

THE DUAL SPACE OF THE SEQUENCE SPACE bv_p $(1 \le p < \infty)$

M. IMANINEZHAD AND M. MIRI

ABSTRACT. The sequence space bv_p consists of all sequences (x_k) such that $(x_k - x_{k-1})$ belongs to the space l_p . The continuous dual of the sequence space bv_p has recently been introduced by Akhmedov and Basar [Acta Math. Sin. Eng. Ser., 23(10), 2007, 1757–1768]. In this paper, we show a counterexample for case p = 1 and introduce a new sequence space d_{∞} instead of d_1 and show that $bv_1^* = d_{\infty}$. Also we have modified the proof for case p > 1. Our notations improve the presentation and are confirmed by last notations $l_1^* = l_{\infty}$ and $l_p^* = l_q$.

1. Priliminaries, background and notation

Let ω denote the space of all complex-valued sequences, i.e., $\omega = \mathbb{C}^{\mathbb{N}}$ where $\mathbb{N} = \{0, 1, 2, 3, ...\}$. Any vector subspace of ω which contains ϕ , the set of all finitely non-zero sequences, is called a sequence space. The continuous dual of a sequence space λ which is denoted by λ^* is the set of all bounded linear functionals on λ . The space bv_p is the set of all sequences of p-bounded variation and is defined by

$$bv_p = \left\{ x = (x_k) \in \omega : \left(\sum_{k=0}^{\infty} |x_k - x_{k-1}|^p \right)^{\frac{1}{p}} < \infty \right\}$$
 $(1 \le p < \infty)$

Received August 26, 2009.

2000 Mathematics Subject Classification. Primary 46B10; Secondary 46B45.

Key words and phrases. dual space; sequence space; Banach space; isometrically isomorphic.

Go back

Full Screen

Close

and

$$bv_{\infty} = \left\{ x = (x_k) \in \omega : \sup_{k \in n} |x_k - x_{k-1}| < \infty \right\}$$

where $x_{-1} = 0$. Now, let

$$||x||_{bv_p} = \left(\sum_{k=0}^{\infty} |x_k - x_{k-1}|^p\right)^{\frac{1}{p}}$$

and

$$||x||_{bv_{\infty}} = \sup_{k \in \mathbb{N}} |x_k - x_{k-1}|.$$

Then bv_p and bv_∞ are Banach spaces with these norms and except the case p=2, the space bv_p is not a Hilbert space for $1 \le p \le \infty$. If we define a sequence $b^{(k)} = (b_n^{(k)})_{n=0}^{\infty}$ of elements of the space bv_p for every fixed $k \in \mathbb{N}$ by

$$b_n^{(k)} = \begin{cases} 0, & \text{if } n < k \\ 1, & \text{if } n \ge k \end{cases}$$

then the sequence $(b^{(k)})_{k=0}^{\infty}$ is a Schauder basis for bv_p and any $x \in bv_p$ has a unique representation of the form

$$x = \sum_{k=0}^{\infty} \lambda_k b^{(k)}$$

where $\lambda_k = (x_k - x_{k-1})$ for all $k \in \mathbb{N}$.

Go back

Full Screen

Close

2. A COUNTEREXAMPLE

In [1, Theorem 2.3] for case p = 1 suppose f = (3, -1, 0, 0, 0, ...), i.e.,

$$f_0 = f(e^0) = 3$$
, $f_1 = f(e^1) = -1$, $f_k = f(e^k) = 0$ for all $k \ge 2$.

Trivially $f \in bv_1^*$ and

$$f(x) = f\left(\sum_{k=0}^{\infty} (\Delta x)_k b^{(k)}\right) = 2(\Delta x)_0 - (\Delta x)_1.$$

So

(1)
$$||f|| = \sup_{\|x\|_{bv_1=1}} |f(x)| = \sup_{\sum_{i=0}^{\infty} |(\Delta x)_i|=1} |2(\Delta x)_0 - (\Delta x)_1| = 2.$$

Now inequality (2.5) in [1, Theorem 2.3] asserts that $||f|| \ge \sup_{k,n \in \mathbb{N}} |\sum_{j=k}^n f_j| = 3$ which is a contradiction.

