RABHA W. IBRAHIM and M. DARUS

Abstract. We introduce new classes of meromorphic multivalent quasi-convex functions and find some sufficient differential subordination theorems for such classes in punctured unit disk with applications in fractional calculus.

1. Introduction and preliminaries

Let $\Sigma_{p, \alpha}^{+}$be the class of functions $F(z)$ of the form

$$
F(z)=\frac{1}{z^{p}}+\sum_{n=0}^{\infty} a_{n} z^{n+\alpha-1}, \quad \alpha \geq 1, \quad p=1,2, \ldots,
$$

which are analytic in the punctured unit disk $U:=\{z \in \mathbb{C}, 0<|z|<1\}$. Let $\Sigma_{p, \alpha}^{-}$be the class of functions of the form

$$
F(z)=\frac{1}{z^{p}}-\sum_{n=0}^{\infty} a_{n} z^{n+\alpha-1}, \quad \alpha \geq 1, \quad a_{n} \geq 0
$$

which are analytic in the punctured unit disk U. Now let us recall the principle of subordination between two analytic functions: Let the functions f and g be analytic in $\triangle:=\{z \in \mathbb{C},|z|<1\}$.

[^0]Quit

* 4 4 \mid • \mid

Go back

Full Screen
Then we say that the function f is subordinate to g if there exists a Schwarz function w, analytic in \triangle such that

$$
f(z)=g(w(z)), \quad z \in \triangle .
$$

We denote this subordination by

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z) .
$$

If the function g is univalent in \triangle, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\triangle) \subset g(\triangle) .
$$

Now, let $\phi: \mathbb{C}^{3} \times \triangle \rightarrow \mathbb{C}$ and let h be univalent in \triangle. Assume that p, ϕ are analytic and univalent in \triangle. If p satisfies the differential superordination

$$
\begin{equation*}
\left.h(z) \prec \phi(p(z)), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right), \tag{1}
\end{equation*}
$$

then p is called a solution of the differential superordination. (If f is subordinate to g, then g is called superordinate to f.) An analytic function q is called a subordinant if $q \prec p$ for all p satisfying (1). A univalent function q such that $p \prec q$ for all subordinants p of (1) is said to be the best subordinant.

Let Σ_{p}^{+}be the class of analytic functions of the form

$$
f(z)=\frac{1}{z^{p}}+\sum_{n=0}^{\infty} a_{n} z^{n}, \quad \text { in } U .
$$

And let Σ_{p}^{-}be the class of analytic functions of the form

$$
f(z)=\frac{1}{z^{p}}-\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0, \quad n=0,1, \ldots \quad \text { in } U .
$$

A function $f \in \Sigma_{p}^{+}\left(\Sigma_{p}^{-}\right)$is meromorphic multivalent starlike if $f(z) \neq 0$ and

$$
-\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in U
$$

Similarly, the function f is meromorphic multivalent convex if $f^{\prime}(z) \neq 0$ and

$$
-\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad z \in U
$$

Moreover, a function f is a called meromorphic multivalent quasi-convex function if there is a meromorphic multivalent convex function g such that

$$
-\Re\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>0
$$

A function $F \in \Sigma_{p, \alpha}^{+}\left(\Sigma_{p, \alpha}^{-}\right)$such that $F(z) \neq 0$ is called meromorphic multivalent starlike if

$$
-\Re\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}>0, \quad z \in U
$$

And the function F is meromorphic multivalent convex if $F^{\prime}(z) \neq 0$ and

$$
-\Re\left\{1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}\right\}>0, \quad z \in U
$$

A function $F \in \Sigma_{p, \alpha}^{+}\left(\Sigma_{p, \alpha}^{-}\right)$is called a meromorphic multivalent quasi-convex function if there is a meromorphic multivalent convex function G such that $G^{\prime}(z) \neq 0$ and

$$
-\Re\left\{\frac{\left(z F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}\right\}>0
$$

In the present paper, we establish some sufficient conditions for functions $F \in \Sigma_{p, \alpha}^{+}$and $F \in \Sigma_{p, \alpha}^{-}$ to satisfy

$$
\begin{equation*}
-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \prec q(z), \tag{2}
\end{equation*}
$$

where q is a given univalent function in U. Moreover, we give applications for these results in fractional calculus. We shall need the following known results.

