi)

+ (L− s2)
s′2

L− s2

∑
i∈I2

((2− y)u(2)
i,y , wi)− (L− s1)

s′2
L− s2

∑
i∈I2

((2− y)u(2)
i,y , wi)

= J51 + J52.

Using again Lemma 3.3, we establish upper bounds for these terms in the following fashion:

J51 ≤ L
s′2
s2

∑
i∈I1

|(ywi,y, wi)|+ L|
(
s′2
s2
− s′1
s1

)
|
∑
i∈I1

|(yu(1)
i,y , wi)|,

J52 ≤ L
s′2

L− s2

∑
i∈I2

|((2− y)wi,y, wi)|

+ L

∣∣∣∣( s′2
L− s2

− s′1
L− s1

)∣∣∣∣ ∑
i∈I2

|((2− y)u(1)
i,y , wi)|.

It holds

(5.10)

1
L
|J51| ≤

s′2
s2

∑
i∈I1

|(ywi,y, wi)|+
|∆s′|
s2

∑
i∈I1

|(yu(1)
i,y , wi)|

+
s′1
s1s2

|∆s|
∑
i∈I1

|(yu(1)
i,y , wi)|.
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Firstly, we see that

s′2
s2

∑
i∈I1

|(ywi,y, wi)| ≤ ξ
∑
i∈I1

||wi||2

s22
+ cξ ĉ

2
1−θ

(
s′2
2

) 1
1−θ

s
2θ−1
1−θ

2

∑
i∈I1

|wi|2.

Furthermore, for each i ∈ I1 we use the relation |(yu(1)
i,y , wi)| ≤ |u(1)

i (1)wi(1)| + |(ywi,y, u
(1)
i )| +

|(u(1)
i , wi)| to split the last two sums in (5.11) as follows:

1
L
|J51| ≤ ξ

∑
i∈I1

‖wi‖2

s22
+ cξ ĉ

2
1−θ

(
s′2
2

) 1
1−θ

s
2θ−1
1−θ

2

∑
i∈I1

|wi|2

+ I + II + III + IV + V + VI,

where

I :=
|∆s′|
s2

∑
i∈I1

|u(1)
i (1)wi(1)| ≤

∑
i∈I1

|∆s′| ĉk̄
s1−θ
2

‖wi‖θ

sθ
2

|wi|1−θ

≤ 2ξ̄|∆s′|2 + ξcξ̄
∑
i∈I1

‖wi‖2

s22
+ cξcξ̄

(
ĉk̄

) 2
1−θ

s22

∑
i∈I1

|wi|2

(with k̄ ≥ 2 max ki (i ∈ I)),
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II :=
|∆s′|
s2

∑
i∈I1

|(ywi,y, u
(1)
i )| ≤

∑
i∈I1

‖wi‖
s2

k̄|∆s′|

≤ 2cξk̄2|∆s′|2 + ξ
∑
i∈I1

‖wi‖2

s22
,

III :=
|∆s′|
s2

∑
i∈I1

|(u(1)
i , wi)| ≤ 2|∆s′|2 +

k̄2

2s22

∑
i∈I1

|wi|2,

IV :=
s′1
s1s2

|∆s|
∑
i∈I1

|u(1)
i (1)wi(1)|

≤ 2ξ̄|∆s|2 + ξcξ̄
∑
i∈I1

‖wi‖2

s22
+

1
s22

(
k̄ĉ
s′1
s1

) 2
1−θ ∑

i∈I1

|wi|2,

V :=
s′1
s1s2

|∆s|
∑
i∈I1

|(ywi,y, u
(1)
i )| ≤ 2cξk̄2|∆s|2

(
s′1
s1

)2

+ ξ
∑
i∈I1

‖wi‖2

s22
,

VI :=
s′1
s1s2

|∆s|
∑
i∈I1

|(u(1)
i , wi)| ≤ 2|∆s|2 +

s′21 k̄
2

s21s
2
2

∑
i∈I1

|wi|2.

These inequalities yield an upper bound on |J51|. It holds

(5.11)

1
L
|J51| ≤ ξ(3 + 2cξ̄)

∑
i∈I1

‖wi‖2

s22
+ |∆s|2

[
2(1 + ξ̄) +K4

(
s′1
s1

)2
]

+ 2|∆s′|2(1 + ξ̄ +K4)

+K4

[
1
s22

+
(s′1)

2

s21s
2
2

+
(s′2)

2

4
+

(s′1)
4

s41s
2
2

] ∑
i∈I1

|wi|2.

Using the inequality

|((2− y)u(1)
i,y , wi)| ≤ |u(1)

i (1)wi(1)|+ |((2− y)wi,y, u
(1)
i )|+ |(u(1)

i , wi)|, i ∈ I2,
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we find that

(5.12)

1
L
|J52| ≤ ξ(3 + 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2

+ |∆s|2
[
1 + ξ̄ +K4

(
s′1

L− s1

)2
]

+ |∆s′|2(1 + ξ̄ +K4) +K4

[
1

(L− s2)2
+

(s′1)
2

(L− s1)2(L− s2)2

+
(s′2)

2

4
+

(s′1)
4

(L− s1)4(L− s2)2

] ∑
i∈I2

|wi|2.

