

### WEAKLY $\omega$ -continuos functions

K. AL-ZOUBI AND H. AL-JARAH

ABSTRACT. The purpose of this paper is to introduce a new class of functions called weakly  $\omega$ continuous which contains the class of  $\omega$ -continuous functions and to investigate their basic properties.

### 0. INTRODUCTION

Throughout this work a space will always mean a topological space on which no separation axiom is assumed unless explicitly stated. Let( $X, \tau$ ) be a space and A be a subset of X. A point  $x \in X$ is called a condensation point of A if for each  $U \in \tau$  with  $x \in U$ , the set  $U \cap A$  is uncountable. Ais called  $\omega$ -closed [7] if it contains all its condensation points. The complement of an  $\omega$ -closed set is called  $\omega$ -open. It is well known that a subset W of a space  $(X, \tau)$  is  $\omega$ -open if and only if for each  $x \in W$  there exists  $U \in \tau$  such that  $x \in U$  and U - W is countable. The family of all  $\omega$ -open subsets of a space  $(X, \tau)$ , denoted by  $\tau_{\omega}$ , forms a topology on X finer than  $\tau$ . Let  $(X, \tau)$  be a space and A be a subset of X. The closure of A, the interior of A and the relative topology on A will be denoted by  $cl_{\tau}(A)$ ,  $int_{\tau}(A)$  and  $\tau_A$ , respectively. The  $\omega$ -interior ( $\omega$ -closure) of a subset A of a space  $(X, \tau)$  is the interior (closure) of A in the space  $(X, \tau_{\omega})$  and is denoted by  $int_{\tau_{\omega}}(A)(cl_{\tau_{\omega}}(A))$ .

Weak continuity due to Levine [8] is one of the most important weak forms of continuity in topological spaces. It is well-known that if  $f: (X, \tau) \to (Y, \sigma)$  is a function from a space  $(X, \tau)$ 

Quit

Go back

Full Screen

Close

44

Received January 28, 2010.

<sup>2000</sup> Mathematics Subject Classification. Primary 54C08, 54C10, 54C15, 54D20.

Key words and phrases.  $\omega$ -open sets;  $\omega$ -continuous function; weakly continuous function; weakly  $\omega$ -continuous function;  $\omega$ -irresolute function.



into a regular space  $(Y, \sigma)$ , then f is continuous iff it is weakly continuous. In [6], Hdeib introduced the notion of  $\omega$ -continuous functions and in [3, Theorem 3.12], Al-Zoubi showed that a function  $f: (X, \tau) \to (Y, \sigma)$  from an anti-locally countable space  $(X, \tau)$  into a regular space  $(Y, \sigma)$  is continuous iff it is  $\omega$ -continuous iff for each  $x \in X$  and each open set V in  $(Y, \sigma)$  with  $f(x) \in V$ , there exists an  $\omega$ -open set U in  $(X, \tau)$  such that  $x \in U$  and  $f(U) \subseteq cl_{\sigma}(V)$ .

In Section 1 of the present work we use the family of  $\omega$ -open subsets to define weakly  $\omega$ continuous functions. We obtain characterizations of this type of functions and also we study
its relation to other known classes of generalized continuous functions, namely the classes of  $\omega$ continuous functions, and weakly continuous functions.

In Section 2, basic properties of weakly  $\omega$ -continuous functions such as composition, product, restriction, ... etc are given.

For a nonempty set X,  $\tau_{\text{ind}}$ , respectively,  $\tau_{\text{dis}}$  will denote, the indiscrete, respectively, the discrete topologies on X.  $\mathbb{R}$ ,  $\mathbb{Q}$  and  $\mathbb{N}$  denote the sets of all real numbers, rational numbers, and natural numbers, respectively. By  $\tau_u$  we denote the usual topology on  $\mathbb{R}$ . Finally, if  $(X, \tau)$  and  $(Y, \rho)$  are two spaces, then  $\tau \times \rho$  will denote the product topology on  $X \times Y$ .

Now we recall some known notions, definitions and results which will be used in the work.

## **Definition 0.1.** A space $(X, \tau)$ is called

- (a) Locally countable [9] if each point  $x \in X$  has a countable open neighborhood.
- (b) Anti-locally countable [4] if each non-empty open set is uncountable.

**Definition 0.2.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called

- (a)  $\omega$ -continuous [6] if  $f^{-1}(V)$  is  $\omega$ -open in  $(X, \tau)$  for every open set V of  $(Y, \sigma)$ .
- (b)  $\omega$ -irresolute [2] if  $f^{-1}(V)$  is  $\omega$ -open in  $(X, \tau)$  for every  $\omega$ -open set V of  $(Y, \sigma)$ .

**Lemma 0.3** ([4]). Let A be a subset of a space( $X, \tau$ ). Then

(a) 
$$(\tau_{\omega})_{\omega} = \tau_{\omega}$$
.





# (b) $(\tau_A)_{\omega} = (\tau_{\omega})_A.$

**Lemma 0.4** ([1]). Let A be a subset of an anti-locally countable space  $(X, \tau)$ .

(a) If  $A \in \tau_{\omega}$ , then  $\operatorname{cl}_{\tau}(A) = \operatorname{cl}_{\tau_{\omega}}(A)$ . (b) If A is  $\omega$ -closed in  $(X, \tau)$ , then  $\operatorname{int}(A) = \operatorname{int}_{\tau_{\omega}}(A)$ .

**Lemma 0.5** ([3]). Let  $(X, \tau)$  and  $(Y, \sigma)$  be two topological spaces.

(a)  $(\tau \times \sigma)_{\omega} \subseteq \tau_{\omega} \times \sigma_{\omega}$ . (b) If  $A \subseteq X$  and  $B \subseteq Y$ , then  $\operatorname{cl}_{\tau_{\omega}}(A) \times \operatorname{cl}_{\sigma_{\omega}}(B) \subseteq \operatorname{cl}_{(\tau \times \sigma)_{\omega}}(A \times B)$ .

#### 1. Weakly $\omega$ -continuous functions

Recall that a function  $f : (X, \tau) \to (Y, \sigma)$  is called weakly continuous [8] if for each  $x \in X$  and each open set V in  $(Y, \sigma)$  containing f(x), there exists an open set U in  $(X, \tau)$  such that  $x \in U$  and  $f(U) \subseteq \operatorname{cl}_{\sigma}(V)$ .

