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FIFTH-ORDER NUMERICAL METHODS FOR HEAT EQUATION SUBJECT
TO A BOUNDARY INTEGRAL SPECIFICATION

M. A. REHMAN, M. S. A. TAJ and M. M. BUTT

Abstract. In this paper a fifth-order numerical scheme is developed and implemented for the solution
of the homogeneous heat equation ut = αuxx with a nonlocal boundary condition as well as for the
inhomogeneous heat equation ut = uxx + s(x, t) with a nonlocal boundary condition. The results
obtained show that the numerical method based on the proposed technique is fifth-order accurate as
well as L-acceptable. In the development of this method second-order spatial derivatives are approxi-
mated by fifth-order finite-difference approximations which give a system of first order, linear, ordinary
differential equations whose solution satisfies a recurrence relation which leads to the development of
algorithm. The algorithm is tested on various heat equations and no oscillations are observed in the
experiments. This method is based on a partial fraction technique which is useful in parallel processing
and it does not require complex arithmetic.

1. Introduction

In this paper we have considered the heat equation in one-dimension with a nonlocal boundary
condition. Much attention has been paid to the development, analysis and implementation of
accurate methods for the numerical solution of this typical problem in the literature.

Many physical phenomena are modeled by nonclassical boundary value problems with nonlocal
boundary conditions. These can be classified into two types: (i) boundary-value problems with
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nonlocal initial conditions or (ii) boundary-value problems with nonlocal boundary conditions.
The present work focuses on the second group of nonlocal boundary-value problems. A number of
sequential procedures (other than the new scheme) have been suggested in the literature: see, for
instantce [3, 7, 9, 10, 11].

In the present paper the method of lines, the semi discretization approach, will be used to
transform the model partial differential equation (PDE) into a system of first-order, linear, ordi-
nary differential equations (ODEs), the solution of which satisfies a recurrence relation involving
a matrix exponential function. A suitable rational approximation will be used to approximate
such exponential functions which will lead to an L0-acceptable algorithm and may be parallelized
through the partial fraction splitting technique.

2. Homogeneous heat equation with nonlocal
boundary condition

This section considers the problem of obtaining numerical approximation to the concentration
u = u(x, t) which satisfies the partial differential equation

(1)
∂u

∂t
= α

∂2u

∂x2
, 0 < x < 1, 0 < t ≤ T,

subject to the initial condition

(2) u(x, 0) = f(x), 0 ≤ x ≤ 1,

the boundary condition

(3) u(0, t) = g(t), 0 < t ≤ T
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and the nonlocal boundary condition

(4)
∫ 1

0

u(x, t)dx = M(t), 0 < t ≤ T, 0 < x < 1

where f, g and M are known functions and are assumed to be sufficiently smooth to produce a
smooth classical solution of u. α is any positive constant and T is a given positive constant.

2.1. Discretization and recurrence relation

Choosing a positive odd integer N ≥ 7 and dividing the interval [0, 1] into N + 1 subintervals each
of width h, so that h = 1/(N + 1), and the time variable t into time steps each of length l gives
rectangular mesh points with co-ordinates (xm, tn) = (mh, nl) where (m = 0, 1, 2, . . . , N + 1 and
n = 0, 1, 2, . . .) covering the region R = [0 < x < 1] × [t > 0] and its boundary ∂R consisting of
lines x = 0, x = 1 and t = 0.

Assuming that u(x, t) is at least seven times continuously differentiable with respect to variable x
and that these derivatives are uniformly bounded, the space derivative in (1) may be approximated
to the fifth-order accuracy at some general point (x, t) of the mesh by using the seven-point formula

(5)
∂2u(x, t)
∂x2

=
1
h2
{au(x− 2h, t) + bu(x− h, t) + cu(x, t) + du(x+ h, t)

+ eu(x+ 2h, t) + fu(x+ 3h, t) + gu(x+ 4h, t)}

After expanding the terms u(x − 2h, t), u(x − h, t), u(x + h, t), u(x + 2h, t), u(x + 3h, t) and
u(x+ 4h, t) about (x, t) by using the Taylor’s expansion and then equating the different powers of
h on both sides we have

a =
−13
180

, b =
19
15
, c =

−7
3
, d =

10
9
, e =

1
12
, f =

−1
15
, g =

1
90
.
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So by substituting the values of a, b, c, d, e, f and g in (5)

(6)

∂2u(x, t)
∂x2

=
1

180h2
{−13u(x− 2h, t) + 228u(x− h, t)− 420u(x, t)

+ 200u(x+ h, t) + 15u(x+ 2h, t)− 12u(x+ 3h, t)

+ 2u(x+ 4h, t)} − h5

90
∂7u(x, t)
∂x7

+O(h6).

