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SYMMETRIC BOOLEAN ALGEBRAS

R. DÍAZ and M. RIVAS

Abstract. In order to study Boolean algebras in the category of vector spaces we introduce a prop

whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean
algebras is provided. An advantage of defining Boolean algebras in the linear category is that we
are able to study its symmetric powers. We give an explicit formulae for products in symmetric and
cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion
principle.

Fix k a field of characteristic zero. A fundamental fact is the existence of the functor

( ) : Set −→ Vect,

from the category of sets to the category of k-vector spaces, that sends x into x the free k-vector
space generated by x, and sends a map f : x → y to the linear transformation f : x → y whose
value at i ∈ x is f(i). Notice that both Set and Vect are symmetric monoidal categories with
coproducts and that ( ) is a monoidal functor that respects coproducts. The monoidal structure
on Set is the Cartesian product × and the coproduct is the disjoint union t. The monoidal
structure on Vect is the tensor product ⊗ and the coproduct is the direct sum ⊕. Notice also
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that the restricted functor ( ) : set → vect from finite sets to finite dimensional vector spaces
is such that the dimension dim(x) of x is equal to the cardinality |x| of x. Using ( ) one can
transform (combinatorial) set theoretical notions into (finite dimensional) linear algebra notions.
For example, if x is a monoid, then x carries the structure of an associative algebra. Similarly,
if x is a group, then x carries a structure of a Hopf algebra. Thus associative algebras and Hopf
algebras are the linear analogues of monoids and groups, respectively.

Our main goal in this work is to uncover the linear analogue for Boolean algebras, i.e. we propose
an answer to the question: what is the natural algebraic structure on B if B is a Boolean algebra?
Boolean algebras [5, 17, 20] has been known at least since 1854 and constitute a cornerstone
of modern mathematics. For most mathematicians the word algebra implies a linear structure,
a property that is not present in the traditional definition of Boolean algebras. In this work the
the presence or absence of a linear structure is the most important issue, thus we call our objects
of study linear Boolean algebras to distinguish them from proper Boolean algebras. Thus by
definition if B is a Boolean algebra, then B is a linear Boolean algebra. Our second goal in this
work is to study the symmetric powers of linear Boolean algebras. We compute the structural
constants of such algebras in various dimensions, and show that each symmetric function can be
used for formulating generalization of the inclusion-exclusion principle for the symmetric powers
of linear Boolean algebra. Our third goal is to propose a logical interpretation for linear Boolean
algebras.

This work is organized as follows. In Section 1 we introduce the axioms for linear Boolean
algebras and show that the linear span of a Boolean algebra is a linear Boolean algebra. The main
difficulty lies in choosing the structural operations present in linear Boolean algebras. In Section 2
we motivate our choice of axioms for linear Boolean algebras. What we do is to construct a prop
Boole such that Boole-algebras in Vect are linear Boolean algebras. The prop Boole is the linear
span of the prop Boole in Set, and one can show that Boole-algebras in Set are precisely Boolean
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algebras. Once we have a solid definition of linear Boolean algebras we proceed to study some of the
properties of this kind of mathematical entities. In Section 3 we discuss the logical interpretation
of linear Boolean algebras. We show that they are naturally related to probabilistic logic. The
advantage of working in the linear category is that we can make use of many powerful techniques
available in linear algebra. In Section 4 and 5 we apply Polya functors as defined in [10] to linear
Boolean algebras, in particular, we study symmetric and cyclic powers of linear Boolean algebras.
In Section 6 we close providing an extension of the inclusion-exclusion principle that applies to the
symmetric products of Boolean algebras.

1. Linear Boolean algebras

We recall the definition of Boolean algebras for definiteness and for the reader convenience, so that
he or she may contrast it with the definition of linear Boolean algebras given below. We have
chosen axioms that make transparent that Boolean algebras are a particular kind of lattices. Thus
a linear analogue for lattices can be readily obtained from the definition of linear Boolean algebras
given below. The reader should notice that while the definition of Boolean algebras involve five
structural maps, the definition of linear Boolean algebras involve seven structural maps, including
quite unexpectedly, a coproduct.

