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STARLIKE AND CONVEXITY PROPERTIES FOR p-VALENT
HYPERGEOMETRIC FUNCTIONS

R. M. EL-ASHWAH, M. K. AOUF and A. O. MOUSTAFA

Abstract. Given the hypergeometric function F (a, b; c; z) =
∞P

n=0

(a)n(b)n

(c)n(1)n
zn, we place conditions on

a, b and c to guarante that zpF (a, b; c; z) will be in various subclasses of p-valent starlike and p-valent
convex functions. Operators related to the hypergeometric function are also examined.

1. Introduction

Let S(p) be the class of functions of the form:

(1) f(z) = zp +
∞∑

n=1

ap+nzp+n (p ∈ N = {1, 2, . . .})

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A function f(z) ∈ S(p) is called
p-valent starlike of order α if f(z) satisfies

(2) Re
{

zf ′(z)
f(z)

}
> α
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for 0 ≤ α < p, p ∈ N and z ∈ U . By S∗(p, α) we denote the class of all p-valent starlike functions
of order α. By S∗p(α) denote the subclass of S∗(p, α) consisting of functions f(z) ∈ S(p) for which

(3)
∣∣∣∣zf ′(z)

f(z)
− p

∣∣∣∣ < p− α

for 0 ≤ α < p, p ∈ N and z ∈ U . Also a function f(z) ∈ S(p) is called p-valent convex of order α
if f(z) satisfies

(4) Re
{

1 +
zf ′′(z)
f ′(z)

}
> α

for 0 ≤ α < p, p ∈ N and z ∈ U . By K(p, α) we denote the class of all p-valent convex functions
of order α. It follows from (2) and (4) that

(5) f(z) ∈ K(p, α) ⇔ zf ′(z)
p

∈ S(p, α).

Also by Kp(α) denote the subclass of K(p, α) consisting of functions f(z) ∈ S(p) for which

(6)
∣∣∣∣1 +

zf ′′(z)
f ′(z)

− p

∣∣∣∣ < p− α

for 0 ≤ α < p, p ∈ N and z ∈ U .
By T (p) we denote the subclass of S(p) consisting of functions of the form:

(7) f(z) = zp −
∞∑

n=1

ap+nzp+n (ap+n ≥ 0; p ∈ N).
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By T ∗(p, α), T ∗p (α), C(p, α) and Cp(α) we denote the classes obtained by taking interesctions,
respectively, of the classes S∗(p, α), S∗p(α), K(p, α) and Kp(α) with the class T (p)

T ∗(p, α) = S∗(p, α) ∩ T (p),

T ∗p (α) = S∗p(α) ∩ T (p),

C(p, α) = K(p, α) ∩ T (p),

and

Cp(α) = Kp(α) ∩ T (p).

The class S∗(p, α) was studied by Patil and Thakare [5]. The classes T ∗(p, α) and C(p, α) were
studied by Owa [4].

For a, b, c ∈ C and c 6= 0,−1,−2, . . . , the (Gaussian) hypergeometric function is defined by

(8) F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn (z ∈ U),

where (λ)n is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

(9) (λ)n =
Γ(λ + n)

Γ(λ)
=

{
1 (n = 0)
λ(λ + 1) · . . . · (λ + n− 1) (n ∈ N).

The series in (8) represents an analytic function in U and has an analytic continuation throughout
the finite complex plane except at most for the cut [1,∞). We note that F (a, b; c; 1) converges for
Re(a− b− c) > 0 and is related to the Gamma function by

(10) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.
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Corresponding to the function F (a, b; c; z) we define

(11) hp(a, b; c; z) = zpF (a, b; c; z).

We observe that for a function f(z) of the form (1), we have

(12) hp(a, b; c; z) = zp +
∞∑

n=p+1

(a)n−p(b)n−p

(c)n−p(1)n−p
zn.

In [7] Silverman gave necessary and sufficient conditions for zF (a, b; c; z) to be in T ∗(1, α) = T ∗(α)
and C(1, α) = C(α) and has also examined a linear operator acting on hypergeometric functions.
For the other interesting developments for zF (a, b; c; z) in connection with various subclasses of
univalent functions, the reader can refer to the works of Carlson and Shaffer [1], Merkes and Scott
[3] and Ruscheweyh and Singh [6].

In the present paper, we determine necessary and sufficient conditions for hp(a, b; c; z) to be in
T ∗(p, α) and C(p, α). Furthermore, we consider an integral operator related to the hypergeometric
function.

2. Main Results

To establish our main results we shall need the following lemmas.

Lemma 1 ([4]). Let the function f(z) defined by (1).

