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QUASI-NEWTON TYPE OF DIAGONAL UPDATING
FOR THE L-BFGS METHOD

M. L. SAHARI and R. KHALDI

Abstract. The use of the L-BFGS method is very efficient for the resolution of large scale optimiza-
tion problems. The techniques to update the diagonal matrix seem to play an important role in the
performance of overall method. In this work, we introduce some methods for updating the diagonal
matrix derived from quasi- -Newton formulas (DFP, BFGS). We compare their performances with the
Oren-Spedicato update proposed by Liu and Nocedal (1989) and we get considerable amelioration in
the total running time. We also study the convergence of L-BFGS method if we use the BFGS and
inverse BFGS update of the diagonal matrix on uniformly convex problems.

1. Introduction

The aim of this paper is to introduce some methods for updating the diagonal matrix obtained
from quasi-Newton formulas and then after applying Oren-Spedicato update proposed in [4] by
Liu and Nocedal to study their performances. We show that the total running time is improved
considerably. Using the BFGS and inverse BFGS update of diagonal matrix on uniformly convex
problems, we study the convergence of L-BFGS method.

More precisely, we consider the unconstrained optimization problem

(1.1) min
x∈Rn

f(x),
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where f is a real valued function on Rn. We assume throughout that both the gradient g(x) =
∇xf(x) and the Hessian matrix H(x) = ∇xxf(x) of f exist and are continuous. To solve the
problem (1.1) one uses an algorithm that generates a sequence of iterates xk according to

(1.2) xk+1 = xk + tkdk,

where x1 ∈ Rn is given, dk ∈ Rn is the search direction and tk is a step length which minimizes
f along dk from the point xk. In this paper we suppose that tk satisfies the Wolfe conditions (see
[1], [6])

f(xk + tkdk)− f(xk) ≤ c1tkg(xk)>dk,(1.3)

g(xk + tkdk)>dk ≥ c2g(xk)dk,(1.4)

where 0 < c1 < 1/2, c1 < c2 < 1. If n is not large (n ≤ 100), the BFGS method is very efficient
(see [1], [6]). In this case the direction dk is defined by

(1.5) dk = −Sk · g(xk)

where Sk is an inverse Hessian approximation updated at every iteration by means of the formula

(1.6) Sk+1 = V >
k SkVk + ρkδkδ>k

where

(1.7) ρk =
1

γ>k δk
, Vk = I − ρkγkδ>k

and

(1.8) δk = xk+1 − xk, γk = g(xk+1)− g(xk).

But if n is very large when the matrix Sk cannot be computed or stored, it is desirable to use
limited memory BFGS (L-BFGS) (see [1], [2], [3]). The implementation described by Liu and
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Nocedal [4] is almost identical to that of the BFGS method, the only difference is in the matrix
update. Instead of storing the matrix Sk, one stores a certain number, say m of pairs {δk, γk}.
The product Sk · g(xk) is obtained by performing a sequence of inner products involving g(xk) and
the m most recent vector pairs {δk, γk}. After computing the new iterate, the oldest pair is deleted
from the set {δk, γk} and replaced by the newest one. The algorithm therefore always keeps the m
most recent pairs {δk, γk} to define the iteration matrix. This strategy is suitable for large scale
problems because it has been observed in practice that small values of m (say m ∈ 〈3 , 8〉) give
satisfactory results [4].

The structure of this paper is the following: In the next section we describe the L-BFGS
update process. Section three deals with updating the diagonal matrix, for this we propose several
updating methods for the diagonal matrix Dk derived from the quasi-Newton methods [3], [6].

In section four, we study the convergence, we show that the L-BFGS method with BFGS and
inverse BFGS update formulas of the diagonal matrix are globally convergent on uniformly convex
problems if the line search is Wolfe type. Section five concerns numerical tests on some problems
proposed in [5], using FORTRAN 90. Then we give tables that compare the performance of the
L-BFGS method with Oren-Spedicato scaling and other updates of the diagonal matrix proposed
in this work (DFP, BFGS and Inverse BFGS). We achieve this work with a conclusion and some
references.