3. The Spaces d_{∞} and d_q $(1 < q < \infty)$

In this section, we introduce two sequence spaces and show that they are Banach spaces and then we give the main theorem of the paper. Let

$$d_{\infty} = \left\{ a = (a_k)_{k=0}^{\infty} \in \omega : \|a\|_{d_{\infty}} = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} a_j \right| < \infty \right\}$$

and

$$d_q = \left\{ a = (a_k)_{k=0}^{\infty} \in \omega : ||a||_{d_q} = \left(\sum_{k=0}^{\infty} |\sum_{j=k}^{\infty} a_j|^q \right)^{\frac{1}{q}} < \infty \right\}, \quad (1 < q < \infty).$$

Go back

Full Screen

Close

Theorem 3.1. d_{∞} is a sequence space with usual coordinatewise addition and scalar multiplication and $\|\cdot\|_{d_{\infty}}$ is a norm on d_{∞} .

Proof. We only show that $\|\cdot\|_{d_{\infty}}$ is a norm on d_{∞} . Let

$$D = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 1 & 1 & \cdots \\ 0 & 0 & 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

Then

$$Da = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 1 & 1 & \cdots \\ 0 & 0 & 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{j=0}^{\infty} a_j \\ \sum_{j=1}^{\infty} a_j \\ \sum_{j=2}^{\infty} a_j \\ \sum_{j=3}^{\infty} a_j \\ \vdots \end{bmatrix}.$$

So $||a||_{d_{\infty}} = \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} a_j \right| = \sup_{k \in \mathbb{N}} \left| (Da)_k \right| = ||Da||_{l_{\infty}}$. Now, if $a \in d_{\infty}$ then $||Da||_{l_{\infty}} = ||Da||_{l_{\infty}}$ $||a||_{d_{\infty}} < \infty$ hence $Da \in l_{\infty}$. Also if $Da \in l_{\infty}$, then $||a||_{d_{\infty}} = ||Da||_{l_{\infty}} < \infty$ hence $a \in d_{\infty}$. So $a \in d_{\infty}$ if and only if $Da \in l_{\infty}$. Now since

- (I) $0 \le ||Da||_{l_{\infty}} = ||a||_{d_{\infty}} < \infty$
- $\begin{array}{ll} \text{(II)} & \|a+b\|_{d_{\infty}} = \|Da+Db\|_{l_{\infty}} \leq \|Da\|_{l_{\infty}} + \|Db\|_{l_{\infty}} = \|a\|_{d_{\infty}} + \|b\|_{d_{\infty}} \\ \text{(III)} & \|\alpha\cdot a\|_{d_{\infty}} = \|\alpha\cdot Da\|_{l_{\infty}} = |\alpha|\cdot \|Da\|_{l_{\infty}} = |\alpha|\cdot \|a\|_{d_{\infty}} \end{array}$

 $\|\cdot\|_{d_{\infty}}$ is a norm on d_{∞} .

Go back

Full Screen

Close

Theorem 3.2. d_{∞} is a Banach space.

Proof. Let $(a^{(n)})_{n=0}^{\infty}$ is a Cauchy sequence in d_{∞} . So for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$, such that for all $n, m \geq N$

$$||a^{(n)} - a^{(m)}||_{d_{\infty}} < \varepsilon.$$

So

$$||Da^{(n)} - Da^{(m)}||_{l_{\infty}} = ||a^{(n)} - a^{(m)}||_{d_{\infty}} < \varepsilon.$$

So the sequence $(Da^{(n)})_{n=0}^{\infty}$ is Cauchy in l_{∞} . So there exists $a \in l_{\infty}$ such that $Da^{(n)} \to a$ in l_{∞} . So $\|Da^{(n)} - DD^{-1}a\|_{l_{\infty}} \to 0$ and $\|a^{(n)} - D^{-1}a\|_{d_{\infty}} \to 0$

Furthermore,
$$D^{-1}a \in d_{\infty}$$
 since $DD^{-1}a = a \in l_{\infty}$.