Lemma 1.1 ([1]). Let q be convex univalent in the unit disk \triangle. Let ψ be a function and number $\gamma \in \mathbb{C}$ such that

$$
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{\psi}{\gamma}\right\}>0 .
$$

If p is analytic in \triangle and

$$
\psi p(z)+\gamma z p^{\prime}(z) \prec \psi q(z)+\gamma z q^{\prime}(z)
$$

then $p(z) \prec q(z)$ and q is the best dominant.
Lemma 1.2 ([2]). Let q be univalent in the unit disk \triangle and let θ be analytic in a domain D containing $q(\triangle)$. If $z q^{\prime}(z) \theta(q)$ is starlike in \triangle and

$$
z \psi^{\prime}(z) \theta(\psi(z)) \prec z q^{\prime}(z) \theta(q(z)),
$$

then $\psi(z) \prec q(z)$ and q is the best dominant.

2. Subordination theorems

In this section, we establish some sufficient conditions for subordination of analytic functions in the classes $\Sigma_{p, \alpha}^{+}$and $\Sigma_{p, \alpha}^{-}$.

Theorem 2.1. Let the function q be convex univalent in U such that $q^{\prime}(z) \neq 0$ and

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{\psi}{\gamma}\right\}>0, \quad \gamma \neq 0 . \tag{3}
\end{equation*}
$$

Suppose that $-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}$ is analytic in U. If $F \in \Sigma_{p, \alpha}^{+}$satisfies the subordination

$$
-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}\left\{\psi+\gamma\left[\frac{z\left(z^{p} F^{\prime}(z)\right)^{\prime \prime}}{\left(z^{p} F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right]\right\} \prec \psi q(z)+\gamma z q^{\prime}(z),
$$

then

$$
-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \prec q(z),
$$

and q is the best dominant.
Proof. Let the function p be defined by

$$
p(z):=-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}, \quad z \in U .
$$

It can easily observed that

$$
\begin{aligned}
\psi p(z)+\gamma z p^{\prime}(z) & =-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}\left\{\psi+\gamma\left[\frac{z\left(z^{p} F^{\prime}(z)\right)^{\prime \prime}}{\left(z^{p} F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right]\right\} \\
& \prec \psi q(z)+\gamma z q^{\prime}(z) .
\end{aligned}
$$

Then, using the assumption of the theorem the assertion of the theorem follows by an application of Lemma 1.1.

Go back

Full Screen

Close
Corollary 2.1. Assume that (3) holds. Let the function q be univalent in U. Let $n=1$, if q satisfies

$$
-\frac{\left(z F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}\left\{\psi+\gamma\left[\frac{z\left(z F^{\prime}(z)\right)^{\prime \prime}}{\left(z F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right]\right\} \prec \psi q(z)+\gamma z q^{\prime}(z),
$$

then

$$
-\frac{\left(z F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \prec q(z),
$$

and q is the best dominant.
Theorem 2.2. Let the function q be univalent in U such that $q(z) \neq 0, z \in U, \frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in U. If $F \in \Sigma_{p, \alpha}^{-}$satisfies the subordination

$$
a\left[\frac{z\left(z^{p} F^{\prime}(z)\right)^{\prime \prime}}{\left(z^{p} F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right] \prec a \frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \prec q(z)
$$

and q is the best dominant.
Proof. Let the function ψ be defined by

$$
\psi(z):=-\frac{\left(z^{p} F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)}, \quad z \in U
$$

By setting

$$
\theta(\omega):=\frac{a}{\omega}, \quad a \neq 0,
$$

it can be easily observed that θ is analytic in $\mathbb{C}-\{0\}$. By straightforward computation we have

$$
\begin{aligned}
a \frac{z \psi^{\prime}(z)}{\psi(z)} & =a\left[\frac{z\left(z^{p} F^{\prime}(z)\right)^{\prime \prime}}{\left(z^{p} F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right] \\
& \prec a \frac{z q^{\prime}(z)}{q(z)} .
\end{aligned}
$$

Then, by using the assumption of the theorem, the assertion of the theorem follows by an application of Lemma 1.2.