(i) A sufficient condition for f(z) ∈ S(p) to be in the class S∗p(α) is that

∞∑
n=p+1

(n− α) |an| ≤ (p− α).
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(ii) A sufficient condition for f(z) ∈ S(p) to be in the class Kp(α) is that
∞∑

n=p+1

n

p
(n− α) |an| ≤ p− α.

Lemma 2 ([4]). Let the function f(z) be defined by (7). Then
(i) f(z) ∈ T (p) is in the class T ∗(p, α) if and only if

∞∑
n=p+1

(n− α)an ≤ p− α.

(ii) f(z) ∈ T (p) is in the class C(p, α) if and only if
∞∑

n=p+1

n

p
(p− α)an ≤ p− α.

Lemma 3 ([2]). Let f(z) ∈ T (p) be defined by (7). Then f(z) is p-valent in U if
∞∑

n=1

(p + n)ap+n ≤ p.

In addition, f(z) ∈ T ∗p (α) ⇔ f(z) ∈ T ∗(p, α), f(z) ∈ Kp(α) ⇔ f(z) ∈ K(p, α) and f(z) ∈
S∗p(α) ⇔ f(z) ∈ S∗(p, α).

Theorem 1. If a, b > 0 and c > a + b + 1, then a sufficient condition for hp(a, b; c; z) to be in
S∗p(α), 0 ≤ α < p, is that

(13)
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
1 +

ab

(p− α)(c− a− p− 1)

]
≤ 2.
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Condition (13) is necessary and sufficient for Fp defined by Fp(a, b; c; z) =
zp(2− F (a, b; c; z)) to be in T∗(p, α)(T ∗p (α)).

Proof. Since hp(a, b; c; z) = zp +
∞∑

n=p+1

(a)n−p(b)n−p

(c)n−p(1)n−p
zn, according to Lemma 1(i), we only need

to show that
∞∑

n=p+1

(n− α)
(a)n−p(b)n−p

(c)n−p(1)n−p
≤ p− α.

Now

(14)
∞∑

n=p+1

(n− α)
(a)n−p(b)n−p

(c)n−p(1)n−p
=

∞∑
n=1

(a)n(b)n

(c)n(1)n−1
+ (p− α)

∞∑
n=1

(a)n(b)n

(c)n(1)n
.

Noting that (λ)n = λ(λ + 1)n−1 and then applying (10), we may express (14) as

ab

c

∞∑
n=1

(a + 1)n−1(b + 1)n−1

(c + 1)n−1(1)n−1
+ (p− α)

∞∑
n=1

(a)n(b)n

(c)n(1)n

=
ab

c

Γ(c + 1)Γ(c− a− b− 1)
Γ(c + a)Γ(c− b)

+ (p− α)
[
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− 1
]

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
ab

c− a− b− 1
+ p− α

]
− (p− α).

But this last expression is bounded above by p− α if and only if (13) holds.

Since Fp(a, b; c; z) = zp−
∞∑

n=p+1

(a)n−p(b)n−p

(c)n−p(1)n−p
zn, the necessity of (13) for Fp to be in T ∗p (α) and

T ∗(p, α) follows from Lemma 2(i). �
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Remark 1. Condition (13) with α = 0 is both necessary and sufficient for Fp to be in the class
T ∗p .

In the next theorem, we find constraints on a, b and c that lead to necessary and sufficient
conditions for hp(a, b; c; z) to be in the class T ∗(p, α).

Theorem 2. If a, b > −1, c > 0 and ab < 0, then a necessary and sufficient condition for
hp(a, b; c; z) to be in T ∗(p, α)(T ∗p (α)) is that c ≥ a + b + 1− ab

p−α . The condition c ≥ a + b + 1− ab
p

is necessary and sufficient for hp(a, b; c; z) to be in T ∗p .

Proof. Since

(15)

hp(a, b; c; z) = zp +
∞∑

n=p+1

(a)n−p(b)n−p

(c)n−p(1)n−p
zn

= zp +
ab

c

∞∑
n=p+1

(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
zn

= zp −
∣∣∣∣ab

c

∣∣∣∣ ∞∑
n=p+1

(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
zn,

according to Lemma 2(i), we must show that

(16)
∞∑

n=p+1

(n− α)
(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
≤

∣∣∣ c

ab

∣∣∣ (p− α).
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Note that the left side of (16) diverges if c ≤ a + b + 1. Now
∞∑

n=0

(n + p + 1− α)
(a + 1)n(b + 1)n

(c + 1)n(1)n+1

=
∞∑

n=0

(a + 1)n(b + 1)n

(c + 1)n(1)n
+ (p− α)

c

ab

∞∑
n=1

(a)n(b)n

(c)n(1)n

=
Γ(c + 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+ (p− α)

c

ab

[
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− 1
]

Hence, (16) is equivalent to

(17)

Γ(c + 1)Γ(c− a− b− 1)
Γ(c− a)Γ(c− b)

[
1 + (p− α)

(c− a− b− 1)
ab

]
≤ (p− α)

[
c

|ab|
+

c

ab

]
= 0.