**Definition 1.1.** A function  $f : (X, \tau) \longrightarrow (Y, \sigma)$  is said to be  $\omega^{\omega}$ -weakly continuous (respectively,  $\omega$ -weakly continuous, weakly  $\omega$ -continuous) if for each  $x \in X$  and for each  $V \in \sigma_{\omega}$  (respectively,  $V \in \sigma$ ) containing f(x), there exists an  $\omega$ -open subset U of X containing x such that  $f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)$  (respectively,  $f(U) \subseteq \operatorname{cl}_{\sigma}(V)$ ,  $f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)$ ).

Observe that if  $(X, \tau)$  is a locally countable space, then  $\tau_{\omega}$  is the discrete topology and so every function  $f: (X, \tau) \to (Y, \sigma)$  is  $\omega^{\omega}$ -weakly continuous.

The following diagram follows immediately from the definitions in which none of these implications is reversible.



Go back

Full Screen

Close



continuous  $\rightarrow \omega$ -continuous  $\rightarrow \omega$ -weakly  $\omega$ -continuous  $\leftarrow \omega^{\omega}$ -weakly continuous

weakly continuous  $\rightarrow \omega$ -weakly continuous

**Example 1.2.** (a) Let  $X = \mathbb{R}$  with the topologies  $\tau = \tau_u$ ,  $\sigma = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$  and  $\rho = \{\emptyset, \mathbb{R}, \{1\}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \sigma)$  be the function defined by

$$f(x) = \begin{cases} \sqrt{2} & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{for } x \in \mathbb{Q} \end{cases}$$

Then f is  $\omega$ -weakly continuous, but it is not weakly  $\omega$ -continuous. Note that

 $cl_{\sigma_{\omega}}(\mathbb{Q}) = \mathbb{Q}$  and if W is an  $\omega$ -open set in  $(\mathbb{R}, \tau)$ , then  $W \cap (\mathbb{R} - \mathbb{Q}) \neq \emptyset$ . On the other hand, the function  $g: (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \rho)$  given by

$$g(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{for } x \in \mathbb{Q} \end{cases}$$

is weakly continuous ( $\omega$ -weakly continuous), but it is neither weakly  $\omega$ -continuous nor  $\omega^{\omega}$ -weakly continuous.

(b) Let  $X = \mathbb{R}$  with the topologies  $\tau = \{U \subseteq \mathbb{R} : U \subseteq \mathbb{R} - \mathbb{Q}\} \cup \{\mathbb{R}\}$  and  $\sigma = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \sigma)$  be the function defined by

$$f(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{for } x \in \mathbb{Q} \end{cases}$$

Then f is  $\omega$ -continuous, but it is not  $\omega^{\omega}$ -weakly continuous. Note that if we choose  $x \in \mathbb{Q}$ , then  $f(x) = 1 \in V = \{1\} \in \sigma_{\omega}$ . Now if  $U \in \tau_{\omega}$  such that  $x \in U$  and  $f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V) = \{1\}$ , then  $U \subseteq \mathbb{Q}$ . But the only open set containing x is  $\mathbb{R}$ , therefore  $\mathbb{R} - U$  is countable, a contradiction.





**> | >>** 

Go back

Full Screen

Close

Quit

(c) Let  $X = \mathbb{R}$  with the topologies  $\tau = \tau_u$  and  $\sigma = \{\emptyset, \mathbb{R}, \mathbb{R} - \{0\}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \sigma)$  be the function defined by

$$f(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 1 & \text{for } x \in \mathbb{Q} \end{cases}$$

Then f is not  $\omega$ -continuous since  $V = \mathbb{R} - \{0\} \in \sigma$ , but  $f^{-1}(V) = \mathbb{Q} \notin \tau_{\omega}$ . On the other hand, f is weakly  $\omega$ -continuous since  $cl_{\sigma_{\omega}}(\mathbb{R} - \{0\}) = \mathbb{R}$ .

Let  $f: (X, \tau) \to (Y, \sigma)$  be a function. Then a function  $f_{\omega}^{\omega}: (X, \tau_{\omega}) \to (Y, \sigma_{\omega})$  (respectively,  $f_{\omega}: (X, \tau_{\omega}) \to (Y, \sigma), f^{\omega}: (X, \tau) \to (Y, \sigma_{\omega})$ ) associated with f is defined as follows:  $f_{\omega}^{\omega}(x) = f(x)$  (respectively,  $f_{\omega}(x) = f(x), f^{\omega}(x) = f(x)$ ) for each  $x \in X$ .

The proof of the following results follow immediately from the definitions and Lemma 0.3 part (a).

**Remark 1.3.** Let  $f : (X, \tau) \to (Y, \sigma)$  be a function.

- (a) f is  $\omega^{\omega}$ -weakly continuous iff  $f_{\omega}^{\omega}$  is weakly continuous.
- (b) f is  $\omega$ -weakly continuous iff  $f_{\omega}$  is weakly continuous.
- (c)  $f_{\omega}^{\omega}$  is weakly continuous iff it is  $\omega^{\omega}$ -weakly continuous iff it is weakly  $\omega$ -continuous iff it is  $\omega$ -weakly continuous.
- (d) If  $(Y, \sigma)$  is a locally countable space, then f is  $\omega$ -continuous iff it is weakly  $\omega$ -continuous.
- (e) If  $(Y, \sigma)$  is an anti-locally countable space, then f is  $\omega$ -weakly continuous iff it is weakly  $\omega$ -continuous.

It follows from Remark 1.3 part (a) and part (b) that the basic properties of  $\omega^{\omega}$ -weakly continuous and  $\omega$ -weakly continuous functions follow from the well known properties of weakly continuous functions.

**Proposition 1.4.** A function  $f : (X, \tau) \longrightarrow (Y, \sigma)$  is weakly  $\omega$ -continuous iff  $f^{-1}(V) \subset \operatorname{int}_{\tau_{\omega}}(f^{-1}(\operatorname{cl}_{\sigma_{\omega}}(V)))$  for every  $V \in \sigma$ .



The easy proof is left to the reader.

## 2. Fundamental Properties of Weakly $\omega$ -continuous functions

In this section we obtain several fundamental properties of weakly  $\omega$ -continuous functions.

