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SOME SIMPLE EXTENSIONS OF EULERIAN LATTICES

A. VETHAMANICKAM and R. SUBBARAYAN

Abstract. Let L be a lattice. If K is a sublattice of L, then L is called an extension of K. Lattice
extension concept was elaborately studied by G. Grätzer and E. T. Schmidt in their papers [6], [7],

[9], [10]. A lattice L is said to be simple if it has no non-trivial congruences. A finite graded poset

P is said to be Eulerian if its Möbius function assumes the value µ(x, y) = (−1)l(x,y) for all x ≤ y
in P , where l(x, y) = ρ(y) − ρ(x) and ρ is the rank function on P . In this paper, we exhibit various
possible Eulerian extensions which are simple for any given Eulerian lattice L and we prove that
there exists a congruence-preserving extension of an Eulerian lattice. The cubic extension of a lattice
was defined by G. Grätzer and E. T. Schmidt in [11]. We show that the cubic extension becomes a
congruence-preserving extension when the lattice is Eulerian.

1. Eulerian Lattices

The subject of combinatorial theory has its origin in the work of G. C. Rota. In the 1960’s,
G. C. Rota introduced the concept of posets and lattices within combinatorics in his seminal paper
[17]. In G. C. Rota’s work one can find a connection between combinatorics and Möbius functions.

This led L. Solomon to introduce Möbius algebra of a poset [19] which, in turn, was studied by
C. Greene [12] who showed that it could be used to derive many apparently unrelated properties

Received October 30, 2008; revised August 4, 2009.

2000 Mathematics Subject Classification. Primary 06A06, 06A07, 06B10.
Key words and phrases. lattices; simple lattices; Eulerian lattices; lattice extension; congruence-preserving

extension.



JJ J I II

Go back

Full Screen

Close

Quit

of Möbius functions. Though, classically the origin of Eulerian posets could be found in the work
of B. Grünbaum [13] and V. Klee [14] in 1964, it was first explicitly defined by R. P. Stanley in the
paper [20] in 1982. In the book [21] by R. P. Stanley, we find many characterizations of Eulerian
lattices.

Thereafter, several authors have made contributions to the field of Eulerian lattices, for example,
Bayer and Billera [1], V. K. Santhi [18] and A. Vethamanickam [23].

In particular, a lot of basic results and properties of Eulerian posets were elaborately first
studied by V. K. Santhi in her thesis [18]. Also, she dealt with the product of two Eulerian posets
and construction of an Eulerian poset from Eulerian posets of smaller ranks. In her thesis, we can
find so many results in lower Eulerian and semi Eulerian posets. A. Vethamanickam’s subsequent
work on Eulerian lattices which resulted in many findings inspired us for further study. His work
on Eulerian lattices, strongly uniform Eulerian lattices and pleasant Eulerian posets are of great
inspiration to us.

In this section, we give the basic definition and examples of Eulerian lattices.

Definition 1.1. A finite graded poset P is said to be Eulerian if its Möbius function assumes
the value µ(x, y) = (−1)l(x,y) for all x ≤ y in P , where l(x, y) = ρ(y) − ρ(x) and ρ is the rank
function on P .

An equivalent definition for an Eulerian poset is as follows:

Lemma 1.2 ([15]). A finite graded poset P is Eulerian if and only if all intervals [x, y] of length
l ≥ 1 in P contain an equal number of elements of odd and even rank.

Example. Every Boolean algebra of rank n is Eulerian and the lattice C4 of Figure 1 is an
example for a non-modular Eulerian lattice. Also, every Cn is Eulerian for n ≥ 4.
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Figure 1. .

We note that any interval of an Eulerian lattice is Eulerian and an Eulerian lattice cannot
contain a three element chain as an interval. We give the following basic definitions which are in
[9] and [10].

Definition 1.3. An equivalence relation θ on a Lattice L is said to be a congruence relation
on L if it is compatible with both meet and join, that is, if for all a, b, c, d ∈ L, a ≡ b (θ) and
c ≡ d (θ) imply that a ∨ c ≡ b ∨ d (θ) and a ∧ c ≡ b ∧ d (θ).