A Boolean algebra is a set B together with the following data:

1. Maps ∪ : B ×B → B, ∩ : B ×B → B, and c : B → B called a union, an intersection and a
complement, respectively.

2. Distinguished elements e, t ∈ B called the empty and total elements, respectively.

This data should satisfy the following identities for a, b, c ∈ B:

• a ∪ b = b ∪ a, a ∩ b = b ∩ a.
• a ∪ (b ∪ c) = (a ∪ b) ∪ c, a ∩ (b ∩ c) = (a ∩ b) ∩ c.
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• a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c).
• a ∪ (a ∩ b) = a, a ∩ (a ∪ b) = a.
• a ∪ e = a, a ∩ t = a, a ∪ ac = t, a ∩ ac = e.

To any set x one can associate the Boolean algebra P (x) = {a | a ⊆ x} where the total element
is x and the empty element is ∅, a ∪ b = {i ∈ x | i ∈ a or i ∈ b}, ac = {i ∈ x | i /∈ a}, and
a ∩ b = {i ∈ x | i ∈ a and i ∈ b}. Let [n] = {1, . . . , n} and Sn be the group of permutations of [n].
We will always write P [n] instead of P ([n]). Algebras of the form P (x) are essentially the unique
models of finite Boolean algebras according to the following well-known result.

Proposition 1. Every finite Boolean algebra is isomorphic to P (x) for a finite set x.

Indeed let B be a Boolean algebra. Define a partial order ≤ on B by letting a ≤ b if a ∩ b = a.
Let x be the set of primitive elements or atoms of B, that is, we have

x = {a ∈ A | a 6= e and if b ≤ a then b = e or b = a}.
The map f : B → P (x) given by f(b) = {a ∈ x | a ≤ b} defines the desired isomorphism.

Another interesting property of Boolean algebras is the following: if B and C are Boolean
algebras, then B × C is also a Boolean algebra. Moreover one can show that P (x) is isomorphic
to P [1]|x|.

For a k-vector space V we shall use the symmetry map S : V ⊗V → V ⊗V given by S(x⊗ y) =
y ⊗ x for x, y ∈ V . We denote the identity map by I : V → V . We are ready to define the linear
analogue of the notion of Boolean algebras.

Definition 2. A linear Boolean algebra is a k-vector space V together with the data:
1. Linear maps ∪ : V ⊗V → V , ∩ : V ⊗V → V , and c : V → V called a union, an intersection

and a complement, respectively.
2. Linear maps T : k → V , E : k → V called the empty map and the total map, respectively.
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3. Linear map 4 : V → V ⊗ V called a coproduct.
4. Linear map ev : V → k called the evaluation map.

The axioms below must hold:
• ∪ = ∪ ◦ S, ∩ = ∩ ◦ S.
• ∪ ◦ (∪ ⊗ I) = ∪ ◦ (I ⊗ ∪), ∩ ◦ (∩ ⊗ I) = ∩ ◦ (I ⊗ ∩).
• ∩ ◦ (I ⊗ ∪) = ∪ ◦ (∩ ⊗ ∩) ◦ (I ⊗ S ⊗ I) ◦ (4⊗ I ⊗ I),
∪ ◦ (I ⊗ ∩) = ∩ ◦ (∪ ⊗ ∪) ◦ (I ⊗ S ⊗ I) ◦ (4⊗ I ⊗ I).
• ∩ ◦ (I ⊗ ∪) ◦ (4⊗ I) = I ⊗ ev, ∪ ◦ (I ⊗ ∩) ◦ (4⊗ I) = I ⊗ ev.
• ∪ ◦ (I ⊗ E) = I, ∩ ◦ (I ⊗ T ) = I,
∩ ◦ (I ⊗ c) ◦ 4 = E ◦ ev, ∪ ◦ (I ⊗ c) ◦ 4 = T ◦ ev.
• (4⊗ I) ◦ 4 = (I ⊗4) ◦ 4.
• S ◦ 4 = 4.

Our next result guarantees the existence of infinitely many models of linear Boolean algebras,
namely those naturally associated with Boolean algebras.

Proposition 3. If B is a Boolean algebra, then B is a linear Boolean algebra.

Proof. The structural maps on B are given as follows. The intersection, the union and the
complement are the linear extensions of the corresponding maps on B. The coproduct is given by:

4

(∑
a∈B

vaa

)
=
∑
a∈B

vaa⊗ a.

The empty and total maps are given for s ∈ k by E(s) = se and T (s) = st. Finally, the evaluation
map is given by ev(Σa∈Bvaa) = Σa∈Bva. �

Next result characterizes finite dimensional linear Boolean algebras of the form P (x).
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Proposition 4. If V and W are linear Boolean algebras, then V ⊗W is a linear Boolean algebra
with the Boolean operations defined componentwise. Moreover, if x is a finite set then there is a
canonical isomorphism of linear Boolean algebras P (x) ' P [1]

⊗|x|
.