The composition  $g \circ f : (X, \tau) \longrightarrow (Z, \rho)$  of a continuous function  $f : (X, \tau) \longrightarrow (Y, \sigma)$  and a weakly  $\omega$ -continuous function  $g : (Y, \sigma) \longrightarrow (Z, \rho)$  is not necessarily weakly  $\omega$ -continuous as the following example shows. Thus, the composition of weakly  $\omega$ -continuous functions need not be weakly  $\omega$ -continuous.

**Example 2.1.** Let  $X = \mathbb{R}$  with the topologies  $\tau = \tau_u$ , and  $\sigma = \tau_{\text{ind}}$  and let  $Y = \{0, 1\}$  with the topology  $\rho = \{\emptyset, Y, \{1\}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \sigma)$  be the function defined by

$$f(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ \sqrt{2} & \text{for } x \in \mathbb{Q} \end{cases}$$

and let  $g: (\mathbb{R}, \sigma) \longrightarrow (Y, \rho)$  be the function defined by

$$g(x) = \begin{cases} 1 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 0 & \text{for } x \in \mathbb{Q} \end{cases}$$

Then f is continuous and g is weakly  $\omega$ -continuous. However  $g \circ f$  is not weakly  $\omega$ -continuous. Note that if  $x \in \mathbb{Q}$ , then  $(g \circ f)(x) = 1 \in V = \{1\} \in \rho$ . Suppose there exists  $\omega$ -open set W in  $(\mathbb{R}, \tau)$  such that  $x \in W$  and  $(g \circ f)(W) \subset \operatorname{cl}_{\sigma_{\omega}}(V) = \{1\}$ . Then  $W \subseteq \mathbb{Q}$ , i.e. W is countable, a contradiction. Therefore  $g \circ f$  is not weakly  $\omega$ -continuous.

Recall that a function  $f: (X, \tau) \longrightarrow (Y, \sigma)$  is called  $\theta$ -continuous [5] if for each  $x \in X$  and each open set V in  $(Y, \sigma)$  containing f(x), there exists an open set U in  $(X, \tau)$  such that  $x \in U$  and  $f(cl_{\tau}(U)) \subset cl_{\sigma}(V)$ .





**Theorem 2.2.** Let  $f : (X, \tau) \to (Y, \sigma)$  and  $g : (Y, \sigma) \to (Z, \rho)$  be two functions. Then the following statement hold

- (a)  $g \circ f$  is weakly  $\omega$ -continuous if g is weakly  $\omega$ -continuous and f is  $\omega$ -irresolute.
- (b)  $g \circ f$  is weakly  $\omega$ -continuous if f is weakly  $\omega$ -continuous and g is  $\omega$ -irresolute and continuous.
- (c)  $g \circ f$  is weakly  $\omega$ -continuous if  $g^{\omega}$  is  $\theta$ -continuous and f is weakly  $\omega$ -continuous.
- (d)  $g \circ f$  is weakly  $\omega$ -continuous if  $g^{\omega}$  is weakly continuous and f is  $\omega$ -continuous.
- (e) Let  $(Z, \rho)$  be an anti-locally countable space. Then  $g \circ f$  is weakly  $\omega$ -continuous if g is  $\theta$ -continuous and f is weakly  $\omega$ -continuous.

The easy proof is left to the reader.

The following examples show that the conditions in Theorem 2.2 are essential.

**Example 2.3.** Let  $X = \mathbb{R}$  with the topologies  $\tau = \tau_u$  and  $\eta = \{\emptyset, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$  and let  $Y = \{1, \sqrt{2}\}$  with the topologies  $\sigma = \{\emptyset, Y, \{\sqrt{2}\}\}$  and  $\rho = \{\emptyset, Y, \{1\}\}$ .

(a) Let  $f: (\mathbb{R}, \tau) \longrightarrow (Y, \rho)$  be the function defined by

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ \sqrt{2} & \text{for } x \in \mathbb{Q} \end{cases}$$

and  $g: (Y, \rho) \longrightarrow (Y, \sigma)$  be the identity function. Clearly,  $(Y, \rho)$  is not anti-locally countable, f is weakly  $\omega$ -continuous, g is  $\theta$ -continuous and  $\omega$ -irresolute, but not continuous. However  $g \circ f$  is not weakly  $\omega$ -continuous.

(b) Define 
$$f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \eta)$$
 and  $g : (\mathbb{R}, \eta) \longrightarrow (Y, \rho)$  as follows  
$$f(x) = g(x) = \begin{cases} 1 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ \sqrt{2} & \text{for } x \in \mathbb{Q} \end{cases}$$





••

Go back

Full Screen

Close

Quit

Then f is weakly  $\omega$ -continuous since  $cl_{\sigma_{\omega}}(\mathbb{R} - \mathbb{Q}) = \mathbb{R}$  and g is continuous, but it is not  $\omega$ -irresolute. However  $g \circ f$  is not weakly  $\omega$ -continuous.

Note that Example 2.3 shows that continuity and  $\omega$ -irresoluteness are independent notions.

**Lemma 2.4** ([3]). Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be an open surjective function. 1) If  $A \subseteq X$ , then  $f(\operatorname{int}_{\tau_{\omega}}(A)) \subseteq \operatorname{int}_{\sigma_{\omega}} f(A)$ . 2) If  $U \in \tau_{\omega}$ , then  $f(U) \in \sigma_{\omega}$ .

**Theorem 2.5.** Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be an open surjection and let  $g : (Y, \sigma) \longrightarrow (Z, \rho)$  such that  $g \circ f : (X, \tau) \longrightarrow (Z, \rho)$  is weakly  $\omega$ -continuous. Then g is weakly  $\omega$ -continuous.

*Proof.* Let  $y \in Y$  and let  $V \in \rho$  with  $g(y) \in V$ . Choose  $x \in X$  such that f(x) = y. Since  $g \circ f$  is weakly  $\omega$ -continuous, there exists  $U \in \tau_{\omega}$  with  $x \in U$  and  $g(f(U)) \subset \operatorname{cl}_{\sigma_{\omega}}(V)$ . But f is open, therefore by Lemma 2.4,  $f(U) \in \sigma_{\omega}$  with  $f(x) \in f(U)$  and the result follows.