Thus, (17) is valid if and only if

1 + (p− α)
(c− a− b− 1)

ab
≤ 0,

or, equivalently,

c ≥ a + b + 1− ab

p− α
.

Another application of Lemma 2(i) when α = 0 completes the proof of Theorem 2. �

Our next theorems will parallel Theorems 1 and 2 for the p-valent convex case.
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Theorem 3. If a, b > 0 and c > a + b + 2, then a sufficient condition for hp(a, b; c; z) to be in
Kp(α), 0 ≤ α < p, is that

(18)

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
1 +

(2p + 1− α)
p(p− α)

(
ab

c− a− b− 1

)
+

(a)2(b)2
p(p− α)(c− a− b− 2)2

]
≤ 2.

Condition (18) is necessary and sufficient for Fp(a, b; c; z) = zp(2 − F (a, b; c; z)) to be in C(p, α)
(Cp(α)).

Proof. In view of Lemma 1(ii), we only need to show that
∞∑

n=p+1

(n− α)
(a)n−p(b)n−p

(c)n−p(1)n−p
≤ p(p− α).
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Now
∞∑

n=0

(n + p + 1)(n + p + 1− α)
(a)n+1(b)n+1

(c)n+1(1)n+1

=
∞∑

n=0

(n + 1)2
(a)n+1(b)n+1

(c)n+1(1)n+1
+ (2p− α)

∞∑
n=0

(n + 1)
(a)n+1(b)n+1

(c)n+1(1)n+1

+ p(p− α)
∞∑

n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=
∞∑

n=0

(n + 1)
(a)n+1(b)n+1

(c)n+1(1)n
+ (2p− α)

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n

+ p(p− α)
∞∑

n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=
∞∑

n=1

(a)n+1(b)n+1

(c)n+1(1)n−1
+ (2p + 1− α)

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n

+ p(p− α)
∞∑

n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

=
∞∑

n=0

(a)n+2(b)n+2

(c)n+2(1)n
+ (2p + 1− α)

∞∑
n=0

(a)n+1(b)n+1

(c)n+1(1)n
(19)

+ p(p− α)
∞∑

n=1

(a)n(b)n

(c)n(1)n
.
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Since (a)n+k = (a)k(a + k)n, we may write (19) as

(a)2(b)2
(c)2

Γ(c + 2)Γ(c− a− b− 2)
Γ(c + a)Γ(c− b)

+ (2p + 1− α)
ab

c

· Γ(c + 1)Γ(c− a− b− 1)
Γ(c− a)Γ(c− b)

+ p(p− α)
[
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− 1
]

.

Upon simplification, we see that this last expression is bounded above by p(p−α) if and only if (18)
holds. That (18) is also necessary for Fp to be in C(p, α)(Cp(α)) follows from Lemma 2(ii). �

Theorem 4. If a, b > −1, ab < 0 and c > a + b + 2, then a necessary and sufficient condition
for hp(a, b; c; z) to be in C(p, α)(Cp(α)) is that

(20) (a)2(b)2 + (2p + 1− α)ab(c− a− b− 2) + p(p− α)(c− a− b− 2)2 ≥ 0.

Proof. Since hp(a, b; c; z) has the form (15), we see from Lemma 2(ii) that our conclusion is
equivalent to

(21)
∞∑

n=p+1

n(n− α)
(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
≤

∣∣∣ c

ab

∣∣∣ p(p− α).

Note that c > a + b + 2 if the left-hand side of (21) converges. Writing

(n + p + 1)(n + p + 1− α) = (n + 1)2 + (2p− α)(n + 1) + p(p− α),
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we see that
∞∑

n=p+1

n(n− α)
(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p

=
∞∑

n=0

(n + p + 1)(n + p + 1− α)
(a + 1)n(b + 1)n

(c + 1)n(1)n+1

=
∞∑

n=0

(n + 1)
(a + 1)n(b + 1)n

(c + 1)n(1)n
+ (2p− α)

∞∑
n=0

(a + 1)n(b + 1)n

(c + 1)n(1)n

+ p(p− α)
∞∑

n=0

(a + 1)n(b + 1)n

(c + 1)n(1)n+1

=
(a + 1)(b + 1)

(c + 1)

∞∑
n=0

(a + 2)n(b + 2)n

(c + 2)n(1)n
+ (2p + 1− α)

∞∑
n=0

(a + 1)n(b + 1)n

(c + 1)n(1)n

+ p(p− α)
c

ab

∞∑
n=1

(a)n(b)n

(c)n(1)n

=
Γ(c + 1)Γ(c− a− b− 2)

Γ(c− a)Γ(c− b)
[(a + 1)(b + 1) + (2p + 1− α)(c− a− b− 2)

+
p(p− α)

ab
(c− a− b− 2)2

]
− p(p− α)c

ab
.

