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MATRIX SUMMABILITY AND KOROVKIN TYPE APPROXIMATION
THEOREM ON MODULAR SPACES

S. KARAKUŞ and K. DEMIRCI

Abstract. In this paper, using a matrix summability method we obtain a Korovkin type approxima-
tion theorem for a sequence of positive linear operators defined on a modular space.

1. Introduction

Approximation theory has important applications in the theory of polynomial approximation, in
various areas of functional analysis, in numerical solutions of differential and integral equations
[9], [10], [11]. Most of the classical approximation operators tend to converge to the value of
the function being approximated. However, at points of discontinuity, they often converge to the
average of the left and right limits of the function. There are, however, some sharp exceptions
such as the interpolation operator of Hermite-Fejer (see [7]). These operators do not converge at
points of simple discontinuity. For such misbehavior, the matrix summability methods of Cesáro
type are strong enough to correct the lack of convergence (see [8]). Using a matrix summability
method some approximation results were studied in [1, 2, 18, 19, 21]. In this paper, using a
matrix summability method we give a theorem of the Korovkin type for a sequence of positive
linear operators defined on a modular space.

We now recall some basic definitions and notations used in the paper.
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Let I = [a, b] be a bounded interval of the real line R provided with the Lebesgue measure.
Then, by X (I) we denote the space of all real-valued measurable functions on I provided with
equality a.e. As usual, let C (I) denote the space of all continuous real-valued functions, and
C∞ (I) denote the space of all infinitely differentiable functions on I. In this case, we say that a
functional ρ : X (I)→ [0,+∞] is a modular on X (I) provided that the following conditions hold:

(i) ρ (f) = 0 if and only if f = 0 a.e. in I,
(ii) ρ (−f) = ρ (f) for every f ∈ X (I),
(iii) ρ (αf + βg) ≤ ρ (f) + ρ (g) for every f, g ∈ X(I) and for any α, β ≥ 0 with α+ β = 1.

A modular ρ is said to be N -quasi convex if there exists a constant N ≥ 1 such that the inequality

ρ (αf + βg) ≤ Nαρ (Nf) +Nβρ (Ng)

holds for every f, g ∈ X (I), α, β ≥ 0 with α + β = 1. In particular, if N = 1, then ρ is called
convex.
A modular ρ is said to be N -quasi semiconvex if there exists a constant N ≥ 1 such that the
inequality

ρ(af) ≤ Naρ(Nf)

holds for every f ∈ X (I) and a ∈ (0, 1].
It is clear that every N -quasi convex modular is N -quasi semiconvex. We should recall that the
above two concepts were introduced and discussed in details by Bardaro et. al. [6].

We now consider some appropriate vector subspaces of X(I) by means of a modular ρ as follows

Lρ (I) :=
{
f ∈ X (I) : lim

λ→0+
ρ (λf) = 0

}
and

Eρ (I) := {f ∈ Lρ (I) : ρ (λf) < +∞ for all λ > 0} .
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Here, Lρ (I) is called the modular space generated by ρ and Eρ (I) is called the space of the finite
elements of Lρ (I) . Observe that if ρ is N -quasi semiconvex, then the space

{f ∈ X (I) : ρ (λf) < +∞ for some λ > 0}

coincides with Lρ (I). The notions about modulars were introduced in [17] and widely discussed
in [6] (see also [12, 16]).

Now we recall the convergence methods in modular spaces.
Let {fn} be a function sequence whose terms belong to Lρ (I) . Then, {fn} is modularly con-

vergent to a function f ∈ Lρ (I) iff

lim
n
ρ (λ0 (fn − f)) = 0 for some λ0 > 0.(1.1)

Also, {fn} is F -norm convergent (or strongly convergent) to f iff

lim
n
ρ (λ (fn − f)) = 0 for every λ > 0.(1.2)

It is known from [16] that (1.1) and (1.2) are equivalent if and only if the modular ρ satisfies the
∆2-condition, i.e., there exists a constant M > 0 such that ρ (2f) ≤Mρ (f) for every f ∈ X (I).