**Theorem 2.6.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be topological spaces where  $(Y, \sigma)$  is locally countable. Then the projection  $p_X : (X \times Y, \tau \times \sigma) \to (X, \tau)$  is  $\omega$ -irresolute.

*Proof.* Let  $(x, y) \in X \times Y$  and let V be an  $\omega$ -open subset of  $(X, \tau)$  such that  $p_X(x, y) = x \in V$ . Choose  $U \in \tau$  and a countable open subset W of  $(Y, \sigma)$  such that  $y \in W$ ,  $x \in U$  and U - Vis countable. Since  $U \times W - V \times Y = (U - V) \times W$  is countable,  $V \times Y \in (\tau \times \sigma)_{\omega}$  and so  $B = p_X^{-1}(U) \cap (V \times Y) = (U \cap V) \times Y \in (\tau \times \sigma)_{\omega}$ . Now  $(x, y) \in B$  and  $p_X(B) = U \cap V \subseteq V$ . Therefore  $p_X$  is  $\omega$ -irresolute.

To show that the condition  $(Y, \sigma)$  is locally countable in Theorem 2.6 is essential we consider the following example.



**Example 2.7.** Consider the projection  $p : (\mathbb{R} \times \mathbb{R}, \tau_u \times \tau_u) \to (\mathbb{R}, \tau_u)$  and let  $A = \mathbb{R} - \mathbb{Q}$ . Then A is  $\omega$ -open in  $(\mathbb{R}, \tau_u)$  while  $p^{-1}(A) = (\mathbb{R} - \mathbb{Q}) \times \mathbb{R}$  is not  $\omega$ -open in  $(\mathbb{R} \times \mathbb{R}, \tau_u \times \tau_u)$ . Thus p is not  $\omega$ -irresolute.

**Corollary 2.8.** Let  $\Delta$  be a countable set and let  $f_{\alpha} : (X_{\alpha}, \tau_{\alpha}) \longrightarrow (Y_{\alpha}, \sigma_{\alpha})$  be a function for each  $\alpha \in \Delta$ . If the product function  $f = \prod_{\alpha \in \Delta} f_{\alpha} : \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow \prod_{\alpha \in \Delta} Y_{\alpha}$  is weakly  $\omega$ -continuous and  $(Y_{\alpha}, \sigma_{\alpha})$  is locally countable for each  $\alpha \in \Delta$ , then  $f_{\alpha}$  is weakly  $\omega$ -continuous for each  $\alpha \in \Delta$ .

Proof. For each  $\beta \in \Delta$ , we consider the projections  $p_{\beta} : \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow X_{\beta}$  and  $q_{\beta} : \prod_{\alpha \in \Delta} Y_{\alpha} \longrightarrow Y_{\beta}$ . Then we have  $q_{\beta} \circ f = f_{\beta} \circ p_{\beta}$  for each  $\beta \in \Delta$ . Since f is weakly  $\omega$ -continuous and  $q_{\beta}$  is  $\omega$ -irresolute (Theorem 2.6) for each  $\beta \in \Delta$ ,  $q_{\beta} \circ f$  is weakly  $\omega$ -continuous and hence  $f_{\beta} \circ p_{\beta}$  is weakly  $\omega$ -continuous. Thus  $f_{\beta}$  is weakly  $\omega$ -continuous by Theorem 2.5.

The following example shows that the converse of Corollary 2.8 is not true in general.

**Example 2.9.** Let  $X = \mathbb{R}$  with the topology  $\tau = \{U : U \subseteq \mathbb{Q}\} \cup \{\mathbb{R}\}$  and let  $Y = \{0, 1, 2\}$  with the topology  $\sigma = \{\emptyset, Y, \{0\}, \{1, 2\}\}$ . Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be the function defined by

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 0 & \text{for } x \in \mathbb{Q}. \end{cases}$$

One can easily show that f is weakly  $\omega$ -continuous. However, the product function  $h = f \times f$ :  $\mathbb{R} \times \mathbb{R} \longrightarrow Y \times Y$  defined by h(x,t) = (f(x), f(t)) for all  $x, t \in \mathbb{R}$  is not weakly  $\omega$ -continuous. Let  $(x,t) \in (\mathbb{R} - \mathbb{Q}) \times (\mathbb{R} - \mathbb{Q})$ . Then h(x,t) = (f(x), f(t)) = (1,1). Take  $V = \{1,2\} \times \{1,2\}$ . Then  $V \in \sigma \times \sigma$  with  $h(x,t) \in V$ . Suppose there exists  $U \in (\tau \times \tau)_{\omega}$  such that  $(x,t) \in U$  and  $h(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V) = V$ . Therefore  $U \subseteq (\mathbb{R} - \mathbb{Q}) \times (\mathbb{R} - \mathbb{Q})$ . Note that the only open set containing (x,t) is  $\mathbb{R} \times \mathbb{R}$  and so  $(\mathbb{R} \times \mathbb{R}) - U$  is countable. Thus

$$(\mathbb{R} \times \mathbb{Q}) \cup (\mathbb{Q} \times \mathbb{R}) = (\mathbb{R} \times \mathbb{R}) - ((\mathbb{R} - \mathbb{Q}) \times (\mathbb{R} - \mathbb{Q})) \subseteq (\mathbb{R} \times \mathbb{R}) - U,$$

a contradiction.

Quit

Go back

Full Screen

Close



To see that the conditions in Corollary 2.8 are essential we consider the following examples.