2. Boolean prop

In this section we provide an explanation for our choice of axioms for linear Boolean algebras.
We do so by defining a prop Boole over Vect whose algebras are linear Boolean algebras and
showing that this prop actually comes from a prop Boole over Set whose algebras are Boolean
algebras. Discovering the prop that defines a given family of algebras is like unveiling its genetic
code [1, 13, 14, 15, 19]. Despite the fact that Boolean algebras have been extensively studied
from a myriad of viewpoints its genetic code has not been study so far. Since the theory of props
is not widely known we provide a brief overview. We define props over a symmetric monoidal
category C, but the reader should bear in mind that in this work C is either Set or Vect. We
assume that C is closed and that it admits finite colimits.

Definition 5. 1. A prop over C is a symmetric monoidal category P enriched over C such
that Ob(P ) = N and the monoidal structure is the addition of natural numbers.

2. Let PROPC be the category whose objects are props over C. Morphisms in PROPC are
monoidal functors.

Explicitly we have that a prop P is given by the following data:

• Morphisms P (n,m)⊗C P (m, k)→ P (n, k) for n,m, k ∈ N.
• Morphisms P (n,m)⊗C P (k, l)→ P (n+ k,m+ l) for n,m, k, l ∈ N.
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• For n ∈ N a group morphism Sn → P (n, n) such that the following diagram

Sn × Sm

��

// Sn+m

��
P (n, n)⊗C P (m,m) // P (n+m,n+m)

is commutative. Notice that the map Sn → P (n, n) induces a right action of Sn on P (n,m)
and a left action of Sm on P (n,m).

Let B be the category whose objects are finite sets and whose morphisms are bijections. The
actions constructed above can be used to define a functor P : Bop × B→ C given by

P (a, b) = B(a, [a])×S|b| P (|a|, |b|)×S|b| B([b], b),

where for a finite set x we define [x] = {1, . . . , |x|}.

In order to define the free prop generated by a functor G : Bop × B → C we need some
combinatorial notions. A digraph Γ consists of the following data
• A pair of finite sets (V,E) called the set of vertices and edges of Γ, respectively.
• A map (s, t) : E → V ×V . We call s(e) and t(e) the source and target of e ∈ V, respectively.

We use the notations in(v) = {e | t(e) = v}, i(v) = |in(v)|, out(v) =
{e | s(e) = v}, and o(v) = |out(v)|. The valence of v ∈ V is val(v) = (i(v), o(v)) ∈ N2.
Also we introduce the notation Vin = {v ∈ V | i(v) = 0} and Vout = {v ∈ V | o(v) = 0}. An
oriented cycle in Γ is a sequence e1, . . . , en of edges in Γ such that t(ei) = s(ei+1) for 1 ≤ i ≤ n− 1
and t(en) = s(e1). Digraphs considered in this work do not have oriented cycles.

Let a and b be finite sets. An (a, b)-digraph is a triple (Γ, α, β) such that Γ is a digraph;
α : a→ Vin is an injective map; β : b→ Vout is an injective map.
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Let DG(a, b) be the groupoid of (a, b)-digraphs. A functor G : Bop × B → C induces a functor
G : DG(a, b)→ C given by

G(Γ) =
⊗
v∈Vint

G(in(v), out(v)),

where Γ is an object of DG(a, b) and Vint = V \ (α(a) t β(b)).

Definition 6. The prop PG freely generated by G : Bop × B→ C is given for n,m ∈ N by

PG(n,m) := lim−→G(Γ)

where the colimit is taken over the groupoid DG([n], [m]), where [0] = ∅ and [n] = {1, . . . , n} for
n ≥ 1. Compositions in PG are given by gluing of digraphs.

To define props via generators and relations we need to know what is the analogue of an ideal
in the prop context.

Definition 7. Let P be a prop over C. A subcategory I of P is a prop ideal if Ob(I) = Ob(P )
and for n,m, k, l ∈ N
I(n,m)⊗ P (m, k)→ I(n, k), P (n,m)⊗ I(m, k)→ I(n, k),
I(n,m)⊗ P (k, l)→ I(n t k,m t l), P (n,m)⊗ I(k, l)→ I(n t k,m t l).

We are ready to define a prop Boole over Set. Boole is a quotient by a prop ideal IB , defined
below, of the prop freely generated by vertices representing, respectively, a union, an intersection,
a complement, a coproduct, the empty element, the total element and the valuation, respectively.