Theorem 3.3. bv_1^* is isometrically isomorphic to d_{∞} .

Proof. Define $T: bv_1^* \to d_{\infty}$ and $Tf = (f(e^{(0)}), f(e^{(1)}), f(e^{(2)}), \dots)$ where

$$e^{(k)} = (0, \dots, 0, \underbrace{1}_{k^{\text{th}}term}, 0, \dots).$$

Trivially, T is linear and injective since

$$Tf = 0 \Rightarrow f = 0.$$

T is surjective since if $\tilde{g} = (g_0, g_1, g_2, g_3, \ldots) \in d_{\infty}$ then if we define $f : bv_1 \to \mathbb{C}$ by

$$f(x) = \sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} g_j.$$

Go back

Full Screen

Close

Then $f \in bv_1^*$. Trivially, since f is linear and

$$|f(x)| = \left| \sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} g_j \right| \le \sum_{k=0}^{\infty} |(\Delta x)_k| \cdot \left| \sum_{j=k}^{\infty} g_j \right|$$

$$\le \sum_{k=0}^{\infty} |(\Delta x)_k| \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} g_j \right| = \sum_{k=0}^{\infty} |(\Delta x)_k| \cdot \|\tilde{g}\|_{d_{\infty}}$$

$$= \|\tilde{g}\|_{d_{\infty}} \cdot \|x\|_{bv_1}$$

and $Tf = \tilde{g}$, so T is surjective. Now we show that T is norm preserving, we have

$$|f(x)| = \left| f\left(\sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} e^{(j)}\right) \right| = \left| \sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} f(e^{(j)}) \right|$$

$$\leq \sum_{k=0}^{\infty} |(\Delta x)_k| \left| \sum_{j=k}^{\infty} f(e^{(j)}) \right| \leq \sum_{k=0}^{\infty} |(\Delta x)_k| \cdot \sup_{k \in \mathbb{N}} \left| \sum_{j=k}^{\infty} f(e^{(j)}) \right|$$

$$\leq ||x||_{bv_1} \cdot ||Tf||_{d_{\infty}}.$$

So

$$||f|| \le ||Tf||_{d_{\infty}}$$

On the other hand, $\left|\sum_{j=k}^{\infty} f(e^{(j)})\right| = \left|f(b^{(k)})\right| \le ||f|| \cdot ||b^{(k)}||_{bv_1} = ||f||$. So $\left|\sum_{j=k}^{\infty} f(e^{(j)})\right| \le ||f||$ for all $k \in \mathbb{N}$.

So

$$\sup_{k \in \mathbb{N}} |\sum_{j=k}^{\infty} f(e^{(j)})| \le ||f||,$$

Go back

Full Screen

Close

i.e.,

$$||Tf||_{d_{\infty}} \le ||f||$$

by (*) and (\dagger) we are done.

Theorem 3.4. d_q $(1 \le q < \infty)$ is a sequence space with usual coordinatewise addition and scalar multiplication and $\|.\|_{d_q}$ is a norm on d_q .

Proof. With notations of Theorem 3.1, $||a||_{d_q} = ||Da||_{l_q}$ and $a \in d_q \Leftrightarrow Da \in l_q$. The continuation of the proof is similar to Theorem 3.1.

Theorem 3.5. d_q $(1 \le q < \infty)$ is a Banach space.

Proof. The proof is similar to proof of Theorem 3.2 and we omit it.

Theorem 3.6. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$, then bv_p^* is isometrically isomorphic to d_q .