**Example 2.10.** (a) Let  $X = \mathbb{R}$  with the topologies  $\tau = \tau_u, \rho = \{\emptyset, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$  and  $\mu = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \rho)$  be the function given by f(x) = 1 for all  $x \in \mathbb{R}$  and let  $g : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \mu)$  be the function defined by

$$g(x) = \begin{cases} \sqrt{2} & \text{for } x \in \mathbb{R} - \mathbb{Q}, \\ 0 & \text{for } x \in \mathbb{Q}. \end{cases}$$

One can easily show that f is weakly  $\omega$ -continuous while g is not. To show that  $f \times g$  is weakly  $\omega$ -continuous, let  $(x, y) \in \mathbb{R} \times \mathbb{R}$  and let  $W \in \sigma \times \mu$  such that  $(f \times g)(x, y) \in W$ . There exists a basic open set V in  $(\mathbb{R} \times \mathbb{R}, \rho \times \mu)$  such that  $(f \times g)(x, y) \in \{(1, 0), (1, \sqrt{2})\} \subseteq V \subseteq W$ . Therefore  $V \in \{\mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{Q}\}$ . To complete the proof it is enough to show that  $\operatorname{cl}_{(\rho \times \mu)_{\omega}}(\mathbb{R} \times \mathbb{Q}) = \mathbb{R} \times \mathbb{R}$ . Suppose there exists  $(s, t) \in \mathbb{R} \times \mathbb{R} - \operatorname{cl}_{(\rho \times \mu)_{\omega}}(\mathbb{R} \times \mathbb{Q})$ . Then there exist  $W \in (\sigma \times \mu)_{\omega}$  and a basic open set U in  $(\mathbb{R} \times \mathbb{R}, \rho \times \mu)$  such that  $(s, t) \in W \cap U$ ,  $W \cap (\mathbb{R} \times \mathbb{Q}) = \emptyset$  and U - W is countable. Therefore  $W \subseteq \mathbb{R} \times (\mathbb{R} - \mathbb{Q})$  and  $U \in \{\mathbb{R} \times \mathbb{R}, (\mathbb{R} - \mathbb{Q}) \times \mathbb{R}\}$ . Thus  $U - (\mathbb{R} \times (\mathbb{R} - \mathbb{Q}))$  is countable, a contradiction.

(b) Let  $X = \mathbb{R}$  with the topology  $\tau = \tau_u$  and  $Y = \{1, \sqrt{2}\}$  with the topology  $\sigma = \{\emptyset, Y, \{1\}\}$ . Let  $f: (X, \tau) \longrightarrow (Y, \sigma)$  be the function defined by

$$f(x) = \begin{cases} \sqrt{2} & \text{for } x \in \mathbb{R} - \mathbb{Q} \\ 0 & \text{for } x \in \mathbb{Q}. \end{cases}$$

Then f is not weakly  $\omega$ -continuous. Let  $\Delta$  be an uncountable set and let  $X_{\alpha} = X$  and  $Y_{\alpha} = Y$  for all  $\alpha \in \Delta$ . Then the product function

$$h = \prod_{\alpha \in \Delta} f_{\alpha} : \prod_{\alpha \in \Delta} X_{\alpha} \longrightarrow \prod_{\alpha \in \Delta} Y_{\alpha}$$





is weakly  $\omega$ -continuous where  $f_{\alpha} = f$  for all  $\alpha \in \Delta$ . We show that if B is a basic open set in  $\prod_{\alpha \in \Delta} Y_{\alpha}$ , then  $\operatorname{cl}_{(\sigma_p)_{\omega}}(B) = \prod_{\alpha \in \Delta} Y_{\alpha}$ , where  $\sigma_p$  is the product topology on  $\prod_{\alpha \in \Delta} Y_{\alpha}$ . Suppose by contrary that there exists  $y \in \prod_{\alpha \in \Delta} Y_{\alpha} - \operatorname{cl}_{(\sigma_p)_{\omega}}(B)$ . Note that  $B = \prod_{\alpha \in \Delta} B_{\alpha}$  where  $B_{\alpha} = Y_{\alpha}$  for all but finitely many  $\alpha \in \Delta$ , say  $\alpha_1, \alpha_2, \ldots, \alpha_n$ . Therefore

$$B_{\alpha_1}=B_{\alpha_2}=\ldots=B_{\alpha n}=\{1\}.$$

Now choose  $W \in (\sigma_p)_{\omega}$  and a basic open set  $V = \prod \alpha \in \Delta V_{\alpha}$  in  $\prod_{\alpha \in \Delta} Y_{\alpha}$  such that  $x \in W \cap V$ ,  $W \cap B = \emptyset$ , and V - W is countable. Thus

$$\emptyset \neq B \cap V = \prod_{\alpha \in \Delta} (B_{\alpha} \cap V_{\alpha}) \subseteq V - W,$$

a contradiction.

**Theorem 2.11.** Let  $f : (X, \tau) \longrightarrow (Y_1 \times Y_2, \sigma_1 \times \sigma_2)$  be a weakly  $\omega$ -continuous function, where  $(X, \tau)$ ,  $(Y_1, \sigma_1)$  and  $(Y_2, \sigma_2)$  are topological spaces. Let  $f_i : (X, \tau) \longrightarrow (Y_i, \sigma_i)$  be defined as  $f_i = P_i \circ f$  for i = 1, 2.

- (a) If  $f_i$  is weakly  $\omega$ -continuous for i = 1, 2, then f is weakly  $\omega$ -continuous.
- (b) If  $(Y_1, \sigma_1)$  and  $(Y_2, \sigma_2)$  are locally countable spaces and f is weakly  $\omega$ -continuous, then  $f_i$  is weakly  $\omega$ -continuous for i = 1, 2.

*Proof.* (a) Let  $x \in X$  and let V be an open in  $(Y_1 \times Y_2, \sigma_1 \times \sigma_2)$  such that  $f(x) \in V$ . There exist  $V_1 \in \sigma_1$  and  $V_2 \in \sigma_2$  such that

$$f(x) = (f_1(x), f_2(x)) \in V_1 \times V_2 \subseteq V.$$

Now

$$(P_i \circ f)(x) = P_i(f_1(x), f_2(x)) = f_i(x) \in V_i \text{ for } i = 1, 2$$





Go back

Full Screen

Close

Quit

and so there exist  $U_1, U_2 \in \tau_{\omega}$  such that

$$f_i(U_i) = (P_i \circ f)(U_i) \subseteq \operatorname{cl}_{\sigma_\omega}(V_i).$$

Put  $U = U_1 \cap U_2$ . Then  $U \in \tau_{\omega}$  such that  $x \in U$  and

$$f(U) = (f_1(U), f_2(U)) \subseteq \operatorname{cl}_{(\sigma_1)_{\omega}}(V_1) \times \operatorname{cl}_{(\sigma_2)_{\omega}}(V_2) \subseteq \operatorname{cl}_{(\sigma_1 \times \sigma_2)_{\omega}}(V)$$

by Lemma 0.5. Thus f is weakly  $\omega$ -continuous.