Equation (6) is valid only for (x, t) = (xm, tn) with m = 2, 3, . . . , N − 3. To achieve the same
accuracy at the points (xi, tn), for i = 1, N − 2, N − 1, N , special formulae (as derived above)are
used in this paper which approximate ∂2u(x, t)/∂x2 not only to fifth-order but also with the
dominant error term (−1/90)h5∂7u(x, t)/∂x7 for x = x1, xN−2, xN−1, xN and t = tn. These
approximations are

(7)

∂2u(x, t)
∂x2

=
1

180h2
{124u(x− h, t)− 56u(x, t)− 528u(x+ h, t)

+ 925u(x+ 2h, t)− 740u(x+ 3h, t) + 366u(x+ 4h, t)

− 104u(x+ 5h, t) + 13u(x+ 6h, t)} − 1
90
h5 ∂

7u(x, t)
∂x7

+O(h6)

(8)

∂2u(x, t)
∂x2

=
1

180h2
{−2u(x− 4h, t) + 16u(x− 3h, t)− 69u(x− 2h, t)

+ 340u(x− h, t)− 560u(x, t) + 312u(x+ h, t)− 41u(x+ 2h, t)

+ 4u(x+ 3h, t)} − 1
90
h5 ∂

7u(x, t)
∂x7

+O(h6),
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(9)

∂2u(x, t)
∂x2

=
1

180h2
{−4u(x− 5h, t) + 30u(x− 4h, t)− 96u(x− 3h, t)

+ 155u(x− 2h, t)− 60u(x− 2h, t)− 336u(x, t) + 200u(x+ h, t)

− 9u(x+ 72h, t)} − 1
90
h5 ∂

7u(x, t)
∂x7

+O(h6),

(10)

∂2u(x, t)
∂x2

=
1

180h2
{9u(x− 6h, t)− 76u(x− 5h, t) + 282u(x− 4h, t)

− 600u(x− 3h, t) + 785u(x− 2h, t)− 444u(x− h, t)− 84u(x, t)

+ 128u(x+ h, t)} − 1
90
h5 ∂

7u(x, t)
∂x7

+O(h6),

for the mesh points (x1, tn), (xN−2, tn), (xN−1, tn) and (xN , tn), respectively.

2.2. Treatment of the non-local boundary condition

The integral in (4) is approximated by using Simpson’s 1
3 quadrature rule as

(11)

∫ b

0

u(x, t)dx ≈ h

3
[u(0, t) + 4

N+1
2∑

i=1

u(2i− 1, t) + 2

N+1
2 −1∑
i=1

u(2i, t)

+ u(N + 1, t)] +O(h5)

Here (11) serves as the boundary condition at zero and near zero.
Applying (1) together with (6)–(10) to all interior mesh points of the grid at time level t = tn

produces a system of ordinary differential equations of the form

(12)
dU(t)
dt

= AU(t) + v(t), t > 0
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with initial distribution

(13) U(0) = f

in which U(t) = [U1(t), U2(t), U3(t), . . . , UN (t)]T , f = [f(x1), f(x2), f(x3), . . . ,
f(xN )]T , T denoting transpose and matrix A is given by

(14) A =
α

180h2



−56 −528 925 −740 366 −104 13 0
228 −420 200 15 −12 2
−13 228 −420 200 15 −12 2

−13 228 −420 200 15 −12 2
. . . . . . . . . . . . . . . . . . . . .