By (5.12) and (5.13), it yields

(5.13)

|J5| ≤ ξL(3 + 2cξ̄)
∑
i∈I1

‖wi‖2

s22
+ ξL(3 + 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2

+ L

[
3(1 + ξ̄) +K4

(
s′1
s1

)2

+K4

(
s′1

L− s1

)2
]
|∆s|2

+ 3L(1 + ξ̄ +K4)|∆s′|2

+ LK4

[
1

(s2)2
+

(s′1)
2

(s1)2(s2)2
+

(s′2)
2

4
+

(s′1)
4

(s1)4(s2)2
+

1
(L− s2)2

+
(s′1)

2

(L− s1)2(L− s2)2
+

(s′2)
2

4
+

(s′1)
4

(L− s1)4(L− s2)2

]
|w|2.
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Simple algebraic manipulations show that we can bound the sum
∑5

`=1 |J`| by

(5.14)

ξ(3 + 3L+ 2cξ̄)
∑
i∈I1

‖wi‖2

s22
+ ξ(3 + 3L+ 2cξ̄)

∑
i∈I2

‖wi‖2

(L− s2)2
+K4|∆Ξ|2

+K4|∆Λ|2 +K4

[(
s2
s1

)2

+
(
L− s2
L− s1

)2
]
‖u(1)

1 ‖2|∆D|2

+ |∆s2|
[
3 + 3L+ 3Lξ̄ +

|w1,t|2

2
+K4

(
1
s21

+
1

(L− s1)2

)
‖u(1)

1 ‖2

+ LK4

(
s′1
s1

)2

+ LK4

(
s′1

L− s1

)2
]

+ |∆s′|23L(1 + ξ̄ +K4)

+ |w|2
[
1
2

+K4

(
χ2(t) + s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

)]
,

where the expression of χ2(t) is given by

(5.15)
χ2(t) := L

[
1

(s2)2
+

(s′1)
2

(s1)2(s2)2
+

(s′2)
2

4
+

(s′1)
4

(s1)4(s2)2
+

1
(L− s2)2

+
(s′1)

2

(L− s1)2(L− s2)2
+

(s′2)
2

4
+

(s′1)
4

(L− s1)4(L− s2)2

]
.

We select ξ̄ > 0 and ξ > 0 such that the first two sums in (5.15) can be neglected when they
are compared with the diffusive part from the left-hand side of (5.3). On this way, we obtain
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D0
L2
∗
− ψ(ξ, ξ̄) > 0, where ψ(ξ, ξ̄) := ξ(3 + 3L+ 2cξ̄), and also

(5.16)
1
2

d
dt
|w(t)|2 +

(
D0

L2
∗
− ψ(ξ, ξ̄)

)
‖w(t)‖2 ≤ a(t) + b(t)|w(t)|2,

where the expressions of a(t) and b(t) (t ∈ Sδ) are given by

a(t) := K4|∆Λ|2 +K4|∆ξ|2 + a11(t)|∆s|2 + a12(t)|∆s′|2 + a13(t)|∆Di|2

b(t) :=
1
2

+K4

(
χ2(t) + s

2θ
1−θ

2 + (L− s2)
2θ

1−θ

)
.

We do not need here to list the exact expressions of a1k(t) (k ∈ {1, 2, 3}). They can be easily
obtained when comparing the right-hand side of (5.17) to the estimate on

∑5
`=1 |J`|. Here, we

only need to know that
∫

Sδ
a1k(τ)dτ < ∞ (k ∈ {1, 2, 3}). The latter inequality follows via the

energy estimates. Additionally, we note that for any t0 ∈ Sδ we have

|a11(t)|∆s(t)|2 + a12(t)|∆s′(t)|2 ≤ a11(t)(t− t0)
∫ t

t0

|∆η(τ)|2dτ + a12(t)|∆η(t)|2.

Now, denoting by ã(t) the sum

ã(t) := K4|∆Λ|2 +K4|∆Ξ|2 + a13(t)|∆D|2,

we re-write (5.17) in the form

1
2

d
dt
|w(t)|2 +

(
D0

L2
∗
− ψ(ξ, ξ̄)

)
‖w(t)‖2 ≤ ã(t) + a11(t)δ

∫ t

0

|∆η(τ)|2dτ

+ a12(t)|∆η(t)|2 + b(t)|w(t)|2.(5.17)
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Let the functions α, β : Sδ → R+ be defined by

α(t) := 2
∫ t

0

a(τ)dτ and β(t) := 2b(t).

Here

a(t) = ã(t) + a11(t)δ
∫ t

0

|∆η(τ)|2dτ + a12(t)|∆η(t)|2.

Note that α is strictly increasing on Sδ. By (5.17) or (5.18), and Gronwall’s inequality, we infer
that

(5.18) |w(t)|2 ≤
(
|w(0)|2 + α(t)

)
exp

(∫ t

0

β(τ)dτ
)

a.e. t ∈ Sδ.

Owing to (5.17) and (5.19), and reasoning in the standard way (see, e.g. the proof of Claim 3.3.27
in [10]), we derive the desired upper bound on

∫
Sδ
‖w(τ)‖2dτ . The conclusion of the Theorem

follows in a straightforward manner.
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