In this paper, we will need the following assumptions on a modular ρ:
• if ρ(f) ≤ ρ(g) for |f | ≤ |g| , then ρ is called monotone,
• if the characteristic function χI of the interval I belongs to Lρ (I) , ρ is called finite,
• if ρ is finite and, for every ε > 0, λ > 0, there exists δ > 0 such that ρ (λχB) < ε for any

measurable subset B ⊂ I with |B| < δ, then ρ is called absolutely finite,
• if χI ∈ Eρ (I) , then ρ is called strongly finite,
• ρ is called absolutely continuous provided that there exists α > 0 such that, for every
f ∈ X (I) with ρ (f) < +∞, the following condition holds: for every ε > 0 there is δ > 0
such that ρ (αfχB) < ε whenever B is any measurable subset of I with |B| < δ.
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Observe now that (see [5]) if a modular ρ is monotone and finite, then we have C(I) ⊂ Lρ (I) .
In a similar manner, if ρ is monotone and strongly finite, then C(I) ⊂ Eρ (I). Some important
relations between the above properties may be found in [4, 6, 14, 17].

2. Korovkin Type Theorems

Let A := (An)n≥1, An =
(
ankj

)
k,j∈N

be a sequence of infinite non-negative real matrices. For a

sequence of real numbers, x = (xj)j∈N, the double sequence

Ax := {(Ax)nk : k, n ∈ N}

defined by (Ax)nk :=
∞∑
j=1

ankjxj is called the A-transform of x whenever the series converges for all

k and n. A sequence x is said to be A-summable to L if

lim
k→∞

∞∑
j=1

ankjxj = L

uniformly in n ([3], [20]).
If An = A for a matrix A, then A-summability is the ordinary matrix summability by A. If

ankj = 1
k for n ≤ j ≤ k + n, (n = 1, 2, . . .) and ankj = 0 otherwise, then A-summability reduces to

almost convergence [13].
Let ρ be a monotone and finite modular on X (I). Assume that D is a set satisfying C∞ (I) ⊂

D ⊂ Lρ (I). We can construct such a subset D since ρ is monotone and finite (see [5]). Assume
further that T := {Tn} is a sequence of positive linear operators from D into X (I) for which there
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exists a subset XT ⊂ D containing C∞ (I) such that

lim sup
k→∞

∞∑
j=1

ankjρ (λ (Tjh)) ≤ Pρ (λh) , uniformly in n.(2.1)

The inequality holds for every h ∈ XT, λ > 0 and for an absolute positive constant P . Throughout
the paper we use the test functions ei defined by

ei(x) = xi (i = 0, 1, 2, . . .).

Theorem 2.1. Let A = (An)n≥1 be a sequence of infinite non-negative real matrices such that

sup
n,k

∞∑
j=1

ankj <∞(2.2)

and let ρ be a monotone, strongly finite, absolutely continuous and N -quasi semiconvex modular
on X (I). Let T := {Tj} be a sequence of positive linear operators from D into X (I) satisfying
(2.1). Suppose that

lim
k→∞

∞∑
j=1

ankjρ (λ (Tjei − ei)) = 0, uniformly in n(2.3)

for every λ > 0 and i = 0, 1, 2. Now, let f be any function belonging to Lρ (I) such that f −g ∈ XT
for every g ∈ C∞ (I). Then, we have

lim
k→∞

∞∑
j=1

ankjρ (λ0 (Tjf − f)) = 0, uniformly in n

for some λ0 > 0.
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Proof. We first claim that

lim
k→∞

∞∑
j=1

ankjρ (µ (Tjg − g)) = 0, uniformly in n(2.4)

for every g ∈ C(I) and every µ > 0. To see this assume that g belongs to C (I) and µ is any
positive number. Then, there exists a constant M > 0 such that |g (x)| ≤ M for every x ∈ I.
Given ε > 0, we can choose δ > 0 such that |y − x| < δ implies |g (y)− g (x)| < ε where y, x ∈ I.
It is easy to see that for all y, x ∈ I

|g (y)− g (x)| < ε+
2M
δ2

(y − x)2 .