−13 228 −420 200 15 −12 2
α1 α2 α3 α4 α5 α6 α7 ... αN−1 αN

β1 β2 β3 β4 β5 β6 β7 ... βN−1 βN

γ1 γ2 γ3 γ4 γ5 γ6 γ7 ... γN−1 γN

δ1 δ2 δ3 δ4 δ5 δ6 δ7 ... δN−1 δN


N×N

where

αi =
{
−8 when i is odd
−4 when i is even and αN−5 = −17, αN−4 = 220, αN−3 = −424, αN−2 = 192,

αN−1 = 11, αN = −20,

βi =
{
−16 when i is odd
−8 when i is even and βN−6 = −18, βN−5 = 8, βN−4 = −85, βN−3 = 332,

βN−2 = −576, βN−1 = 304, βN = −57,
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γi =
{

36 when i is odd
18 when i is even and γN−6 = 32, γN−5 = 48, γN−4 = −60,

γN−3 = 173, γN−2 = 96, γN−1 = −318, γN = 236,

δi =
{
−512 when i is odd
−256 when i is even and δN−6 = −503, δN−5 = −332, δN−4 = −230, δN−3 = −856,

δN−2 = 273, δN−1 = −700, δN = −596,
and the column vector

(15)
v(t) =

α

180h2

[
124g(t),−13g(t), 0, 0, . . . ,−2g(t)− 6

h
M(t),−4g(t)

+
12
h
M(t) + 9g(t) +

−27
h
M(t),−128g(t) +

384
h
M(t)

]T

.

The solution of the system (12) subject to (13) becomes

(16) U(t) = exp(tA)f +
∫ t

0

exp[(t− s)A]v(s)ds, t ≥ 0

where v(s) is due to the boundary condition and the source term. The solution given by (16)
satisfies the recurrence relation

(17) U(t+ l) = exp(lA)U(t) +
∫ t+l

t

exp[(t+ l − s)A]v(s)ds, t = 0, l, 2l, . . .

Eigenvalues of matrix A are calculated using MATLAB for N = 9, 19, 39, 79, 99 and 199 and it is
observed that these are distinct negative the real ones or with negative real parts.
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To approximate the matrix exponential in (17) we use the rational approximation [12] for real
scalar θ which is of the form

(18) EM (θ) =
∑M−1

K=0 bKθ
K∑M

K=0 aK(−θ)K

where M is a positive integer and a0 = 1, aM , bM−1 6= 0 and aK ≥ 0 for all K = 1, 2, 3, . . . ,M .
Matching EM (θ) with the first M + 1 terms of the Maclaurin’s expansion of exp(θ) leads to the
following relations in the parameters

(19) aM = (−1)M−1
M−1∑
K=0

(−1)K aK

(M −K)!

and

(20) bK =
K∑

i=0

(−1)i ai

(K − i)!
, K = 0, 1, 2, . . . ,M − 1

The magnitude of the coefficient of the error term is

(21) µM =
M−1∑
K=0

(M −K)(−1)K+1aK

(M −K + 1)!

In this method we are concerned with E5(θ), so, for M = 5 we have

(22) E5(θ) =
1 + b1θ + b2θ

2 + b3θ
3 + b4θ

4

1− a1θ + a2θ2 − a3θ3 + a4θ4 − a5θ5
=
p(θ)
q(θ)

(say),
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where

b1 = (1− a1), b2 =
(

1
2
− a1 + a2

)
, b3 =

(
1
6
− a1

2
+ a2 − a3

)
,

b4 =
(

1
24
− a1

6
+
a2

2
− a3 + a4

)
, a5 =

(
1

120
− a1

24
+
a2

6
− a3

2
+ a4

)
,

choosing the values of parameters a1, a2, a3, a4 and a5 as 91/20, 481/120, 107/80,
691/3600 and 1/100 respectively.

The quadrature term appearing in recurrence relation (17) is approximated as

(23)

∫ t+l

t

exp((t+ l − s)A)v(s)ds = W1v(s1) + W2v(s2) + W3v(s3)

+ W4v(s4) + W5v(s5)

where s1 6= s2 6= s3 6= s4 6= s5 and W1, W2, W3, W4, W5 are matrices. It can be shown that

(24)
5∑

j=1

sk−1
j Wj = Mk, k = 1, 2, 3, 4, 5

where

(25) Mk = A−1{tk−1E − (t+ l)k−1I + (k − 1)Mk−1}, k = 1, 2, 3, 4, 5.

