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A TRANSFORMATION FORMULA FOR A SPECIAL BILATERAL BASIC
HYPERGEOMETRIC 12ψ12 SERIES

ZHIZHENG ZHANG and QIUXIA HU

Abstract. In this short note, we shall make use of decomposition of series to derive a transformation

formula for a bilateral basic hypergeometric 12ψ12 series.

1. Introduction

Throughout this note, we shall adopt some definitions and notations from [1]. The q-shifted
factorial is defined by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), n = 1, 2, · · · ,

and
(a; q)∞ =

∞∏
k=0

(1 − aqk).

In this paper, during the process of the computations we shall also make use of the following
notation:

(a; q)−n =
(−q/a)nq(

n
2)

(q/a; q)n
, n = 1, 2, . . . .
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For products of q-shifted factorials, we use the short notation

(a1, a2, . . . , qr; q)n = (a1; q)n (a2; q)n . . . (ar; q)n

where n is an integer or infinity. Basic and bilateral basic hypergeometric series are defined by

rφs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=
∞∑

n=0

(a1, a2, . . . , ar; q)n

(q, b1, b2, . . . , bs; q)n

[
(−1)nq(

n
2)

]1+s−r

zn,

and

rψs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=

∞∑
n=−∞

(a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n

[
(−1)nq(

n
2)

]s−r

zn,

respectively.
In this short note, we make use of the idea decomposition of series to derive a formula for a

bilateral basic hypergeometric 12ψ12 series.

2. Main results

In the proof of Theorem 1, we use of the following very-well-poised 8φ7 transformation formula:

(1)
8φ7

[
a, qa

1
2 , −qa 1

2 , y
1
2 , −y 1

2 , (yq)
1
2 , −(yq)

1
2 , x

a
1
2 , −a 1

2 , aqy−
1
2 , −aqy− 1

2 , aq
1
2 y−

1
2 , −aq 1

2 y−
1
2 , aq/x

; q;
a2q

y2x

]
=

(aq, a2q/y2; q)∞
(aq/y, a2q/y; q)∞

2φ1

[
y, xy/a

aq/x
; q,

a2q

y2x

]
provided | a2q

y2x | < 1, which is equivalent to [1, Equation (3.4.7)] by a substitution of variables.
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Theorem 1. For |q| < 1 and |q3/y2x| < 1, we have

(2)

12ψ12

[
q5/2, −q5/2, y1/2, qy1/2, −y1/2, −qy1/2, (yq)1/2,
q1/2, −q1/2, q2y−1/2, q3y−1/2, −q2y−1/2, −q3y−1/2, q3/2y−1/2,

q3/2y1/2, −(yq)1/2, −q3/2y1/2, x, xq
q5/2y−1/2, −q3/2y−1/2, −q5/2y−1/2, q2/x, q3/x

; q2,
q6

y4x2

]
=

(q2, q3/y2; q)∞
(q2/y, q3/y; q)∞

2φ1

[
y, xy/q

q2/x
; q,

q3

y2x

]
.

Proof. We first write out the left-hand side of (1) explicitly:

(3)
∞∑

n=0

(a, qa1/2,−qa1/2, y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)n

(q, a1/2,−a1/2, aqy−1/2,−aqy−1/2, aq1/2y−1/2,−aq1/2y−1/2, aq/x; q)n

(
a2q

y2x

)n

.
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Letting a = q in (3) and after some elementary manipulations, we get
∞∑

n=0

(q3; q2)n(y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)n

(q; q2)n(q2y−1/2,−q2y−1/2, q3/2y−1/2,−q3/2y−1/2, q2/x; q)n

(
q3

y2x

)n

=
∞∑

n=0

(q3; q2)2n(y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)2n

(q; q2)2n(q2y−1/2,−q2y−1/2, q3/2y−1/2,−q3/2y−1/2, q2/x; q)2n

(
q3

y2x

)2n

+
∞∑

n=0

(q3; q2)2n+1(y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)2n+1

(q; q2)2n+1(q2y−1/2,−q2y−1/2, q3/2y−1/2,−q3/2y−1/2, q2/x; q)2n+1

(
q3

y2x

)2n+1

=
∞∑

n=0

(q3; q2)2n(y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)2n

(q; q2)2n(q2y−1/2,−q2y−1/2, q3/2y−1/2,−q3/2y−1/2, q2/x; q)2n

(
q3

y2x

)2n

+
−1∑

n=−∞

(q3; q2)2n(y1/2,−y1/2, (yq)1/2,−(yq)1/2, x; q)2n

(q; q2)2n(q2y−1/2,−q2y−1/2, q3/2y−1/2,−q3/2y−1/2, q2/x; q)2n

(
q3

y2x

)2n

.

According to the definition of bilateral basic hypergeometric series and combining the two sums of
above, the consequence is just the left-hand side of (2). By (1) the desired result is immediate. �

Note that the left-hand side of (2) can be written in the following compact form:
∞∑

n=−∞

(1 − q1+4n)
(1 − q)

(y; q)4n

(y3/y; q)4n

(x; q)2n

(q2/x; q)2n

(
q3

y2x

)2n

.
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