C

E T

V
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The prop ideal IB is generated by the seven relations given below. Each relation corresponds
with an axiom in the definition of linear Boolean algebras.

1. Commutativity for union and intersection

= =

2. Associativity for union and intersection

= =

3. Distributivity laws

= =

4. Properties of the empty and total elements
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V=C

T

V=C

E

5. Absorption Laws

= =

6. Coassociativity and cocommutativity

= =

Given an object x of a category C we let EndCx be the prop given for n,m ∈ N by

EndCx (n,m) = C(x⊗n, x⊗m).

Let P be a prop over C. A P -algebra in C is a pair (x, r) where r : P → EndCx is a prop morphism
and x is an object of C. In practice a P -algebra x is given by a family of morphisms in C

r : P (n,m)→ C(x⊗n, x⊗m)

satisfying the natural compatibility conditions.
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Theorem 8. B is a Boole-algebra in Set if and only if B is a Boolean algebra.

Proof. Assume that (B, r) is a Boole-algebra in Set where r : Boole → EndSet
B is a prop mor-

phism. The images under r of the generators of Boole give operations ∪,∩, ( )c, t, e,4, ev,
respectively. For example t : {1} → B and e : {1} → B are identified with elements of B.
ev : B → {1} is the constant map and plays no essential part in this story. We also get a map
4 : B → B × B which does seem to fit into the definition of Boolean algebra. Assume that 4
is given by 4(a) = (f(a), g(a)) for a ∈ B. We use the relations in Boole. The cocommutativity
graph implies that f = g. The coassociativity graph implies that f2 = f. One of the absorption
graphs implies the identity f(a) ∪ (f(a) ∩ b) = a for a, b ∈ B. Thus we obtain

f(a) = f2(a) ∪ (f2(a) ∩ b) = f(a) ∪ (f(a) ∩ b) = a.

Thus4(a) = (a, a) and it is a simple check that all other relations in Boole turn B into a Boolean
algebra. Assume that B is a Boolean algebra with operations ∪,∩, ( )c, and distinguished elements
t and e that may be thought as maps from {1} to B. Take ev to be the constant map from B
to {1} and let 4 be given by 4(a) = (a, a). Let r be the map assigning to each generator of
the Boole prop the corresponding map from the list above. The fact that B is a Boolean algebra
guarantees that all the relations defining Boole are satisfied and r is extending to a prop morphism
r : Boole→ EndSet

B . �

Notice that the functor ( ) : Set→ Vect induces a functor ( ) : PROPSet → PROPVect sending
P into P given by P (n,m) = P (n,m) and with the induced compositions.

The following result follows from the fact that each generator of the prop Boole corresponds
with an operation on linear Boolean algebras and each relation in the set of generator of the prop
ideal IB corresponds with an axiom in the definition of linear Boolean algebras.

Theorem 9. V is a Boole-algebra in Vect if and only if V is a linear Boolean algebra.
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3. Probabilistic logic and linear Boolean algebras

It is hard to do any work on Boolean algebras and not to mention its relation with classical
propositional logic at all. Indeed the motivation of Boole himself was to describe the algebraic
structures underlying the laws of thought. Propositional logic deals with the deduction relation
among sets of sentences of propositions S constructed recursively from a finite set of propositions
connected by a fixed set of connecting symbols. There are many ways [18] to describe a system
of propositional logic but in any of them one can imagine that there exists a sort of logical agent
capable of performing the following tasks:

• Recognize when a grammatical construction is an element of S. The agent is able to translate
in S expressions of the form s ∨ t, s ∧ t into sentences, and −s for sentences s and t in S.
• Decide wether or not a sequence of sets of sentences c1, . . . , cn is a deduction. A sentence
s is said to imply a sentence t if there exists a deduction c1, . . . , cn such that c1 = {s} and
cn = {t}.
• Assign a truth-value to sentences in S when provided with an assignment of truth values

for propositions in P , i.e. construct an element of {0, 1}S given an element in {0, 1}P .

The logical agent is said to be sound and complete if in addition the following property holds:

• A sentence s implies a sentence t if for any assignments of truth values to propositions in
P the truth value of t is 1 if the truth value of s is 1. It is not hard to show the existence
of sound and complete logical agents, for example, see [18].