Taking s1 = t, s2 = t + l
4 , s3 = t + l

2 , s4 = t + 3l
4 , s5 = t + l and solving the system (25) for

W1, W2, W3, W4, W5, we have

(26)
W1 =− 1

3l4
(A−1)5{768I + 288lA + 44l2A2 + 3l3A3

− (768I − 480lA + 140l2A2 − 25l3A3 + 3l4A4)E},
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(27)
W2 =

16
3l4

(A−1)5{192I + 84lA + 14l2A2 + l3A3

− (192I − 108lA + 26l2A2 − 3l3A3)E},

(28)
W3 = − 4

l4
(A−1)5{384I + 192lA + 38l2A2 + 3l3A3

+ (384I + 192lA− 38l2A2 + 3l3A3)E},

(29)
W4 =

16
3l4

(A−1)5{192I + 108lA + 26l2A2 + 3l3A3

− (192I − 84lA + 14l2A2 − l3A3)E},

(30)
W5 = − 1

3l4
(A−1)5{768I + 480lA + 140l2A2 + 25l3A3 + 3l4A4

− (768I − 288lA + 44l2A2 − 3l3A3)E},

Using E = PQ, due to (22) where

(31) P =
(
I − a1lA + a2l

2A2 − a3l
3A3 + a4l

4A4 − a5l
5A5

)−1

and

(32) Q = I + b1lA + b2l
2A2 + b3l

3A3 + b4l
4A4,

in (26)–(30) gives

W1 =
l

360
{28I + (668− 3100a1 + 11520a2 − 30720a3 + 46080a4)lA

+ (−21 + 100a1 − 260a2 + 1920a4)l2A2

+ (18− 75a1 + 240a2 − 540a3 + 720a4)l3A3}P,
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W2 =
2l
45
{8I + (−154 + 760a1 − 2880a2 + 7680a3 − 11520a4)lA

+ (1 + 10a1 − 100a2 + 480a3 − 1200a4)l2A2

+ (−1 + 5a1 − 20a2 + 60a3 − 120a4)l3A3}P,

W3 =
l

30
{4I + (322− 1540a1 + 5760a2 − 15360a3 + 23040a4)lA

+ (23− 130a1 + 580a2 − 1920a3 + 3840a4)l2A2

+ (3− 15a1 + 60a2 − 180a3 + 360a4)l3A3}P,

W4 =
2l
45
{8I + (−158 + 760a1 − 2880a2 + 7680a3 − 11520a4)lA

+ (−21 + 110a1 − 460a2 + 1440a3 − 2640a4)l2A2

+ (−3 + 15a1 − 60a2 + 180a3 − 360a4)l3A3}P,

W5 =
l

360
{28I + (640− 3100a1 + 11520a2 − 30720a3 + 46080a4)lA

+ (125− 640a1 + 2620a2 − 7680a3 + 13440a4)l2A2

+ (25− 125a1 + 500a2 − 1500a3 + 2640a4)l3A3

+ (3− 15a1 + 60a2 − 180a3 + 360a4)l4A4}P.
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2.3. Development of Algorithm

Assuming that r1, r2, r3, r4, r5, (ri 6= 0) are distinct real zeros of q(θ), the denominator of E5(θ),
then

(33)

P−1 =
5∏

i=1

(
I − l

ri
A
)

E =
5∑

j=1

pj

(
I − l

rj
A
)−1

where
pj =

1
5∏

i=1, i 6=j

(
1− rj

ri

){1 + b1rj + b2r
2
j + b3r

3
j + b4r

4
j},

j = 1, 2, 3, 4, 5 and

(34) Wk =
mkl

360

5∑
j=1

p5k+j

(
I − l

r1
A
)−1

, k = 1, 2, 3, 4, 5

in which m1 = 1, m2 = 16, m3 = 12, m4 = 16, m5 = 1, and for j = 1, 2, 3, 4, 5

p5+j =
1

5∏
i=1, i 6=j

(
1− rj

ri

)
× {28 + (668− 3100a1 + 11520a2 − 30720a3 + 46080a4)rj

+ (−21 + 100a1 − 260a2 + 1920a4)r2j
+ (18− 75a1 + 240a2 − 540a3 + 720a4)r3j}



JJ J I II

Go back

Full Screen

Close

Quit

p10+j =
1

5∏
i=1, i 6=j

(
1− rj

ri

)
× {8 + (−154 + 760a1 − 2880a2 + 7680a3 − 11520a4)rj

+ (1 + 10a1 − 100a2 + 480a3 − 1200a4)r2j
+ (−1 + 5a1 − 20a2 + 60a3 − 120a4)r3j}

p15+j =
1

5∏
i=1, i 6=j

(
1− rj

ri

)
× {4 + (322− 1540a1 + 5760a2 − 15360a3 + 23040a4)rj

+ (23− 130a1 + 580a2 − 1920a3 + 3840a4)r2j
+ (3− 15a1 + 60a2 − 180a3 + 360a4)r3j}