Since Tj is a positive linear operator, we get

|Tj (g;x)− g (x) |
= |Tj (g (·)− g (x) ;x) + g (x) (Tj (e0 (·) ;x)− e0 (x))|
≤ Tj (|g (·)− g (x)| ;x) + |g (x)| |Tj (e0 (·) ;x)− e0 (x)|

≤ Tj

(
ε+

2M
δ2

(· − x)2 ;x
)

+M |Tj (e0 (·) ;x)− e0 (x)|

≤ εTj (e0 (·) ;x) +
2M
δ2

Tj

(
(· − x)2 ;x

)
+M |Tj (e0 (·) ;x)− e0 (x)|

≤ ε+ (ε+M) |Tj (e0 (·) ;x)− e0 (x)|

+
2M
δ2

[Tj (e2 (·) ;x)− 2e1 (x)Tj (e1 (·) ;x) + e2 (x)Tj (e0 (·) ;x)]
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≤ ε+ (ε+M) |Tj (e0 (·) ;x)− e0 (x)|+ 2M
δ2
|Tj (e2 (·) ;x)− e2 (x)|

+
4M |e1 (x)|

δ2
|Tj (e1 (·) ;x)− e1 (x)|+ 2Me2 (x)

δ2
|Tj (e0 (·) ;x)− e0 (x)|

≤ ε+
(
ε+M +

2Mc2

δ2

)
|Tj (e0 (·) ;x)− e0 (x)|+ 4Mc

δ2
|Tj (e1 (·) ;x)− e1 (x)|

+
2M
δ2
|Tj (e2 (·) ;x)− e2 (x)|

where c := max {|a| , |b|}. So, the last inequality gives, for any µ > 0 that

µ |Tj (g;x)− g (x)| ≤ µε+ µK |Tj (e0 (·) ;x)− e0 (x)|
+ µK |Tj (e1 (·) ;x)− e1 (x)|+ µK |Tj (e2 (·) ;x)− e2 (x)|

where K := max
{
ε+M +

2Mc2

δ2
,

4Mc

δ2
,

2M
δ2

}
. Applying the modular ρ in the both-sides of the

above inequality, since ρ is monotone, we have

ρ(µ(Tj(g; ·)− g(·)))
≤ ρ (µε+ µK |Tje0 − e0|+ µK |Tje1 − e1|+ µK |Tje2 − e2|) .

So, we may write that

ρ (µ (Tj (g; ·)− g (·))) ≤ ρ (4µε) + ρ (4µK (Tje0 − e0))

+ ρ (4µK (Tje1 − e1)) + ρ (4µK (Tje2 − e2)) .
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Since ρ is N -quasi semiconvex and strongly finite, we have, assuming 0 < ε ≤ 1

ρ (µ (Tj (g; ·)− g (·))) ≤ Nερ (4µN) + ρ (4µK (Tje0 − e0))

+ ρ (4µK (Tje1 − e1)) + ρ (4µK (Tje2 − e2)) .

Hence
∞∑
j=1

ankjρ (µ (Tj (g; ·)− g (·))) ≤ Nερ (4µN)
∞∑
j=1

ankj +
∞∑
j=1

ankjρ (4µK (Tje0 − e0))

+
∞∑
j=1

ankjρ (4µK (Tje1−e1)) +
∞∑
j=1

ankjρ (4µK (Tje2−e2))

(2.5)

By taking limit superior as k →∞ in the both-sides of (2.5), by using (2.3), we get

lim
k→∞

∞∑
j=1

ankjρ (µ (Tj (g; ·)− g (·))) = 0 uniformly in n

which proves our claim (2.4). Now let f ∈ Lρ (I) satisfying f −g ∈ XT for every g ∈ C∞ (I). Since
|I| < ∞ and ρ is strongly finite and absolutely continuous, we can see that ρ is also absolutely
finite on X(I) (see [4]). Using these properties of the modular ρ, it is known from [6, 14] that the
space C∞(I) is modularly dense in Lρ (I) , i.e., there exists a sequence {gk} ⊂ C∞ (I) such that

lim
k
ρ (3λ0 (gk − f)) = 0 for some λ0 > 0.