Boolean algebras appear within the context of propositional logic as follows. We call sentences s
and t in S equivalent if s implies t and t implies s. Let B(S) be the quotient of S by that equivalence
relation. B(S) comes equipped with a natural structure of Boolean algebra with operations defined
by [s] ∪ [t] = [s ∨ t], [s] ∩ [t] = [s ∧ t], and [s]c = [−s]. The total element is [s ∨−s] and the empty
element is [s∧−s]. The Boolean algebra B(S) is isomorphic to the Boolean algebra P ({0, 1}C) via
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the map
m : B(S)→ P ({0, 1}P )

that sends [s] ∈ B(S) into the set of its models:

m([s]) = {v ∈ {0, 1}P | the truth value of s according to v is 1}.

Summarizing sentences in S describes subsets of {0, 1}P and two sentences describe the same
subset if and only if they are equivalent. The expressive power of a logical description of P ({0, 1}P )
lies in the possibility of describing the same set in a variety of different ways. For example, the
logical agent may be said that a subset of {0, 1}P is described by a sentence s, another subset of
{0, 1}P is described by a sentence t and be asked to provide a sentence which describes the union
of those sets. It will readily answer that s ∨ t is the sought sentence.

It is natural to wonder if any logical meaning can be ascribed to the linear Boolean algebra
B(S). We venture a possible answer: assume the logical agent is said that a sentence si describes
an unknown subset of {0, 1}C with probability pi for 1 ≤ i ≤ n and a sentence tj describes another
unknown subset of {0, 1}C with probability qj for 1 ≤ j ≤ m. If asked to find a sentence that
describes the union of those subsets the logical agent will answer: the sentence si ∨ tj describes
the union of the unknown sets with probability piqj . This is the only consistent answer with the
product rules on B(S) which is given by(

n∑
i=1

pi[si]

)
∪

 m∑
j=1

qj [tj ]

 =
n,m∑

i=1,j=1

piqj [si ∨ tj ].

This probabilistic interpretation applies as well to the linear Boolean algebra B. Let v and w be
a couple of vectors in B given by v =

∑
a∈B vaa and w =

∑
b∈B vbb. Assume that the coefficients

of v and w, respectively, are positive and add to one. This allows us to think that va represents the
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probability that the unknown subset v of x is equal to a. Similarly wb represents the probability
that w is equal to b. Under this conditions we have that

• The probability that v ∪ w is equal to c is given by (v ∪ w)c =
∑

a∪b=c
vawb.

• The probability that v ∩ w is equal to c is given by (v ∩ w)c =
∑

a∩b=c
vawb.

• The probability that vc is equal to a is vac .

We invite the reader to take a look at the structural coefficients of the algebras Sym2P [1] and
P [1]

⊗3
/Z3 given in Section 4 and Section 5 below, and check that they are indeed consistent with

the probabilistic interpretation just outlined.

4. Symmetric powers of Boolean algebras

The following ideas introduced in [10] and further applied in [7, 8, 11] are useful for studying the
symmetric powers of algebras. After a brief review of the general theory we shall apply it to study
the symmetric powers of linear Boolean algebras.

Suppose that a group G acts by automorphisms on the k-algebra A. The space of co-invariants

A/G = A/{ga− a | g ∈ G and a ∈ A}

is a k-algebra with the product given by

ab =
1
|G|

∑
g∈G

a(gb).

For each subgroup K ⊂ Sn the Polya functor PK : k-alg→ k-alg from the category of associative
k-algebras into itself is defined as follows. If A is a k-algebra then PKA denotes the k-algebra whose



JJ J I II

Go back

Full Screen

Close

Quit

underlying vector space is

PKA = A⊗n/〈a1 ⊗ · · · ⊗ an − aσ−1(1) ⊗ · · · ⊗ aσ−1(n) : ai ∈ A, σ ∈ K〉.

The rule for the product of m elements in PKA is provided by our next result.

Theorem 10. For any {aij}m,ni=1,j=1 ⊆ A the following identity holds in PKA:

|Km−1|
m∏
i=1

 n⊗
j=1

aij

 =
∑

σ∈{id}×Km−1

n⊗
j=1

(
m∏
i=1

aiσ−1
i (j)

)
.

In particular for each algebra A and each positive integer m the Polya functor PSn yields an
algebra PSn

A which we denote by SnA. Recall that P [k] denotes the k-vector space generated by
the subsets of [k]. The structural maps ∪,∩, and ( )c for P [k] are the linear extensions of the
union, intersection, and complement on P [k].

Definition 11. We call SmP [k] the symmetric Boolean algebra of type (m, k). The structural
operations on SmP [k] are induced from the corresponding operations on P [k].