p20+j = × 1
5∏

i=1, i 6=j

(
1− rj

ri

)
{8 + (−158 + 760a1 − 2880a2 + 7680a3 − 11520a4)rj

+ (−21 + 110a1 − 460a2 + 1440a3 − 2640a4)r2j
+ (−3 + 15a1 − 60a2 + 180a3 − 360a4)r3j}
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p25+j =
1

5∏
i=1, i 6=j

(
1− rj

ri

)
× {28 + (640− 3100a1 + 11520a2 − 30720a3 + 46080a4)rj

+ (125− 640a1 + 2620a2 − 7680a3 + 13440a4)r2j
+ (25− 125a1 + 500a2 − 1500a3 + 2640a4)r3j
+ (3− 15a1 + 60a2 − 180a3 + 360a4)r4j}

Equation (17) becomes

U(t+ l) =
5∑

i=1

A−1
i

{
piU(t) +

l

360

{
pi+5v(t) + 16pi+10v

(
t+

l

4

)
+12pi+15v

(
t+

l

2

)
+ 16pi+20v

(
t+

3l
4

)
+ pi+25v(t+ l)

}}
(35)

where

Ai = I − l

ri
A, i = 1, 2, 3, 4, 5.

Hence

(36) U(t+ l) =
5∑

i=1

yi(t)
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where yi, (i = 1, 2, 3, 4, 5) are the solutions of the systems

Aiyi = piU(t) +
l

360

{
pi+5v(t) + 16pi+10v

(
t+

l

4

)
+ 12pi+15v

(
t+

l

2

)
+16pi+20v

(
t+

3l
4

)
+ pi+25v(t+ l)

}
(37)

3. Inhomogeneous heat equation with non-local
boundary condition

This section considers the problem of obtaining numerical approximation to the concentration
u = u(x, t) which satisfies the inhomogeneous partial differential equation

(38)
∂u

∂t
=
∂2u

∂x2
+ s(x, t), 0 < x < 1, 0 < t ≤ T,

subject to the initial condition (2), the boundary condition

(39) u(1, t) = g(t), 0 < t ≤ T

(which is different from (3)) and the nonlocal boundary condition

(40)
∫ b

0

u(x, t)dx = M(t), 0 < t ≤ T, 0 < b < 1

where f , g, M and s are known functions, assumed to be sufficiently smooth to produce a smooth
solution of u, and T is a given positive constant.

The existence, uniqueness and continuous dependence on data of the solution to this problem
have been studied by [4, 5, 6].
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Applying (31) and (6)–(10) to all the interior mesh points of the grid at time level t = tn and
using the boundary conditions (39) and (40) produce a system of ordinary differential equations
of the form (12) with initial distribution (13) with matrix A given by

(41) A =
1

180h2



α1 α2 α3 α4 α5 α6 ... 0
β1 β2 β3 β4 β5 β6 ...
−13 228 −420 200 15 −12 2

−13 228 −420 200 15 −12 2
. . . . . . . . . . . . . . . . . . . . .
−13 228 −420 200 15 −12 2

−13 228 −420 200 15 −12
−2 16 −69 340 −560 312 −41
−4 30 −96 155 60 −336 200

0 9 −76 282 −600 785 −444 −84


N×N

where
α1 = −552, α2 = −776, α3 = 429, α4 = −988, α5 = −130, α6 = −352,

α7 = −483 and αi =

 −248 when i is even
−496 when i is odd
−124 when i = J

also
β1 = 280, β2 = −394, β3 = 252, β4 = 41, β5 = 40, β6 = 28 and

βi =

 52 when i is even
26 when i is odd
13 when i = J
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where J =
b

h
and the column vector

(42) v(t) =
1

180h2

[
372
h
M(t),

−39
h
M(t), 0, 0, . . . , 2g(t), 4g(t),−9g(t), 128g(t)

]T

4. Numerical Experiments

In this section the numerical methods described in this paper are applied to several problems from
the literature and results obtained are compared with exact solutions as well as with the results
existing in the literature.