2. L-BFGS Method

Now, we give a precise description of the L-BFGS update process in more details. Let x1 be
given as the first element of the iteration and suppose that we have stored the m pairs {δk, γk},
k = 1, . . . ,m. We choose a “basic matrix” S1

k = Dk (usually a diagonal with all positive entries)
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and from (1.6) the Sk update can be written as

(2.1)



Sk+1 = V >
k SkVk + ρkδkδ>k , for 1 ≤ k ≤ m

S1
k = Dk

Si+1
k = V >

k−m+i−1S
i
kVk−m+i−1

+ ρk−m+i−1δk−m+i−1δ
>
k−m+i−1, 1 ≤ i ≤ m

Sk = Sm+1
k , k ≥ m + 1.

In practice we prefer to use the following more explicit formula

Sk =
i= bm+1∑

i=1

ρk−i

j=i−1∏
j=0

V >
k−j

 δk−jδ
>
k−j

j=i∏
j=1

Vk+j−i

 ,

with m̂ = min{k − 1,m} and 
ρk−bm−1 = 1,

δ
k−cm−1δ

>
k−cm−1

= Dk,

Vk = I.

3. Updating the diagonal matrix

The diagonal matrix Dk has to be ensured by the weak quasi-Newton condition

(3.1) γ>k−1Skγk−1 = γ>k−1δk−1.

Liu and Nocedal [4] recommend the choice of the multiple of the unit matrix

(3.2) Dk = ζk−1I,



JJ J I II

Go back

Full Screen

Close

Quit

where I is the identity matrix and ζk−1 =
γ>k−1δk−1

γ>k−1γk−1
. This scaling is suggested by Oren and

Spedicato [7], using only the last pair (δi, γi). This strategy does not allow a well initialization of
the L-BFGS method. In the following we propose several methods of updating the diagonal matrix
Dk, derived from the quasi-Newton methods, i.e. DFP and BFGS methods.

3.1. The DFP type of diagonal update

The DFP diagonal update formula is obtained by taking the diagonal of the matrix Dk with the
DFP formula. If

Dk = diag
[
D

(1)
k , D

(2)
k , . . . , D

(i)
k , . . . , D

(n)
k

]
and {e1, e2, . . . , en} is the canonical basis of Rn, the i-th update component is

(3.3) D
(i)
k+1 = D

(i)
k +

(δ>k ei)2

γ>k δk
−

(D(i)
k (γ>k ei))2

γ>k Dkγk
.

3.2. The BFGS type of diagonal update

By taking the diagonal of the matrix obtained by updating Dk with (1.6) formula, the i-th update
component is given by

(3.4) D
(i)
k+1 = D

(i)
k +

[
1 +

γ>k Dkγk

γ>k δk

]
(δ>k ei)2

γ>k δk
− 2

D
(i)
k (δ>k ei)(γ>k ei)

γ>k δk
.
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3.3. The inverse BFGS type of diagonal update

If we use the BFGS formula for the Hessian approximation update given by

(3.5) Bk+1 = Bk +
γkγ>k
γ>k δk

− Bkδkδ>k Bk

δ>k Bkδk

and due to the fact that

D−1
k+1 = diag

[
(D(1)

k+1)
−1, (D(2)

k+1)
−1, . . . , (D(i)

k+1)
−1, . . . , (D(n)

k+1)
−1
]
,

by (3.5), we have

D−1
k+1 = D−1

k +
γkγ>k
γ>k δk

−
D−1

k δkδ>k D−1
k

δ>k D−1
k δk

,

finally

(3.6) D
(i)
k+1 =

(
1

D
(i)
k

+
(γ>k ei)2

γ>k δk
− (δ>k ei)2

(D(i)
k )2(δ>k D−1

k δk)

)−1

.

Algorithm 1 (The L-BFGS method with diagonal update)
Choose ε > 0, x1 ∈ Rn, set S1 = D1 = I and k = 1
Repeat

Starting
If ‖g(xk)‖ < ε then

x∗ = xk

stop.
Else

Compute direction search: dk = −Sk · g(xk)
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Compute the step length tk satisfies the Wolfe conditions (1.3)–(1.4)
Update Dk matrix according to (3.2), (3.3), (3.4) or (3.6)
Update Sk matrix according to (2.1)
Set xk+1 = xk + tkdk

k ← k + 1
End if

End repeat

4. Convergence Analysis

Now, we show that the L-BFGS method with (3.2), (3.4) and (3.6) updates of the diagonal matrix
is globally convergent on uniformly convex problems if the line search is Wolfe type. In the case of
(3.3) update formula, we can deduce this analysis if the step length tk is determined by the exact
line search

f(xk + tkdk) = min
t>0

f(xk + tdk).