The group Sx acts by automorphisms on P (x) for any finite set x. The next result gives a
characterization of the algebra of co-invariants P (x)/Sx.

Proposition 12. We have that P (x)/Sx ' S|x|P [1] and therefore

dim(P (x)/Sx) = |x|+ 1.

A basis for P [k]/Sk is given by 0, . . . ,k where i denotes the equivalence class of [i] ⊆ [k]. Let
us study the operation of union, intersection, and complements on the space P [k]/Sk in details.
Below we use the notation P (x, k) = {c ∈ P (x) | |c| = k} for any set x.
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Theorem 13. For 0 ≤ a, b,≤ k, the following identities hold in P [k]/Sk. Let m = min(k−a, b),
then

a ∪ b =
1(
k

b

) m∑
l=0

(
a

b− l

)(
k − a
l

)
(a + l).

Let m = min(a, b), then

a ∩ b =
1(
k

b

) m∑
l=0

(
a

l

)
l.

Also we have that ac = k− a.

Proof. For the first identity we have that

a ∪ b =
1
k!

∑
σ∈Sk

[a] ∪ σ[b] =
1(
k

b

) ∑
c∈P ([k],b)

[a] ∪ c

=
1(
k

b

) ∑
c0∈P ([k]\[a],l)
c1∈P ([a],b−l)

[a] ∪ c =
1(
k

b

) ∑
c0∈P ([k]\[a],l)
c1∈P ([a],b−l)

[a] ∪ c0

=
1(
k

b

) m∑
l=0

(
a

b− l

)(
k − a
l

)
(a + l).

The second identity follows from the fact that the number of permutations σ ∈ Sk such |[a] ∩
σ[b]| = l is given by
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(
a

l

)(
b

l

)
l!
(
k − a
b− l

)
(b− l)!(k − b)!

The third identity is obvious. �

Let π = {b1, . . . , bk} be a partition of x and Sπ ⊆ Sx the Young subgroup consisting of block
preserving permutations of x. Our next result characterizes algebras of the form P (x)/Sπ.

Proposition 14. There is an isomorphism P (x)/Sπ '
⊗k

i=1 S
|bi|P [1], thus we have that

dim(P (x)/Sπ) =
k∏
i=1

(|bi|+ 1).

5. Cyclic Boolean Algebras

In this section we consider another application of Polya functors in the context of linear Boolean
algebra, namely, we consider the cyclic powers of the linear Boolean algebra P [1], i.e. the algebras

P [1]
⊗m

/Zm.

For m = 2 one gets the space P [1]
⊗2
/Z2 which has a basis given by (0, 0), (1, 0) and (1, 1).
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The union map ∪ : S2P [1]⊗ S2P [1] → S2P [1] is given by

∪ (0, 0) (1, 0) (1, 1)

(0, 0) 1,0,0 0,1,0 0,0,1

(1, 0) 0,1,0 0, 1
2 ,

1
2 0,0,1

(1, 1) 0,0,1 0,0,1 0,0,1

The intersection ∩ : S2P [1]⊗ S2P [1]→ S2P [1] is given by

∩ (0, 0) (1, 0) (1, 1)

(0, 0) 1,0,0 1,0,0 1,0,0

(1, 0) 1,0,0 1
2 ,

1
2 , 0 0,1,0

(1, 1) 1,0,0 0,1,0 0,0,1

The complement ( )c : S2P [1]→ S2P [1] is given by

∩ (0, 0) (1, 0) (1, 1)

0,0,1 0,1,0 1,0,0

Although the algebra S2P [1] does not satisfy all the axioms required to make it into a linear
Boolean algebra (the absorption laws fail!) it does share many properties of linear Boolean algebras,
and in any case it is a mathematical object of great interest. For m = 3 the space P [1]

⊗3
/Z3 has
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the basis

(0, 0, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 1).