Example 1. Consider (1)–(4) with

f(x) = cos
(π

2
x
)
, 0 < x < 1, g(t) = exp

(
−π

2

4
t

)
, 0 < t < 1,

M(t) =
2
π

exp
(
−π

2

4
t

)
, 0 < t ≤ 1.

The theoretical solution of the problem (see [9]) is

u(x, t) = exp
(
−π

2

4
t

)
cos
(π

2
x
)

The relative errors |Uapprox−Uexact|
Uexact

for the results of u(0.5, 0.1) at h = l = 0.05, 0.025, 0.01, 0.005,
0.0025, 0.001, using the new scheme discussed in this paper as well as using the implicit method
[3], Galerkin technique [7], Keller-Box method [10], the Rung Kutta Chebyshev (RKC) scheme
[11] and the Saulyev’s explicit scheme [9] are shown in Table 1. CPU time for different values of
h are also given in Table 2.
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Table 1. Relative errors of various spatial lengths in Example 1.

h Implicit Galerkin Keller-Box RKC Saulyev I Fifth-order

0.0500 9.1× 10−03 9.9× 10−02 9.4× 10−02 9.8× 10−02 9.6× 10−03 1.6× 10−07

0.0250 2.3× 10−03 3.0× 10−02 2.4× 10−02 3.7× 10−02 2.5× 10−03 1.1× 10−08

0.0100 3.8× 10−04 4.9× 10−03 4.1× 10−03 6.1× 10−03 3.9× 10−04 3.6× 10−10

0.0050 9.4× 10−05 1.2× 10−03 1.0× 10−03 1.5× 10−03 9.6× 10−05 9.0× 10−11

0.0025 2.3× 10−05 3.1× 10−04 2.5× 10−04 3.5× 10−04 2.5× 10−05 6.5× 10−12

0.0010 4.1× 10−06 5.0× 10−05 4.0× 10−05 6.0× 10−05 4.3× 10−06 9.8× 10−11

Table 2. CPU time in Example 1 for fifth-order scheme.

CPU Time

h (in seconds)

0.0500 0.001

0.0250 0.032

0.0125 0.145

0.0100 0.234

0.0050 1.781

0.0025 19.750
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Example 2. Consider (38) with (2), (39) and (40)

f(x) = sin(πx), 0 < x < 1, g(t) = 0, 0 < t < 1,

b = 0.75, M(t) =
2 +
√

2
2π

exp(−π2t), 0 < t ≤ 1,

s(x, t) = 0, 0 < t ≤ 1, 0 < x < 1.

The theoretical solution of this problem (see [8]) is

u(x, t) = exp(−π2t) sin(πx).

The results for Example 2 are given in Table 3. Calculations are performed for different values
of h = 0.01, 0.005, 0.0025, 0.001 and l = 0.01, 0.005, 0.0025, 0.001 for comparison purpose.

Example 3. Again consider (38) with (2), (39) and (40)

f(x) = exp(x), 0 < x < 1 g(t) =
e

1 + t2
, 0 < t < 1

b = 0.3 M(t) =
e0.3−1
1 + t2

, 0 < t ≤ 1

s(x, t) =
−(1 + t2) exp(x)

(1 + t2)2
, 0 < t ≤ 1, 0 < x < 1.

and with the theoretical solution (see [1, 8])

u(x, t) =
exp(x)
1 + t2

The results regarding this example are given in Table 4 and Table 5. In Table 4, the relative
errors of the results of u(x, t) with h = 0.01, 0.005, 0.0025, 0.001, and l = 0.01, 0.005, 0.0025, 0.001,
using the fifth-order scheme discussed in this paper as well as using the implicit finite-difference
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Table 3. Maximum errors in Example 2 at t = 1.