Definition 1.4. A lattice L is said to be simple if it has no non-trivial congruences.

Definition 1.5 ([9]). Let L be a lattice. If K is a sublattice of L, we call L an extension of K.
If L is an extension of K, θ is a congruence of K and φ is a congruence of L, then φ is said to be
an extension of θ to L if and only if the restriction of φ to K equals θ.

Definition 1.6. A sublattice K of L is said to have a congruence extension property if and
only if every congruence of K has an extension to L and if K has zero and it is also the zero of L
then L is called a 0-extension of K. If L properly contains K then L is called a proper-extension
of K. That is, L \K 6= φ.
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L is said to be a congruence-preserving extension of K if and only if every congruence of K
has exactly one extension to L. In this case, the congruence lattice of K is isomorphic to the
congruence lattice of L, that is, ConK ∼= ConL.

For the undefined terms in this section we refer to [5] and [21].

2. Simple extensions of Eulerian lattices

An algebra has a number of related structures, namely, the automorphism group, the congruence
lattice, the subalgebra lattice, the endomorphism semigroups and so on. The congruence lattice
and the automorphism group are two among the related structures of a finite lattice. We wish to
state two famous characterization theorems. First one is due to R. P. Dilworth.

Theorem 2.1. [6] Let D be a finite distributive lattice. Then there exists a finite lattice K such
that the congruence lattice of K is isomorphic to D.

The other result was due to G. Grätzer and E. T. Schmidt which is found in [6] and which is
stronger than the result of R. P. Dilworth.

Theorem 2.2. Every finite distributive lattice D can be represented as the congruence lattice
of a finite sectionally complemented lattice L.

For the finite groups, the characterization theorem was first published by G. Birkhoff [3] and
R. Frucht [2]. It is: “Let G be a finite group. Then there exists a finite lattice K such that the
automorphism group of K is isomorphic to G. The lattice K can be chosen as a simple, sectionally
complemented lattice of length three.” Since 1990, the emphasis has shifted from representation
theorems to extension theorems typified by the following important theorem of M. Tischendorf [22].

“Every finite lattice has congruence-preserving embedding into a finite atomistic lattice.”
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Using the result of M. Tischendorf and their above-mentioned characterization theorems,
G. Grätzer and E. T. Schmidt proved the following theorems which appeared in [9] and [10].

Theorem 2.3 ([9]). Every finite lattice K has a congruence-preserving embedding into a finite
sectionally complemented lattice L.

Theorem 2.4 ([10]). Every lattice K has a congruence-preserving embedding into a regular
lattice L.

These results inspired us to work in the areas of lattice extension property and congruence-
preserving extension property.

In this section, we exhibit various possible Eulerian extensions which are simple, for any given
Eulerian lattice L.

The following two results are appeared in [21].

Lemma 2.5. Let P and Q be Eulerian posets. Then R = P ×Q is also an Eulerian poset.

Lemma 2.6. Let P and Q be Eulerian posets and P = P \ {1} and Q = Q \ {1} and let
R = P ×Q. Then R = R ∪ {(1, 1)} is Eulerian.

2.1. The Simple Extension Sg(L1, L2)

Let L1 and L2 be two Eulerian lattices of ranks d1 + 1 and d2 + 1 respectively. We denote the least
elements of both L1 and L2 by 0.

Define Sg(L1, L2) = (L1×L2)∪{(1, 1)}, where L1 = L1 \{1} and L2 = L2 \{1}. By Lemma 2.6,
Sg(L1, L2) is Eulerian and of rank d1 + d2 + 2. We define meet and join in Sg(L1, L2) as follows:

(a1, a2) ∧ (b1, b2) = (a1 ∧ b1, a2 ∧ b2)

(a1, a2) ∨ (b1, b2) =

{
(a1 ∨ b1, a2 ∨ b2), if (a1 ∨ b1, a2 ∨ b2) exists
(1, 1), if either a1 ∨ b1 = 1 or a2 ∨ b2 = 1
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Let us define a mapping f : L1 → Sg(L1, L2) by

f(x) =

{
(x, 0) if x 6= 1
(1, 1) if x = 1

We can easily prove that f is a one-one homomorphism which implies that L1 is isomorphic to
a sublattice of Sg(L1, L2). Therefore, Sg(L1, L2) is an Eulerian extension of L1.