Assumptions A
(1) The function f is twice continuously differentiable.
(2) The level set L = {x ∈ Rn : f(x) ≤ f(x1)} is convex.
(3) There exist constants M1, M2 > 0 such that

(4.1) M1 ‖d‖2 ≤ d>H(x)d ≤M2 ‖d‖2

for all d ∈ Rn and all x ∈ L.

Lemma 4.1. Let x1 be a starting point for which f satisfies Assumptions A. Let {xk} be
generated by Algorithm 1 using (3.2), (3.4) or (3.6) update formulas for the diagonal matrix, then
{Dk} is bounded for each k > 0.
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Proof. We define
Hk =

1∫
0

H(xk + τδk)dτ,
then

(4.2) γk = Hkδk.

Thus (4.1) and (4.2) give

(4.3) M1 ‖δk‖2 ≤ γ>k δk ≤M2 ‖δk‖2 .

Since Hk is positive definite, then

(4.4)
‖γk‖2

γ>k δk
=

δ>k H
2

kδk

δ>k Hkδk

≤
M2

∥∥∥H1/2

k δk

∥∥∥2

∥∥∥H1/2

k δk

∥∥∥2 . So,
‖γk‖2

γ>k δk
≤M2.

Let Jk denote the inverse of the diagonal matrix Dk, then (3.5) can be rewritten in the next form

(4.5) J
(i)
k+1 = J

(i)
k +

(γ>k ei)2

γ>k δk
−

(J (i)
k (δ>k ei))2

δ>k Jkδk
.

From (4.5) and by simple expression for the trace and the determinant of the matrix (see [3], [6])

(4.6)
i=n∑
i=1

J
(i)
k+1 =

i=n∑
i=1

J
(i)
1 −

k=m∑
k=1

‖Jkδk‖2

δ>k Jkδk
+

k=m∑
k=1

‖γk‖2

γ>k δk
≤

i=n∑
i=1

J
(i)
1 +

k=m∑
k=1

‖γk‖2

γ>k δk
.

Let jn denote the greatest component of Jk+1, from (4.4), (4.6) and the boundlessness of Jk

(4.7) jn ≤
i=n∑
i=1

J
(i)
k+1 ≤

i=n∑
i=1

J
(i)
1 + mM2 ≤M3,
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for some positive constant M3. From (4.5) we have

(4.8)
i=n∏
i=1

J
(i)
k+1 =

(
i=n∏
i=1

J
(i)
1

)
k=m∏
k=1

(
γ>k δk

δ>k δk

‖δk‖2

δ>k Jkδk

)
.

Since

(4.9)
‖δk‖2

δ>k Jkδk
=

(
δ>k Jkδk

‖δk‖2

)−1

≥M−1
3

and using (4.9)

(4.10)
i=n∏
i=1

J
(i)
k+1 ≥

(
i=n∏
i=1

J
(i)
k

)(
M1

M3

)m

≥M4

for some positive constant M , from (4.7), (4.10) and if j1 denotes the smallest component of Jk+1,
then

(4.11) j1 ≥
M4

j2 · . . . · jn
≥ M4

(M3)n−1
= M5,

when j2, . . . , jn−1 denote all other components of Jk+1. From (4.7) and (4.11) we conclude that
for every i = 1, 2, . . . , n we have M5 ≤ ji ≤M3,

which implies that the diagonal matrix Jk+1 is bounded. �

Theorem 4.1 ([4]). Under assumptions A for every start point x1. Then if {Dk}, k = 1, 2, . . .
is a bounded, positive definite matrix, the Algorithm 1 generates a sequence {xk} which converges
to unique minimum x∗ and there exists a constant r, (0 ≤ r ≤ 1) such that

(4.12) f(xk)− f(x∗) ≤ rk[f(x1)− f(x∗)],

i.e. the sequence {xk} converges to x∗ at a r-linear rate.
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5. Experiments with selected problems

We have focused on the five problems listed in Table 1, these problems were proposed by J. J.Moré,
B. S. Garbow and K. E. Hillstrome in [5]. We used FORTRAN 90 code package documented and
available in [9]. For the line searches we used c1 = 0.3, c2 = 0.7 for Wolfe line search and c1 = 0.3
for Armijo line search (the step length satisfies only (1.3) condition [1], [6]). The optimization
iteration was terminated when

‖g(xk)‖ ≤ ε, (ε ≈ 10−8)

using m = 5 and the number of variable n on all these test problems is between 500 and 10,000.