(b) This follows from Theorem 2.6 and Theorem 2.2.

To see that the condition put on  $(Y_1, \sigma_1)$  and  $(Y_2, \sigma_2)$  to be locally countable in Theorem 2.11 part (b) is essential we consider the functions f and g as given in Example 2.10 part (a). Then the function  $h : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R} \times \mathbb{R}, \mu \times \rho)$  defined by h(x) = (f(x), g(x)) is weakly  $\omega$ -continuous while g is not.

**Theorem 2.12.** Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be a function with  $g : (X, \tau) \longrightarrow (X \times Y, \tau \times \sigma)$ denoting the graph function of f defined by g(x) = (x, f(x)) for every point  $x \in X$ . If f is weakly  $\omega$ -continuous, then g is weakly  $\omega$ -continuous.

*Proof.* Let  $x \in X$  and let  $W \in \tau \times \sigma$  with  $g(x) \in W$ . Then there exist  $U \in \tau$  and  $V \in \sigma$  such that  $g(x) = (x, f(x)) \in U \times V \subseteq W$ . Since f is weakly  $\omega$ -continuous there exists  $U_1 \in \tau_{\omega}$  with  $x \in U_1$  and  $f(U_1) \subseteq \operatorname{cl}_{\sigma_{\omega}}(V)$ . Put  $U = U \cap U_1$ . Then  $U \in \tau_{\omega}$  with  $x \in U$  and

$$g(U) = g(U \cap U_1) = (U \cap U_1, f(U \cap U_1)) \subseteq U \times f(U_1)$$
$$\subseteq \operatorname{cl}_{\tau_\omega}(U) \times \operatorname{cl}_{\sigma_\omega}(V) \subseteq \operatorname{cl}_{(\tau \times \sigma)_\omega}(U \times V) \subseteq \operatorname{cl}_{(\tau \times \sigma)_\omega}(W)$$

by Lemma 0.5.

The following example shows that the convese of Theorem 2.12 is not true in general.



**b** | **b** 

Go back

Full Screen

Close

Quit

**Example 2.13.** Let  $X = Y = \mathbb{R}$  with the topologies  $\tau = \{\emptyset, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ , and  $\sigma = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (\mathbb{R}, \sigma)$  be the function defined by

$$f(x) = \begin{cases} \sqrt{2} & \text{for } x \in \mathbb{R} - \mathbb{Q}, \\ 0 & \text{for } x \in \mathbb{Q}. \end{cases}$$

Then f is not weakly  $\omega$ -continuous. On the other hand, the graph function g is weakly  $\omega$ -continuous since  $\operatorname{cl}_{(\tau \times \sigma)_{\omega}}(\mathbb{R} \times \mathbb{Q}) = \operatorname{cl}_{(\tau \times \sigma)_{\omega}}((\mathbb{R} - \mathbb{Q}) \times \mathbb{R}) = \mathbb{R} \times \mathbb{R}$  (see Example 2.10 part (a))

The following results follow immediately from the definitions and Lemma 0.3.

**Theorem 2.14.** Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be a function.

- (a) If f is weakly  $\omega$ -continuous and A a subset of X, then the restriction  $f|_A : (A, \tau_A) \longrightarrow (Y, \sigma)$  is weakly  $\omega$ -continuous.
- (b) Let  $x \in X$ . If there exists an  $\omega$ -open subset A of X containing x such that  $f|_A : (A, \tau_A) \longrightarrow (Y, \sigma)$  is weakly  $\omega$ -continuous at x, then f is weakly  $\omega$ -continuous at x.
- (c) If  $U = \{U_{\alpha} : \alpha \in \Delta\}$  is an  $\omega$ -open cover of X, then f is weakly  $\omega$ -continuous if and only if  $f|_{U_{\alpha}}$  is weakly  $\omega$ -continuous for all  $\alpha \in \Delta$ .

The following example shows that the assumption A is  $\omega$ -open in Theorem 2.14 part (b) can not be replaced by the statement A is  $\omega$ -closed.

**Example 2.15.** Let  $X = \mathbb{R}$  with the topology  $\tau_u$  and let  $Y = \{0, 1\}$  with the topology  $\sigma = \{\emptyset, Y, \{1\}\}$ . Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be the function defined by

$$f(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} - \mathbb{Q}, \\ 1 & \text{for } x \in \mathbb{Q}. \end{cases}$$

Then  $f|_{\mathbb{Q}}$  is weakly  $\omega$ -continuous, but f is not.



**Theorem 2.16.** Let  $(X, \tau)$  be an anti-locally countable space. Then  $(X, \tau)$  is Hausdroff if and only if  $(X, \tau_{\omega})$  is Hausdroff.

*Proof.* We need to show the sufficiency part only. Let  $x, y \in X$  with  $x \neq y$ . Since  $(X, \tau_{\omega})$  is a Hausdroff space, there exist  $W_x, W_y \in \tau_{\omega}$  such that  $x \in W_x, y \in W_y$  and  $W_x \cap W_y = \emptyset$ . Choose  $V_x, V_y \in \tau$  such that  $x \in V_x, y \in V_y, V_x - W_x = C_x$ , and  $V_y - W_y = C_y$  where  $C_x$  and  $C_y$  are countable sets. Thus

 $V_{x} \cap V_{y} \subseteq (C_{x} \cup W_{x}) \cap (C_{y} \cup W_{y}) \subseteq C_{x} \cup C_{y}.$ 

Since  $(X, \tau)$  is anti-locally countable, then  $V_x \cap V_y = \emptyset$  and the result follows.

Theorem 2.16 is no longer true if the assumption of being anti-locally countable is omitted. To see that we consider the space  $(\mathbb{N}, \tau_{cof})$  where  $\tau_{cof}$  is the cofinite topology. Then  $(\mathbb{N}, \tau_{cof})$  is not anti-locally countable. On the other hand,  $(\mathbb{N}, (\tau_{cof})_{\omega}) = (\mathbb{N}, \tau_{dis})$  is a Hausdroff space, but  $(\mathbb{N}, \tau_{\rm cof})$  is not.

**Theorem 2.17.** Let  $(A, \tau_A)$  be a subspace of a space  $(X, \tau)$ . If the retraction function f:  $(X,\tau) \longrightarrow (A,\tau_A)$  defined by f(x) = x for all  $x \in A$  is weakly  $\omega$ -continuous and  $(X,\tau)$  is a Hausdroff space, then A is  $\omega$ -closed.