Proof. Define $A:bv_p^*\to d_q$ by $f\mapsto Af=(f(e^{(0)}),f(e^{(1)}),f(e^{(2)}),\ldots)$. Trivially A is linear. Additionally, since $Af=0=(0,0,0,\ldots)$ implies f=0,A is injective. A is surjective since if $a=(a_k)\in d_q$ and define f on the space bv_p such that

$$f(x) = \sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} a_j.$$

Go back

Full Screen

Close

Then f is linear. Since

$$|f(x)| \leq \sum_{k=0}^{\infty} \left| (\Delta x)_k \sum_{j=k}^{\infty} a_j \right|$$

$$\leq \left[\sum_{k=0}^{\infty} \left| (\Delta x)_k \right|^p \right]^{\frac{1}{p}} \cdot \left[\sum_{k=0}^{\infty} \left| \sum_{j=k}^{\infty} a_j \right|^q \right]^{\frac{1}{q}} = ||x||_{bv_p} \cdot ||a||_{d_q},$$

it yields to $||f|| \le ||a||_{d_q} < \infty$. So $f \in bv_p^*$ and Af = a.

Now, we show that A is norm preserving. Let $f \in bv_p^*$ and $x = (x_k)_{k=0}^{\infty} \in bv_p$, then

$$|f(x)| = \left| \sum_{k=0}^{\infty} (\Delta x)_k \sum_{j=k}^{\infty} f(e^{(j)}) \right| \le \sum_{k=0}^{\infty} \left| (\Delta x)_k \sum_{j=k}^{\infty} f(e^{(j)}) \right|$$

$$\le \left[\sum_{k=0}^{\infty} \left| (\Delta x)_k \right|^p \right]^{\frac{1}{p}} \cdot \left[\sum_{k=0}^{\infty} \left| \sum_{j=k}^{\infty} f(e^{(j)}) \right|^q \right]^{\frac{1}{q}} = ||x||_{bv_p} \cdot ||Af||_{d_q}.$$

So

$$||f|| \le ||Af||_{d_q}.$$

On the other hand, suppose $f \in bv_p^*$ and $x^{(n)} = (x_k^{(n)})_{k=0}^{\infty}$ are such that

$$(\Delta x^{(n)})_k = \begin{cases} \left| \sum_{j=k}^{\infty} f(e^{(j)}) \right|^{q-1} \operatorname{sgn}\left(\sum_{j=k}^{\infty} f(e^{(j)})\right), & \text{if } (0 \le k \le n) \\ 0, & \text{if } k > n. \end{cases}$$

Go back

Full Screen

Close

We note that $\sum_{j=k}^{\infty} f(e^{(j)}) = f(b^{(k)})$. So $x^{(n)} \in bv_p$ since $\Delta x^{(n)} \in l_p$. Then it is clear that

$$\Delta x^{(n)} = \left(\left| \sum_{j=0}^{\infty} f(e^{(j)}) \right|^{q-1} \operatorname{sgn} \left(\sum_{j=0}^{\infty} f(e^{(j)}) \right), \dots, \left| \sum_{j=n}^{\infty} f(e^{(j)}) \right|^{q-1} \operatorname{sgn} \left(\sum_{j=n}^{\infty} f(e^{(j)}) \right), 0, 0, \dots \right).$$

So

$$x^{(n)} = \left(\underbrace{\left| \sum_{j=0}^{\infty} f(e^{(j)}) \right|^{q-1} \operatorname{sgn} \left(\sum_{j=0}^{\infty} f(e^{(j)}) \right)}_{b_0}, b_0 + \underbrace{\left| \sum_{j=1}^{\infty} f(e^{(j)}) \right|^{q-1} \operatorname{sgn} \left(\sum_{j=1}^{\infty} f(e^{(j)}) \right)}_{b_1},$$

$$,\ldots,\underbrace{\sum_{k=0}^{n}b_{k}}_{t=n+1^{th}term},t,t,t,\ldots$$

So if we let $f_k = f(e^{(k)})$, then $f(x^{(n)}) = b_0 f_0 + b_0 f_1 + b_1 f_1 + b_0 f_2 + b_1 f_2 + b_2 f_2 + b_0 f_3 + b_1 f_3 + b_2 f_3 + b_3 f_3 + \vdots \qquad \vdots \qquad \vdots$