h Numerical Methods l = 0.01 l = 0.005 l = 0.0025 l = 0.001

The implicit scheme 9.0× 10−04 3.0× 10−04 2.0× 10−04 1.0× 10−04

0.01 The pade scheme 6.0× 10−05 2.0× 10−05 1.0× 10−05 1.0× 10−05

Fifth-order scheme 4.9× 10−11 4.6× 10−11 3.2× 10−11 3.0× 10−11

The implicit scheme 8.0× 10−04 4.0× 10−04 5.0× 10−04 4.0× 10−04

0.005 The pade scheme 5.0× 10−05 2.0× 10−05 2.0× 10−05 3.0× 10−05

Fifth-order scheme 1.1× 10−12 5.0× 10−14 1.3× 10−14 1.2× 10−14

The implicit scheme 7.0× 10−04 5.0× 10−04 4.0× 10−04 2.0× 10−04

0.0025 The pade scheme 6.0× 10−05 2.0× 10−05 3.0× 10−05 1.0× 10−05

Fifth-order scheme 1.1× 10−12 3.0× 10−14 2.1× 10−15 7.6× 10−15

The implicit scheme 3.0× 10−04 2.0× 10−04 3.0× 10−05 1.0× 10−05

0.001 The pade scheme 1.0× 10−05 3.0× 10−05 5.0× 10−06 2.0× 10−06

Fifth-order scheme 2.6× 10−14 3.5× 10−15 8.7× 10−16 2.1× 10−17

scheme of [2] and the Pade scheme of [8], are shown. While absolute errors for l = 0.001 and
h = 0.01 for different values of t are given in Table 5 and are compared with the results of [1].
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Table 4. Maximum errors in Example 3 at t = 1.

h Numerical Methods l = 0.01 l = 0.005 l = 0.0025 l = 0.001

The implicit scheme 8.0× 10−04 2.0× 10−04 6.0× 10−04 2.0× 10−04

0.01 The pade scheme 6.0× 10−05 1.0× 10−05 5.0× 10−05 1.0× 10−05

Fifth-order scheme 3.7× 10−11 3.0× 10−11 3.3× 10−11 4.3× 10−11

The implicit scheme 7.0× 10−04 2.0× 10−04 5.0× 10−04 3.0× 10−04

0.005 The pade scheme 5.0× 10−05 2.0× 10−05 4.0× 10−05 3.0× 10−05

Fifth-order scheme 9.6× 10−12 6.3× 10−12 1.7× 10−12 1.2× 10−12

The implicit scheme 6.0× 10−04 3.0× 10−04 5.0× 10−04 3.0× 10−04

0.0025 The pade scheme 4.0× 10−05 2.0× 10−05 3.0× 10−05 2.0× 10−05

Fifth-order scheme 2.5× 10−12 6.2× 10−12 2.3× 10−12 1.1× 10−12

The implicit scheme 3.0× 10−04 5.0× 10−04 7.0× 10−05 9.0× 10−05

0.001 The pade scheme 1.0× 10−05 3.0× 10−05 4.0× 10−06 5.0× 10−06

Fifth-order scheme 2.3× 10−13 9.6× 10−13 7.5× 10−13 1.3× 10−13

Example 4. Now consider (38) with (2), (39) and (40)

f(x) = ln(x+ 2.5), 0 < x < 1, g(t) = ln(2t+ 3.5), 0 < t < 1, b = 0.5,

M(t) = (2t+ 3) ln(2t+ 3)− (2t+ 2.5) ln(2t+ 2.5)− 0.5, 0 < t ≤ 1,

s(x, t) =
2(x+ 2t+ 3)

(x+ 2t+ 2.5)2
, 0 < t ≤ 1, 0 < x < 1
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Table 5. Results in Example 3 at l = 0.001 and h = 0.01.

x t Exact solution Approximate solution Absolute relative error

Wavelet Fifth-order Wavelet Fifth-order

Galerkin scheme Galerkin scheme

0.025 1.2832234020614 1.283193 1.2832234020325 2.4× 10−05 2.3× 10−11

0.25 0.050 1.2808233582920 1.280765 1.2808233582754 4.6× 10−05 1.3× 10−11

0.100 1.2713122937502 1.271207 1.2713122937272 8.3× 10−05 1.8× 10−11

0.025 1.6476914635354 1.647651 1.6476914635227 2.5× 10−05 7.7× 10−12

0.50 0.050 1.6446097364344 1.644534 1.6446097463106 4.6× 10−05 1.4× 10−11

0.100 1.6323972977229 1.632272 1.6323972976851 7.7× 10−05 1.4× 10−11

0.025 2.1156777180389 2.115633 2.1156777180254 2.1× 10−05 2.3× 10−11

0.75 0.050 2.1117207148256 2.111648 2.1117207148029 3.5× 10−05 1.1× 10−11

0.100 2.0960396304086 2.095934 2.0969396203748 5.0× 10−05 1.5× 10−11

The theoretical solution of this problem (see [1]) is

u(x, t) = ln(x+ 2t+ 2.5).