*Proof.* Suppose A is not  $\omega$ -closed. Then, there exists  $x \in cl_{\tau_{\alpha}}(A) - A$ . Since f is a retraction function,  $x \neq f(x)$  and so there exist two disjoint open sets U and V in  $(X, \tau)$  such that  $x \in U$ and  $f(x) \in V$ . Thus  $U \cap cl_{\tau_{\alpha}}(V) \subseteq U \cap cl(V) = \emptyset$ . Now let W be an  $\omega$ -open set in  $(X, \tau)$  such that  $x \in W$ . Then  $U \cap W$  is an  $\omega$ -open set in  $(X, \tau)$  containing x and so  $U \cap W \cap A \neq \emptyset$ . Choose  $y \in U \cap W \cap A$ . Then  $y = f(y) \in U$  and so  $f(y) \notin cl_{\tau_{u}}(V)$ , i.e. f(W) is not a subset of  $cl_{\tau_{u}}(V)$ . Thus f is not weakly  $\omega$ -continuous at x, a contradiction. Thus A is  $\omega$ -closed. 

**Theorem 2.18.** If  $(X, \tau)$  is a connected anti-locally countable space and  $f: (X, \tau) \longrightarrow (Y, \sigma)$ is a weakly  $\omega$ -continuous surjection function, then  $(Y, \sigma)$  is connected.





 Image: Close

Quit

*Proof.* At first we show that if V is a clopen subset of  $(Y, \sigma)$ , then  $f^{-1}(V)$  is clopen in  $(X, \tau)$ . Let V be a clopen subset of  $(Y, \sigma)$ . Then by Proposition 1.4,

 $f^{-1}(V) \subset \operatorname{int}_{\tau_{\omega}}(f^{-1}(\operatorname{cl}_{\sigma_{\omega}}(V))) \subseteq \operatorname{int}_{\tau_{\omega}}(f^{-1}(\operatorname{cl}_{\sigma}(V))) = \operatorname{int}_{\tau_{\omega}}(f^{-1}(V)).$ 

Thus  $f^{-1}(V)$  is  $\omega$ -open in  $(X, \tau)$  and so, by Lemma 0.4,

$$\operatorname{cl}_{\tau}(f^{-1}(V)) = \operatorname{cl}_{\tau_{\omega}}(f^{-1}(V)).$$

Now we show that  $f^{-1}(V)$  is  $\omega$ -closed in  $(X, \tau)$ . Suppose by contrary that there exists  $x \in cl_{\tau_{\omega}}(f^{-1}(V)) - f^{-1}(V)$ . Since f is weakly  $\omega$ -continuous and Y - V is an open set in  $(Y, \sigma)$  containing f(x), there exists  $U \in \tau_{\omega}$  such that  $x \in U$  and

$$f(U) \subseteq \operatorname{cl}_{\sigma_{\omega}}(Y - V) = Y - V.$$

But  $x \in cl_{\tau_{\omega}}(f^{-1}(V))$  and so  $U \cap f^{-1}(V) \neq \emptyset$ . Therefore,

$$\emptyset \neq f(U) \cap V \subseteq V \cap (Y - V),$$

a contradiction. Thus  $f^{-1}(V)$  is  $\omega$ -closed in  $(X, \tau)$  and so

$$cl_{\tau}(f^{-1}(V)) = cl_{\tau_{\omega}}(f^{-1}(V)) = f^{-1}(V),$$

i.e.,  $f^{-1}(V)$  is closed in  $(X, \tau)$ . Also by using Lemma 0.4,

$$\operatorname{int}_{\tau} f^{-1}(V) = \operatorname{int}_{\tau_{\omega}}(f^{-1}(V)) = f^{-1}(V),$$

i.e.,  $f^{-1}(V)$  is open in  $(X, \tau)$ .

Now suppose that  $(Y, \sigma)$  is not connected. Then, there exist nonempty open sets  $V_1$  and  $V_2$ in  $(Y, \sigma)$  such that  $V_1 \cap V_2 = \emptyset$  and  $V_1 \cup V_2 = Y$ . Hence we have  $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$  and  $f^{-1}(V_1) \cup f^{-1}(V_2) = X$ . Since f is surjective,  $f^{-1}(V_j) \neq \emptyset$  for j = 1, 2. Since  $V_j$  is clopen in  $(Y, \sigma)$ , then  $f^{-1}(V_j)$  is open in  $(X, \tau)$  for j = 1, 2. This implies that  $(X, \tau)$  is not connected, a contradiction. Therefore,  $(Y, \sigma)$  is connected.  $\Box$ 



Theorem 2.18 is no longer true if the assumption of being anti-locally countable is omitted. To see that we consider the following example.

**Example 2.19.** Let  $X = \mathbb{R}$  with the topology  $\tau = \{U \subseteq \mathbb{R} : \mathbb{Q} \subseteq U\} \cup \{\emptyset\}$  and let  $Y = \{0, 1, 2\}$  with the topology  $\rho = \{\emptyset, Y, \{1\}, \{0, 2\}\}$ . Let  $f : (\mathbb{R}, \tau) \longrightarrow (Y, \sigma)$  be the function defined by

|                  | (1 | for $x \in \mathbb{R} - \mathbb{Q}$ , |
|------------------|----|---------------------------------------|
| $f(x) = \langle$ | 2  | for $x \in \mathbb{Q} - \{0\}$ ,      |
|                  | 0  | for $x = 0$ .                         |

Then f is weakly  $\omega$ -continuous surjection,  $(X, \tau)$  is connected but not anti-locally countable, and  $(Y, \sigma)$  is not connected.

Recall that a space  $(X, \tau)$  is called almost Lindelöf [10] if whenever  $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$  is an open cover of  $(X, \tau)$  there exists a countable subset  $I_0$  of I such that  $X = \bigcup_{\alpha \in I_0} \operatorname{cl}(U_{\alpha})$ .

In [7, Theorem 4.1], Hdeib shows that a space  $(X, \tau)$  is Lindelöf if and only if  $(X, \tau_{\omega})$  is Lindelöf.