Corollary 2.2. Assume that q is convex univalent in U. Let $p=1$, if $F \in \Sigma_{p, \alpha}^{-}$and

$$
\left.a\left[\frac{z\left(z F^{\prime}(z)\right)^{\prime \prime}}{\left(z F^{\prime}(z)\right)^{\prime}}-\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right]\right\} \prec a \frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
-\frac{\left(z F^{\prime}(z)\right)^{\prime}}{G^{\prime}(z)} \prec q(z)
$$

and q is the best dominant.

3. Applications.

In this section, we introduce some applications of section (2) containing fractional integral operators. Assume that $f(z)=\sum_{n=0}^{\infty} \varphi_{n} z^{n}$ and let us begin with the following definition.

Definition 3.1 ([3]). For a function f, the fractional integral of order α is defined by

$$
I_{z}^{\alpha} f(z):=\frac{1}{\Gamma(\alpha)} \int_{0}^{z} f(\zeta)(z-\zeta)^{\alpha-1} \mathrm{~d} \zeta ; \quad \alpha>0
$$

where the function f is analytic in simply-connected region of the complex z-plane (\mathbb{C}) containing the origin, and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $(z-$ $\zeta)>0$. Note that $I_{z}^{\alpha} f(z)=f(z) \times \frac{z^{\alpha-1}}{\Gamma(\alpha)}$, for $z>0$ and 0 for $z \leq 0$ (see [4]).

From Definition 3.1, we have

$$
I_{z}^{\alpha} f(z)=f(z) \times \frac{z^{\alpha-1}}{\Gamma(\alpha)}=\frac{z^{\alpha-1}}{\Gamma(\alpha)} \sum_{n=0}^{\infty} \varphi_{n} z^{n}=\sum_{n=0}^{\infty} a_{n} z^{n+\alpha-1}
$$

where $a_{n}:=\frac{\varphi_{n}}{\Gamma(\alpha)}$, for all $n=0,1,2,3, \ldots$, thus

$$
\frac{1}{z^{p}}+I_{z}^{\alpha} f(z) \in \Sigma_{p, \alpha}^{+} \quad \text { and } \quad \frac{1}{z^{p}}-I_{z}^{\alpha} f(z) \in \Sigma_{p, \alpha}^{-}\left(\varphi_{n} \geq 0\right)
$$

Then we have the following results:
Theorem 3.1. Let the assumptions of Theorem 2.1 hold, then

$$
-\frac{\left(z^{p}\left(\frac{1}{z^{p}}+I_{z}^{\alpha} f(z)\right)^{\prime}\right)^{\prime}}{\left(\frac{1}{z^{p}}+I_{z}^{\alpha} g(z)\right)^{\prime}} \prec q(z),
$$

where $F(z)=\frac{1}{z^{p}}+I_{z}^{\alpha} f(z), G(z)=\frac{1}{z^{p}}+I_{z}^{\alpha} g(z)$ and q is the best dominant.
Theorem 3.2. Let the assumptions of Theorem 2.2 hold, then

$$
-\frac{\left(z^{p}\left(\frac{1}{z^{p}}-I_{z}^{\alpha} f(z)\right)^{\prime}\right)^{\prime}}{\left(\frac{1}{z^{p}}-I_{z}^{\alpha} g(z)\right)^{\prime}} \prec q(z),
$$

where $F(z)=\frac{1}{z^{p}}-I_{z}^{\alpha} f(z), \quad G(z)=\frac{1}{z^{p}}-I_{z}^{\alpha} g(z)$ and q is the best dominant.
"| \mid | \mid
Go back
Let $F(a, b ; c ; z)$ be the Gauss hypergeometric function (see [5]) defined for $z \in U$ by

$$
F(a, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n},
$$

where the Pochhammer symbol is defined by

$$
(a)_{n}:=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}1, & (n=0) \\ a(a+1)(a+2) \ldots(a+n-1), & (n \in \mathbb{N}) .\end{cases}
$$

We need the following definitions of fractional operators in the Saigo type of fractional calculus (see [6],[7]).