Table 1. Table of test problems.

Problems Problem’s name
P.I Extended Dixon Function
P.II Extended Oren Function
P.III Extended Powell Singular Function
P.IV Extended Rosenbrock Function
P.V Extended Wood Function

In the following tables we compare the performance of the L-BFGS method with Oren-Spedicato
scaling and others updates where of the diagonal matrix proposed in this work (DFP, BFGS and
Inverse BFGS) n denotes the number of variables and the results are reported in the form: number
of iterations/total time.
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Table 2. L-BFGS with Armijo line search.

Problems n Oren-Sped. DFP BFGS Inverse BFGS
P.I 500 360/1.53 398/1.76 382/1.50 355/1.48

1000 575/2.86 558/2.91 566/2.66 533/2.01
5000 1437/17.41 1328/19.41 1443/17.36 1192/14.82
10000 1909/42.26 1720/42.33 1922/40.02 1754/32.62

P.II 500 47/1.68 342/8.68 − 49/1.64
1000 51/4.89 496/24.84 − 57/4.85
5000 229/208.15 − − 611/208.48
10000 301/970.43 − − 298/763.52

P.III 500 170/0.25 341/0.36 341/0.29 246/0.28
1000 365/2.92 353/5.76 − 357/2.20
5000 536/6.43 3880/9.22 − 356/4.72
10000 477/9.89 335/20.43 − 539/10.85

Problems n Oren-Sped. DFP BFGS Inverse BFGS
P.IV 500 36/0.16 37/0.60 35/0.11 38/0.16

1000 36/1.17 36/0.50 33/0.16 36/0.14
5000 37/0.44 38/1.98 33/0.40 38/0.45
10000 37/0.77 37/3.24 36/0.78 36/0.70

P.V 500 108/0.60 48/0.82 58/0.27 64/0.27
1000 69/0.50 90/0.61 66/0.55 50/0.33
5000 72/1.98 79/3.13 57/1.43 102/1.59
10000 72/3.24 67/3.02 39/0.987 67/1.92
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Table 3. L-BFGS with Wolfe line search.

Problems n Oren-Sped. DFP BFGS Inverse BFGS
P.I 500 372/1.57 344/1.37 359/1.55 340/1.19

1000 491/2.7 496/3.79 503/3.10 544/3.05
5000 1480/15.18 1353/23.67 1480/15.13 1194/12.90
10000 2153/58.61 1911/56.08 2103/52.57 1935/41.79

P.II 500 39/5.22 − − 39/5.01
1000 88/23.45 − − 95/23.50
5000 178/839.59 − − 422/839.54
10000 329/1079.55 − − 402/1022.65

P.III 500 204/0.99 103/0.93 131/0.77 138/0.75
1000 298/5.83 301/3.84 254/2.50 282/2.47
5000 561/10.49 543/9.99 − 484/9.40
10000 519/11.35 713/20.54 − 461/10.03

P.IV 500 35/0.17 29/0.16 36/0.16 35/0.14
1000 36/0.22 35/0.22 34/0.21 36/0.21
5000 36/0.81 35/1.27 53/0.83 34/0.76
10000 36/1.65 36/2.04 35/1.62 36/1.61

P.V 500 80/0.33 64/0.32 54/0.27 90/0.33
1000 82/0.82 70/0.83 54/0.70 95/0.77
5000 82/1.59 67/1.97 53/1.41 95/1.56
10000 59/2.64 37/3.35 46/2.12 52/2.01



JJ J I II

Go back

Full Screen

Close

Quit

6. Conclusions

Our numerical study indicates that updating the diagonal matrix of the L-BFGS with inverse BFGS
performs better than the Oren-Spedicato scaling (3.2), and the BFGS update (3.4) performes well
sometimes, but is inefficient in some cases. The numerical and theoretical results lead to reject the
DFP formula (3.3). It should be noted that in generally the Wolfe line search gives better results
than the Armijo line search type. Finally, it is not clear that the same conclusion would be valid
for the case of the constrained optimization problems, but this is certainly an issue that deserves
further research.
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e-mail : rkhadi@yahoo.fr