**Theorem 2.20.** For any space  $(X, \tau)$ , the following items are equivalent

- (a)  $(X, \tau_{\omega})$  is almost Lindelöf.
- (b) For every open cover  $\mathcal{W} = \{W_{\alpha} : \alpha \in I\}$  of  $(X, \tau)$  there exists a countable subset  $I_0$  of I such that  $X = \bigcup_{\alpha \in I_0} \operatorname{cl}_{\tau_{\omega}}(W_{\alpha})$ .

*Proof.* We need to prove (b) implies (a). Let  $\mathcal{W}$  be an open cover of  $(X, \tau_{\omega})$ . For each  $x \in X$  we choose  $W_x \in \mathcal{W}$  and an open set  $U_x$  in  $(X, \tau)$  such that  $x \in W_x$  and  $U_x - W_x = C_x$  is countable. Therefore the collection  $\mathcal{U} = \{U_x : x \in X\}$  is an open cover of  $(X, \tau)$  and so, by assumption, it contains a countable subfamily  $\mathcal{U}^* = \{U_{xn} : n \in \mathbb{N}\}$  such that  $X = \bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_\omega}(U_{xn})$ . But  $\bigcup_{n \in \mathbb{N}} C_{xn}$  is a countable subset of X and we can choose a countable subfamily  $\mathcal{W}^*$  of  $\mathcal{W}$  such that

$$\bigcup_{n\in\mathbb{N}}C_{xn}=\bigcup_{n\in\mathbb{N}}\mathrm{cl}_{\tau_{\omega}}(C_{xn})\subseteq\cup\{W:W\in\mathcal{W}^*\}.$$





Then

$$X = \bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(U_{xn}) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(W_{xn} \cup C_{xn})$$
$$= \left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(W_{xn})\right) \cup \left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(C_{xn})\right)$$
$$\subseteq \left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(W_{xn})\right) \cup \left(\bigcup_{W \in \mathcal{W}^{*}} W\right)$$
$$\subseteq \left(\bigcup_{n \in \mathbb{N}} \operatorname{cl}_{\tau_{\omega}}(W_{xn})\right) \cup \left(\bigcup_{W \in \mathcal{W}^{*}} \operatorname{cl}_{\tau_{\omega}}(W)\right).$$

Thus  $(X, \tau_{\omega})$  is almost Lindelöf.

It is clear that if  $(X, \tau_{\omega})$  is almost Lindelöf, then  $(X, \tau)$  is almost Lindelöf. To see that the converse is not true, in general; we consider the space  $(X, \tau)$  where  $X = \mathbb{R}$  and  $\tau = \{U : \mathbb{Q} \subseteq U\} \cup \{\emptyset\}$ . Then  $(X, \tau)$  is almost Lindelöf since  $cl(\mathbb{Q}) = \mathbb{R}$ . On the other hand,  $\tau_{\omega} = \tau_{disc}$  and so  $(X, \tau_{\omega})$  is not almost Lindelöf.

**Corollary 2.21.** Let  $(X, \tau)$  be an anti-locally countable space. Then  $(X, \tau)$  is almost Lindelöf if and only if  $(X, \tau_{\omega})$  is almost Lindelöf.

**Theorem 2.22.** Let  $f : (X, \tau) \longrightarrow (Y, \sigma)$  be a weakly  $\omega$ -continuous function from a Lindelöf space  $(X, \tau)$  onto a space  $(Y, \sigma)$ . Then  $(Y, \sigma_{\omega})$  is almost Lindelöf.

*Proof.* Let  $\mathcal{V}$  be an open cover of  $(Y, \sigma)$ . For each  $x \in X$  choose  $V_x \in \mathcal{V}$  such that  $f(x) \in V_x$ . Since f is weakly  $\omega$ -continuous, there exists an  $\omega$ -open set  $U_x$  in  $(X, \tau)$  such that  $x \in U_x$  and  $f(U_x) \subseteq \operatorname{cl}_{\sigma_\omega}(V_x)$ . Therefore the collection  $\mathcal{U} = \{U_x : x \in X\}$  is an  $\omega$ -open cover of the





Lindelöf space  $(X, \tau)$ , and so it contains a countable subfamily  $\mathcal{U}^* = \{U_{xn} : n \in \mathbb{N}\}$  such that  $X = \bigcup_{n \in \mathbb{N}} U_{xn}$ .

Thus

$$Y = f(X) = f\left(\bigcup_{n \in \mathbb{N}} U_{xn}\right) = \bigcup_{n \in \mathbb{N}} f(U_{xn}) \subseteq \bigcup_{n \in \mathbb{N}} \mathrm{cl}_{\sigma_{\omega}}(V_{xn})$$

Therefore  $(Y, \sigma_{\omega})$  is almost Lindelöf by Theorem 2.20.

1. Al-Ghour S., Certain covering properties related to paracompactness, Ph. D. thesis, University of Jordan 1999.

- 2. Al-Zoubi K., Semi ω-continuous functions, Abhath Al-Yarmouk, 12 (1) (2003), 119–131.
- 3. \_\_\_\_\_, On generalized ω-closed sets, Internat. J. Math. & Math. Sci., 13 (2005), 2011–2021.
- 4. Al-Zoubi K. and Al-Nashef B., The topology of  $\omega$ -open subsets, Al-Manarah, 9(2) (2003), 169–179.
- 5. Fomin S.V., Extensions of topological spaces, Ann. of Math. 44 (1943), 471-480.
- 6. Hdeib H., ω-continuous functions, Dirasat 16 (1989), 136–142.
- 7. Hdeib H., ω-closed mappings, Revista Colomb. De Matem. XVI (1982), 65-78.
- 8. Levine N., A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
- Pareek C. M., Hereditarly Lindelof and hereditarly almost Lindelof spaces, Math. Japonica, 30(4) (1985), 635–639.
- 10. Willard S. and Dissanayake U. N. B., The almost Lindelöf degree, Canad. Math.Bull., 27(4) (1984).

K. Al-Zoubi, Department of Mathematics, Faculty of science, Yarmouk University, Irbid-Jordan, e-mail: Khalidz@yu.edu.jo

H. Al-Jarah, Department of Mathematics, Faculty of science, Yarmouk University, Irbid-Jordan, e-mail: hiamaljarah@yahoo.

Full Screen

Go back

Close