Go back

Full Screen

Close

So

$$\sum_{k=0}^{n} \left| \sum_{j=k}^{\infty} f_{j} \right|^{q} = f(x^{(n)}) = |f(x^{(n)})| \le ||f|| \cdot ||x^{(n)}||_{bv_{p}} = ||f|| \cdot \left| \sum_{k=0}^{n} \left| \sum_{j=k}^{\infty} f_{j} \right|^{q} \right|^{\frac{1}{p}}.$$

Since

$$||x^{(n)}||_{bv_p} = ||\Delta x^{(n)}||_{l_p} = \left[\sum_{k=0}^{\infty} |\Delta x_k^{(n)}|^p\right]^{\frac{1}{p}} = \left[\sum_{k=0}^{n} |\Delta x_k^{(n)}|^p\right]^{\frac{1}{p}}$$

$$= \left[\sum_{k=0}^{n} \left|\left|\sum_{j=k}^{\infty} f_j\right|^{q-1} \operatorname{sgn}\left(\sum_{j=k}^{\infty} f_j\right)\right|^p\right]^{\frac{1}{p}}$$

$$= \left[\sum_{k=0}^{n} \left|\sum_{j=k}^{\infty} f_j\right|^q\right]^{\frac{1}{p}}.$$

Go back

Full Screen

Close

So

$$\left[\sum_{k=0}^{n} \left|\sum_{j=k}^{\infty} f_j\right|^q\right]^1 \le \|f\| \cdot \left[\sum_{k=0}^{n} \left|\sum_{j=k}^{\infty} f_j\right|^q\right]^{\frac{1}{p}}.$$

So

$$||f|| \ge \left[\sum_{k=0}^{n} \left| \sum_{j=k}^{\infty} f_{j} \right|^{q} \right]^{\frac{1}{q}} = ||Af||_{d_{q}}.$$

Therefore, by combining the results (*) and (†), A is norm preserving. Hence bv_p^* is isometrically isomorphic to d_q .

Acknowledgment. The authors would like to express their indebtedness to A. M. Akhmedov and F. Basar since they were the source of inspiration. The first author thanks to several of colleagues. Particularly, he is obliged to Dr. Bolbolian, Dr. Mohammadian and Dr. Roozbeh. Also he would like to express his thanks to Mr. Davoodnezhad and Mrs. Sadeghi¹ for supplying him with some references.

- 1. Akhmedov A. M. , Basar F., The Fine Spectra of the Difference Operator Δ over the Sequence Space $bv_p (1 \le p < \infty)$, Acta Math. Sin. Eng. Ser., 23(10) (2007), 1757–1768.
- Basar F., Altay B., On the Space of Sequences of p-Bounded Variation and Related Matrix Mappings, Ukrainian Math. J.,55(1) (2003), 136–147.
- 3. Goldberg S., Unbounded Linear Operators, Dover Publication Inc. New York, 1985.

Go back

Full Screen

Close

¹Librarians of Faculty of Mathematical Sciences of Mashhad University

- 4. Kreyszig E., Introductory Functional Analysis with Applications, John Wiley & Sons Inc. New York-Chichester-Brisbane-Toronto, 1978.
- 5. Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies, Amsterdam-New York-Oxford, 1984.
- M. Imaninezhad, Islamic Azad University of Birjand, Iran, e-mail: imani507@gmail.com
- M. Miri, Dep. of Math., University of Birjand, e-mail: mmiri@birjand.ac.ir