The union map ∪ : P [3]
⊗3
/Z3 ⊗ P [3]

⊗3
/Z3 → P [3]

⊗3
/Z3 is given by

∪ (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 0) 1,0,0,0 0,1,0,0 0,0,1,0, 0,0,0,1

(1, 0, 0) 0,1,0,0 0, 1
3 ,

2
3 , 0 0, 0, 2

3 ,
1
3 0,0,0,1

(1, 1, 0) 0,0,1,0 0, 0, 2
3 ,

1
3 0, 0, 1

3 ,
2
3 0,0,0,1

(1, 1, 1) 0,0,0,1 0,0,0,1 0,0,0,1 0,0,0,1

The intersection map ∩ : P [3]
⊗3
/Z3 ⊗ P [3]

⊗3
/Z3 → P [3]

⊗3
/Z3 is given by

∩ (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

(0, 0, 0) 1,0,0,0 1,0,0,0 1,0,0,0 1,0,0,0

(1, 0, 0) 1,0,0,0 2
3 ,

1
3 , 0, 0

1
3 ,

2
3 , 0, 0 0,1,0,0

(1, 1, 0) 1,0,0,0 1
3 ,

2
3 , 0, 0 0, 2

3 ,
1
3 , 0 0,0,1,0

(1, 1, 1) 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

The complement map ( )c : P [3]
⊗3
/Z3 → P [3]

⊗3
/Z3 is given by
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( )c (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

0,0,0,1 0,0,1,0 0,1,0,0 1,0,0,0

6. Symmetric inclusion-exclusion principles

Perhaps the most fundamental elementary result concerning Boolean algebras is the inclusion-
exclusion principle. In this section we consider the extensions of this principle for linear Boolean
algebras. The reader will find interesting information on the inclusion-exclusion principle and its
generalizations in several works by Rota and his collaborators [16]. We use the inclusion-exclusion
principle in the following form:

Proposition 15. Let a1, . . . , an ∈ P (x), then∣∣∣∣ n⋃
i=1

ai

∣∣∣∣ =
∑
I⊆[n]

(−1)|I|+1

∣∣∣∣⋂
i∈I

ai

∣∣∣∣.
In this section we consider vector spaces over the complex numbers and we write {a1, . . . , am}

for the basis element
a1 ⊗ · · · ⊗ am ∈ SmP [k] = P [k]

⊗m
/Sm.

The following result follows from Theorem 10.

Theorem 16. Let {ai1, . . . , aim} be in the basis of SmP [k] for 1 ≤ i ≤ n. The union map on
SmP [k] is given by

n⋃
i=1

{ai1, . . . , aim} =
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

{ n⋃
i=1

aiσi(1)
, . . . ,

n⋃
i=1

aiσi(m)

}
.
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For example for m,n = 2, one gets

{a, b} ∪ {c, d} =
1
2
{a ∪ c, b ∪ d}+

1
2
{a ∪ d, b ∪ c}.

Recall that a measure on a finite set x is a map µ : P (x)→ C such that

µ(a ∪ b) = µ(a) + µ(b)

for a, b ⊆ x disjoint. Let us fix a measure µ on [k]. An element {a1, ..., am} in the basis of
SmP [k] determines a vector (µ(a1), . . . , µ(am)) ∈ Cm/Sm. Functions on Cm/Sm are known as
symmetric functions. There are many interesting examples of polynomial symmetric functions such
as the power functions, the elementary symmetric functions, the homogeneous functions, the Schur
functions and so on. For example, the polynomial xl1 + · · ·+ xlm is Sm-invariant. Each symmetric
function can be used to obtain a symmetric form of the inclusion-exclusion principle. We consider
explicitly the symmetric inclusion-exclusion principles derived from the power, elementary, and
homogeneous symmetric functions; other symmetric functions may be considered as well but we
shall not do so here. Notice that Gessel [12] uses the name symmetric inclusion-exclusion to refer
to a different mathematical gadget.

The power function pl : SmP [k]→ C is given on the basis elements by:

pl({a1, . . . , am}) =
m∑
i=1

µ(ai)l.

We use the power functions pl to get a symmetric form of the inclusion-exclusion principle.
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Theorem 17. Let {ai1, . . . , aim} be in the basis of SmP [k] for 1 ≤ i ≤ n. Then

pl(
n⋃
i=1

{ai1, . . . , aim}) =
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}
ΣcI=l

(
l

{cI}

) ∏
I⊆[n]

(−1)(|I|+1)cIµ(
⋂
i∈I

aiσi(j)
)cI .

Proof.

pl(
n⋃
i=1

{ai1, . . . , aim}) =
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}

µ(
n⋃
i=1

aiσi(j)
)l

=
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}

(∑
I⊆[n]

(−1)|I|+1µ(
⋂
i∈I

aiσi(j)
)
)l

=
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}

( ∑
ΣcI=l

(
l

{cI}

)∏
I⊆[n]

[(−1)|I|+1µ(
⋂
i∈I

aiσi(j)
)]cI

)

=
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}
ΣcI=l

(
l

{cI}

) ∏
I⊆[n]

(−1)(|I|+1)cIµ(
⋂
i∈I

aiσi(j)
)cI .