Theorem 2.7. Sg(L1, L2) is simple.

Proof. Let θ 6= ω be a congruence of Sg(L1, L2).
The atoms in Sg(L1, L2) are of the form either (0, x), where x is an atom in L2 or of the form
(a, 0), where a is an atom in L1.

Since θ is a congruence of Sg(L1, L2), we can find an atom (0, a) in Sg(L1, L2) such that
(0, 0) ≡ (0, a) (θ)

Since L2 is co-atomic[21], we can find a co-atom e such that e � a, for the atom a.
Suppose c1, c2, · · · ci are the i (i ≥ d1 + 1) distinct co-atoms in L1 then (c1, e),

(c2, e), (c3, e), · · · , (ci, e) are i co-atoms in Sg(L1, L2).
Now, (0, 0) ∨ (c1, e) ≡ (0, a) ∨ (c1, e)(θ) implies that (c1, e) ≡ (1, 1)(θ).
Similarly,

(c2, e) ≡ (1, 1)(θ)

(c3, e) ≡ (1, 1)(θ)
· · ·

(ci, e) ≡ (1, 1)(θ).

Since c1, c2, c3, · · · , ci are i co-atoms in L1 and L1 is atomic [21], we can find i distinct atoms
b1, b2, b3, · · · , bi in L1 which are respectively not comparable with these co-atoms.
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Now, we have (c1, e) ∧ (b1, 0) ≡ (1, 1) ∧ (b1, 0)(θ) which implies that (0, 0) ≡ (b1, 0)(θ).
Similarly, we can find

(0, 0) ≡ (b2, 0)(θ)

(0, 0) ≡ (b3, 0)(θ)
· · ·

(0, 0) ≡ (bi, 0)(θ)

Taking join of these equations, we get,

(0, 0) ≡ (1, 1)(θ)

Therefore, θ = Sg(L1, L2)× Sg(L1, L2).
Therefore, the only congruences of Sg(L1, L2) are the trivial ones. So, Sg(L1, L2) is simple.

Hence, Sg(L1, L2) is a simple Eulerian extension of an Eulerian lattice L1. �

In particular, if we take L1 = Bn and L2 = L then we have the following corollary.

Corollary 2.8. If L is an Eulerian lattice and Bn is a Boolean algebra of rank n then Sn(L) =
(Bn × L) ∪ {(1, 1)} is a simple Eulerian extension of L.

2.2. The Extension D(L)

In this section, we give one more simple extension of a given Eulerian lattice.
Let L be an Eulerian lattice and let L = L \ {0, 1}. Define D(L) = (L ∪̇ L) ∪ {0, 1}, where the

symbol ∪̇ stands for a disjoint union. Since L is Eulerian D(L) is Eulerian.
Define a mapping ψ : L → D(L) by ψ(a) = a, for any a ∈ L. This mapping is an one-one

homomorphism and so is isomorphic to a sublattice of D(L).
Therefore, D(L) is an Eulerian extension of L.
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Theorem 2.9. D(L) is simple.

Proof. Suppose θ is a proper congruence relation on D(L). Then we can find an atom a ∈ D(L)
such that 0 ≡ a (θ). Suppose a is one of the atoms of one copy L in D(L), we can find two atoms
b and c which are not comparable with a in the other copy L in D(L).