This last expression is bounded above by
∣∣ c
ab

∣∣ p(p− α) if and only if

(a + 1)(b + 1) + (2p + 1− α)(c− a− b− 2) +
p(p− α)

ab
(c− a− b− 2)2 ≤ 0,
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which is equivalent to (20). �

Putting p = 1 in Theorem 4, we obtain the following corollary.

Corollary 1. If a, b > −1, ab < 0 and c > a + b + 2, then a necessary and sufficient condition
for h1(a, b; c; z) to be in C(1, α)(C(α)) is that

(a)2(b)2 + (3− α)ab(c− a− b− 2) + (1− α)(c− a− b− 2)2 ≥ 0.

Remark 2. We note that Corollary 1 corrects the result obtained by Silverman [7, Theorem
4].

3. Integral Operator

In this section, we obtain similar results in connection with a particular integral operator
Gp(a, b; c; z) acting on F (a, b; c; z) as follows

(22)

Gp(a, b; c; z) = p

z∫
0

tp−1F (a, b; c; z)dt

= zp +
∞∑

n=1

(
p

n + p

)
(a)n(b)n

(c)n(1)n
zn+p.

We note that zG′
p

p = hp.

Theorem 5.
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(i) If a, b > 0 and c > a + b, then a sufficient condition for Gp(a, b; c; z) defined by (22) to be
in S∗(p) is that

(23)
Γ(c)Γ(c− a− b)

Γ(c)Γ(c− b)
≤ 2.

(ii) If a, b > −1, c > 0, and ab < 0, then Gp(a, b; c; z) defined by (22) is in T (p) or S(p) if only
if c > max{a, b}.

Proof. Since

Gp(a, b; c; z) = zp +
∞∑

n=1

(
p

n + p

)
(a)n(b)n

(c)n(1)n
zn+p,

we note that
∞∑

n=1

(n + p)
(

p

n + p

)
(a)n(b)n

(c)n(1)n
= p

∞∑
n=1

(a)n(b)n

(c)n(1)n

= p

[ ∞∑
n=0

(a)n(b)n

(c)n(1)n
− 1

]
is bounded above by p if and only if (23) holds.

To prove (ii), we apply Lemma 3 to

Gp(a, b; c; z) = zp − |ab|
c

∞∑
n=p+1

( p

n

) (a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
zn.

It suffices to show that
∞∑

n=p+1

(a + 1)n−p−1(b + 1)n−p−1

(c + 1)n−p−1(1)n−p
≤ c

|ab|
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or, equivalently,
∞∑

n=0

(a + 1)n(b + 1)n

(c + 1)n(1)n+1
=

c

ab

∞∑
n=1

(a)n(b)n

(c)n(1)n
≤ c

|ab|
.

But this is equivalent to
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− 1 ≥ −1,

which is true if and only if c > max{a, b}. This completes the proof of Theorem 5. �

Now Gp(a, b; c; z) ∈ Kp(α)(K(p, α)) if and only if
z

p
G′

p(a, b; c; z) = hp(a, b; c; z) ∈ S∗p(α)(S∗(p, α)).

This follows upon observing that
zG′

p

p
= hp,

z

p
G′′

p = h′p −
1
p
G′

p, and so

1 +
zG′′

p

Gp
=

zh′p
hp

.

Thus any p-valent starlike about hp leads to a p-valent convex about Gp. Thus from Theorems 1
and 2, we have

Theorem 6.
(i) If a, b > 0 and c > a+b+1, then a sufficient condition for Gp(a, b; c; z) defined in Theorem 5

to be in Kp(α)(0 ≤ α < p) is that

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
1 +

ab

(p− α)(c− a− b− 1)

]
≤ 2.
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(ii) If a, b > −1, ab < 0, and c > a + b + 2, then a necessary and sufficient condition for
Gp(a, b; c; z) to be in C(p, α)(Cp(α)) is that

c ≥ a + b + 1− ab

(p− α)
.

Remark 3. Putting p = 1 in all the above results, we obtain the results obtained by Silverman
[7].
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