�
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For example, for l = 1, one gets

p1(
n⋃
i=1

{ai1, . . . , aim}) =
1

(m!)n−1

∑
σ∈{1}×S(n−1)

m

j∈{1,...,m}
I⊆[n]

(−1)|I|+1µ(
⋂
i∈I

aiσi(j)
).

For l = 1, n = 2, we get

p1({a1
1, . . . , a

1
m} ∪ {a1

1, . . . , a
2
m}) =

1
m!

∑
σ∈Sm

j∈[m]

{µ(a1
j ) + µ(a2

σ(j))− µ(a1
j

⋂
a2
σ(j)

)}.

Next we consider a generalized inclusion-exclusion principle using the elementary symmetric
functions

el(x1, . . . , xm) =
∑

1≤t1<t2<···<tl≤m

l∏
j=1

xtj .

Theorem 18. Let {ai1, . . . , aim} be in the basis of SmP [k] for 1 ≤ i ≤ n. Then

el
( n⋃
i=1

{ai1, . . . , aim}
)

=
1

(m!)n−1

∑
σ∈{1}×Sn−1

m
1≤t1<t2<···<tl≤m

f :[l]→P ([n])

l∏
j=1

(−1)|f(j)|+1µ
( ⋂
i∈f(j)

aiσi(tj)

)
.
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For n = 2, m = 2 and l = 2, the map e2 : S2P [k] → R is given by e2({a, b}) = µ(a)µ(b) and
Theorem 18 implies that

2e2({a, b} ∪ {c, d}) = 2µ(a)µ(b) + 2µ(c)µ(d) + µ(a)µ(d) + µ(c)µ(b)
+ µ(a)µ(c) + µ(d)µ(b)− µ(a)µ(b ∩ d) + µ(c)µ(b ∩ d)
+ µ(b)µ(a ∩ c) + µ(d)µ(a ∩ c) + µ(a)µ(b ∩ c)
+ µ(d)µ(b ∩ c) + µ(b)µ(a ∩ d) + µ(c)µ(a ∩ d).

Next we describe the generalization of the inclusion-exclusion principle using the homogenous
symmetric functions

hl(x1, . . . , xm) =
∑

1≤t1≤t2≤···<tl≤m

l∏
j=1

xtj .

Theorem 19. Let {ai1, . . . , aim} be in the basis of SmP [k] for 1 ≤ i ≤ n. Then

hl
( n⋃
i=1

{ai1, . . . , aim}
)

=
1

(m!)n−1

∑
σ∈{1}×Sn−1

m
1≤t1≤t2≤···≤tl≤m

f :[l]→P ([n])

l∏
j=1

(−1)|f(j)|+1µ
( ⋂
i∈f(j)

aiσi(tj)

)
.

For n = 2, m = 2 and l = 2, the map h2 : S2P [k]→ R is given by

h2({a, b}) = µ(a)2 + µ(a)µ(b) + µ(b)2.
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Theorem 19 implies that

2h2({a, b} ∪ {c, d}) = [µ(a) + µ(c)− µ(a ∩ c)]2 + [µ(b) + µ(d)− µ(b ∩ d)]2

+ [µ(a) + µ(d)− µ(a ∩ d)]2 + [µ(b) + µ(c)− µ(b ∩ c)]2

+ 2µ(a)µ(b)+2µ(c)µ(a)+µ(a)µ(d)+µ(c)µ(b)+µ(a)µ(c)

+ µ(d)µ(a)− µ(a)µ(b ∩ d) + µ(c)µ(b ∩ d) + µ(b)µ(a ∩ c)
+ µ(d)µ(a ∩ c)+µ(a)µ(b ∩ c)+µ(d)µ(b ∩ c)+µ(b)µ(a ∩ d)

+ µ(c)µ(a ∩ d).

Notice that the structural constants of the symmetric and cyclic powers of Boolean algebras are
rational numbers. It would be interesting to study the combinatorics of those numbers along the
lines of [2, 3, 4, 9].

Acknowledgement. This work is dedicated to the memory of Professor J. R. Castillo Ariza
who always had a deep interest in Boolean Algebras and wrote an introductory book on the subject
[6]. Our thanks to Mauricio Angel, Edmundo Castillo and Eddy Pariguan. Part of this work was
done while the first author was visiting ICTP, Italy, and the Universidad of Sonora, México.
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