Therefore, 0 ∨ b ≡ a ∨ b (θ) which implies that

b ≡ 1 (θ).(1)

Similarly, 0 ∨ c ≡ a ∨ c (θ) which implies that

c ≡ 1 (θ).(2)

From (1) and (2) we get, b ∧ c ≡ 1 ∧ 1 (θ). That is, 0 ≡ 1 (θ).
So θ = τ .
Therefore, D(L) is simple. Hence D(L) is a simple Eulerian extension of the Eulerian lattice

L. �

We can extend the above theorem to the following lattice. Define Dn(L) =
n

∪̇
r=1

Lr ∪ {0, 1},
where each Lr is an Eulerian lattice of the same rank. By using the above theorem, we can easily
prove the following corollary.

Corollary 2.10. Dn(L) is a simple Eulerian extension of each Lr, r = 1, 2, . . . , n.

In fact, we even have the following lemma.

Lemma 2.11. A disjoint union of any two atomistic lattices is simple.

Remark 2.12. Lemma 2.11 shows that any atomistic lattice can be embedded into a simple
atomistic lattice. Hence we conclude that any atomistic lattice has a simple extension which is
also atomistic.
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3. Congruence-Preserving Extension

In this section, we prove that every Eulerian lattice has a congruence-preserving Eulerian extension.
To show the congruence-preserving Eulerian extension for any Eulerian lattice we follow the Cubic
extension S which was defined in [11].

Let K be an Eulerian lattice. Define S =
∏(

K/φ / φ ∈ M(ConK)
)
, where M(ConK) is the

set of all meet-irreducible elements of ConK.
For a ∈ K, D(a) =

〈
a/φ / φ ∈ M(ConK)

〉
. The mapping ψ : a → D(a) is an natural

embedding from K to S. For a congruence θ of K, let θψ denote the corresponding congruence of
Kψ. By identifying a with D(a), for a ∈ K, we can view S as an extension of K. S is called the
Cubic extension of K.

Theorem 3.1. Let K be an Eulerian lattice and S be the cubic extension of K. Then S is a
congruence-preserving Eulerian extension of K.

Proof. Every Eulerian lattice is either simple or a direct product of simple Eulerian lattices [23].
Since K is Eulerian, K ∼= K1×K2×· · ·×Kn, where Ki’s are simple Eulerian lattices. Therefore,

ConK ∼=
∏n
i=1 ConKi [16].

Since Ki is simple, ConK is a direct product of two element chains and thus ConK is Boolean.
Since ConK is Boolean, its meet irreducible elements are just the co-atoms of ConK. Since
Con (K/φ) ∼= [φ, τ ] [16], Con (K/φ) is a two element chain, when φ ∈M(ConK).

Since S =
∏(

K/φ / φ ∈M(ConK)
)
, ConS ∼=

∏
φ(Con (K/φ)). Since each Con (K/φ) is a two

element chain, ConS is a product of two element chains. Therefore, ConS is Boolean.
We have to prove that every congruence of K has exactly one extension to S. That is, to prove

that ConK ∼= ConS. Since ConK and ConS are Boolean, it is enough to prove that they have
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the same number of atoms (co-atoms). Since

ConS ∼=
∏

φ∈M(ConK)

Con (K/φ), ConS ∼=
∏

φ∈M(ConK)

[φ, τ ].

A meet irreducible congruence in ConK contributes to a two element chain in the product defining
ConS. The atoms of ConS are of the form (0, 0, , · · · , 1, 0, 0), where 1 comes in exactly one place.
Therefore, there are as many atoms in ConS as there are co-atoms (meet-irreducible congruences)
in ConK. Since both are Boolean, we get, ConK ∼= ConS. Thus, S is a congruence-preserving
extension of the Eulerian lattice K.

Next we claim that S is Eulerian: Since a homomorphic image of an Eulerian lattice is Eulerian
[23], K/φ being a homomorphic image of K, it is Eulerian for each φ ∈ M(ConK). Hence, S
being a finite product of such Eulerian lattices is Eulerian. So, we conclude that S is a congruence-
preserving Eulerian extension of the Eulerian lattice K. Hence the theorem. �
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