Definition 3.2. For $\alpha>0$ and $\beta, \eta \in \mathbb{R}$, the fractional integral operator $I_{0, z}^{\alpha, \beta, \eta}$ is defined by

$$
I_{0, z}^{\alpha, \beta, \eta} f(z)=\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\zeta}{z}\right) f(\zeta) \mathrm{d} \zeta
$$

where the function f is analytic in a simply-connected region of the z-plane containing the origin with the order

$$
f(z)=O\left(|z|^{\epsilon}\right)(z \rightarrow 0), \quad \epsilon>\max \{0, \beta-\eta\}-1
$$

and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

From Definition 3.2 with $\beta<0$, we have

$$
\begin{aligned}
I_{0, z}^{\alpha, \beta, \eta} f(z) & =\frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1} F\left(\alpha+\beta,-\eta ; \alpha ; 1-\frac{\zeta}{z}\right) f(\zeta) \mathrm{d} \zeta \\
& =\sum_{n=0}^{\infty} \frac{(\alpha+\beta)_{n}(-\eta)_{n}}{(\alpha)_{n}(1)_{n}} \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{\alpha-1}\left(1-\frac{\zeta}{z}\right)^{n} f(\zeta) \mathrm{d} \zeta \\
& :=\sum_{n=0}^{\infty} B_{n} \frac{z^{-\alpha-\beta-n}}{\Gamma(\alpha)} \int_{0}^{z}(z-\zeta)^{n+\alpha-1} f(\zeta) \mathrm{d} \zeta \\
& =\sum_{n=0}^{\infty} B_{n} \frac{z^{-\beta-1}}{\Gamma(\alpha)} f(\zeta) \\
& :=\frac{\bar{B}}{\Gamma(\alpha)} \sum_{n=0}^{\infty} \varphi_{n} z^{n-\beta-1}
\end{aligned}
$$

where $\bar{B}:=\sum_{n=0}^{\infty} B_{n}$. Denote $a_{n}:=\frac{\bar{B} \varphi_{n}}{\Gamma(\alpha)}$, for all $n=2,3, \ldots$, and let $\alpha=-\beta$, thus

$$
\frac{1}{z^{p}}+I_{0, z}^{\alpha, \beta, \eta} f(z) \in \Sigma_{p, \alpha}^{+} \quad \text { and } \quad \frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} f(z) \in \Sigma_{p, \alpha}^{-}, \quad\left(\varphi_{n} \geq 0\right) .
$$

Then we have the following results:
Theorem 3.3. Let the assumptions of Theorem 2.1 hold, then

$$
-\frac{\left(z^{p}\left(\frac{1}{z^{p}}+I_{0, z}^{\alpha, \beta, \eta} f(z)\right)^{\prime}\right)^{\prime}}{\left(\frac{1}{z^{p}}+I_{0, z}^{\alpha, \beta, \eta} g(z)\right)^{\prime}} \prec q(z), U
$$

where $F(z)=\frac{1}{z^{p}}+I_{0, z}^{\alpha, \beta, \eta} f(z), \quad G(z)=\frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} g(z)$ and q is the best dominant.

Theorem 3.4. Let the assumptions of Theorem 2.2 hold, then

$$
-\frac{\left(z^{p}\left(\frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} f(z)\right)^{\prime}\right)^{\prime}}{\left(\frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} g(z)\right)^{\prime}} \prec q(z),
$$

where $F(z)=\frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} f(z), \quad G(z)=\frac{1}{z^{p}}-I_{0, z}^{\alpha, \beta, \eta} g(z)$ and q is the best dominant.
Acknowledgment. The work presented here was supported by SAGA: STGL-012-2006, Academy of Sciences, Malaysia. The authors would like to thank the referee for the comments to improve their results.

1. Shanmugam T. N., Ravichandran V. and Sivasubramanian S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3(1) (2006), 1-11.
2. Miller S. S. and Mocanu P. T., Differential Subordinantions: Theory and Applications, Pure and Applied Mathematics 225 Dekker, New York, 2000.
3. Srivastava H. M. and Owa S., Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
4. Miller K. S. and Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John-Wiley and Sons, Inc., 1993.
5. Srivastava H. M. and Owa S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
6. Raina R. K. and Srivastava H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comut. Math. Appl., 32 (1996), 13-19.
7. Raina R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transf and Special Function. 5 (1997), 247-260.

Go back

Full Screen

Close
Rabha W. Ibrahim, School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia,
e-mail: rabhaibrahim@yahoo.com
M. Darus, School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia,
e-mail: maslina@ukm.my

[^0]: Received October 12, 2008.
 2000 Mathematics Subject Classification. Primary 34G10, 26A33, 30C45.