The results regarding Example 4 are given in Table 6. Calculations are performed for x = 0.25,
0.50, 0.75 and t = 0.025, 0.05, 0.10. The results for fifth-order scheme are compared with the exact
ones and with the results of [1]. The CPU time for h = 0.025 and l = 0.001 for different values of
t are given in Table 7.
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Table 6. Results in Example (4) at l = 0.001 and h = 0.01 .

x t Exact solution Approximate solution Absolute relative error

Wavelet Fifth-order Wavelet Fifth-order

Galerkin scheme Galerkin scheme

0.025 1.0296194171812 1.029611 1.0296194171774 8.5× 10−06 3.7× 10−12

0.25 0.050 1.0473189942806 1.047302 1.0473189942765 1.6× 10−05 3.9× 10−12

0.100 1.0818051703517 1.081772 1.0818051703473 3.0× 10−05 4.1× 10−12

0.025 1.1151415906193 1.115134 1.1151415906119 6.5× 10−06 6.7× 10−12

0.50 0.050 1.1314021114911 1.131388 1.1314021114780 1.2× 10−05 1.2× 10−11

0.100 1.1631508098057 1.163125 1.1631508097864 2.2× 10−05 1.7× 10−11

0.025 1.1939224684724 1.193917 1.1939224684648 4.5× 10−06 6.4× 10−12

0.75 0.050 1.2089603458370 1.208951 1.2089603458241 7.9× 10−06 1.1× 10−11

0.100 1.2383742310433 1.238358 1.2383742310243 1.3× 10−05 1.5× 10−11

Table 7. CPU time in Example 4 when h = 0.025 and l = 0.001.

CPU Time

t (in seconds)

0.025 0.203

0.05 0.359

0.10 0.735

0.25 1.782

0.50 3.313

1.0 6.985
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Example 5. Once again consider (38) with (2), (39) and (40)

f(x) = π2 cosx, 0 < x < 1, g(t) = (π2 + t) cos(1.0), 0 < t < 1, b = 0.75

M(t) = (π2 + t) sin(0.75), 0 < t ≤ 1,

s(x, t) = (1 + π2 + t) cosx, 0 < t ≤ 1, 0 < x < 1.

The theoretical solution of the problem (see [1]) is

u(x, t) = (π2 + t) cosx.

Experiments are performed for x = 0.25, 0.50, 0.75 and t = 0.025, 0.05, 0.10. and the results
are given in Table 8 where these are compared with the results of [1].

5. Conclusion

The results obtained by using the fifth-order scheme are highly accurate when compared with
those results which have already existed in the literature. It is noted that the method is fifth-order
accurate except for very small values of l and h when errors accumulate due to a large number of
arithmetic operations.

So it is clear that the new scheme is the best candidate for the solution of model problems. This
technique can be coded easily on serial or parallel computers.

It is worth mentioning that the use of real arithmetic and multiprocessor architecture can save
remarkable CPU time rather than methods based on complex arithmetic.
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Table 8. Results in Example 5 at l = 0.001 and h = 0.001.

x t Exact solution Approximate solution Absolute relative error

Wavelet Fifth-order Wavelet Fifth-order

Galerkin scheme Galerkin scheme

0.025 9.5870051121283 9.587025 9.5870051120588 2.1× 10−06 7.2× 10−12

0.25 0.050 9.6112279226711 9.611272 9.6112279226230 4.6× 10−06 5.0× 10−12

0.100 9.6596735437566 9.659767 9.6596735437372 9.8× 10−06 2.0× 10−12

0.025 8.6833322791998 8.683344 8.6833322791363 1.8× 10−06 7.3× 10−12

0.50 0.050 8.7052718432470 8.705298 8.7052718431376 3.0× 10−06 1.3× 10−11

0.100 8.7491509713415 8.749208 8.7491509712009 6.5× 10−06 1.6× 10−11

0.025 7.2397719021870 7.239781 7.2397719021386 1.2× 10−06 6.7× 10−12

0.75 0.050 7.2580641239088 7.258080 7.2580641238226 2.2× 10−06 1.2× 10−11

0.100 7.2946485673525 7.294680 7.2946485672273 4.3× 10−06 1.7× 10−11
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