This means that, for every ε > 0, there is a positive number k0 = k0(ε) so that

ρ (3λ0 (gk − f)) < ε for every k ≥ k0.(2.6)
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On the other hand, by the linearity and positivity of the operators Tj , we may write that

λ0 |Tjf − f | ≤ λ0 |Tj(f − gk0)|+ λ0 |Tjgk0 − gk0 |+ λ0 |gk0 − f | .
Applying the modular ρ in the both-sides of the above inequality, since ρ is monotone, we have

ρ (λ0 (Tjf − f)) ≤ ρ (3λ0 (Tjf − gk0)) + ρ (3λ0 (Tjgk0 − gk0))

+ ρ (3λ0 (gk0 − f)) .
(2.7)

Then, it follows from (2.6) and (2.7) that

ρ (λ0 (Tjf − f)) ≤ ρ (3λ0 (Tjf − gk0)) + ρ (3λ0 (Tjgk0 − gk0)) + ε.

Hence, using the facts that gk0 ∈ C∞(I) and f − gk0 ∈ XT, we have
∞∑
j=1

ankjρ (λ0 (Tjf − f))

≤
∞∑
j=1

ankjρ (3λ0 (Tjf − gk0)) +
∞∑
j=1

ankjρ (3λ0 (Tjgk0 − gk0)) + ε

∞∑
j=1

ankj .

(2.8)

From (2.2), there exists a constant B > 0 such that sup
n,k

∞∑
j=1

ankj < B. So, taking limit superior as

k →∞ in the both-sides of (2.8), from (2.1) and (2.2) we obtain that

lim sup
k

∞∑
j=1

ankjρ (λ0 (Tjf − f))

≤ ε lim sup
k

∞∑
j=1

ankj + Pρ (3λ0(f − gk0)) + lim sup
k

∞∑
j=1

ankjρ (3λ0 (Tjgk0 − gk0)) ,
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which gives

lim sup
k

∞∑
j=1

ankjρ (λ0 (Tjf − f))

≤ ε (B + P ) + lim sup
k

∞∑
j=1

ankjρ (3λ0 (Tjgk0 − gk0)) .

(2.9)

By (2.4), since

lim
k

∞∑
j=1

ankjρ (3λ0 (Tjgk0 − gk0)) = 0, uniformly in n

we get

lim sup
k

∞∑
j=1

ankjρ (3λ0 (Tjgk0 − gk0)) = 0, uniformly in n.(2.10)

Combining (2.9) with (2.10), we conclude that

lim sup
k

∞∑
j=1

ankjρ (λ0 (Tj(f ;x)− f(x))) ≤ ε (B + P ) .

Since ε > 0 was arbitrary, we find

lim sup
k

∞∑
j=1

ankjρ (λ0 (Tjf − f)) = 0 uniformly in n.
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Furthermore, since
∞∑
j=1

ankjρ (λ0 (Tj(f ;x)− f(x))) is non-negative for all k, n ∈ N, we can easily

show that

lim
k

∞∑
j=1

ankjρ (λ0 (Tjf − f)) = 0, uniformly in n

which completes the proof. �

If the modular ρ satisfies the ∆2-condition, then one can get the following result from Theorem
2.1 at once.

Theorem 2.2. Let A = (An)n≥1 be a sequence of infinite non-negative real matrices such that

sup
n,k

∞∑
j=1

ankj <∞,

and T := {Tn}, ρ be the same as in Theorem 2.1. If ρ satisfies the ∆2-condition, then the following
statements are equivalent:

(a) lim
k

∞∑
j=1

ankjρ (λ (Tjei − ei)) = 0 uniformly in n for every λ > 0 and i = 0, 1, 2,

(b) lim
k

∞∑
j=1

ankjρ (λ (Tjf − f)) = 0 uniformly in n for every λ > 0 provided that f is any function

belonging to Lρ(I) such that f − g ∈ XT for every g ∈ C∞ (I).

If An = I, identity matrix, then the condition (2.1) reduces to

lim sup
j

ρ (λ (Tjh)) ≤ Pρ (λh)(2.11)
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for every h ∈ XT, λ > 0 and for an absolute positive constant P. In this case, the next results
which were obtained by Bardaro and Mantellini [5] immediately follows from our Theorems 2.1
and 2.2.

Corollary 2.3. Let ρ be a monotone, strongly finite, absolutely continuous and N -quasi semi-
convex modular on X (I). Let T := {Tj} be a sequence of positive linear operators from D into
X (I) satisfying (2.11). If {Tjei} is strongly convergent to ei for each i = 0, 1, 2, then {Tjf} is
modularly convergent to f provided that f is any function belonging to Lρ (I) such that f−g ∈ XT
for every g ∈ C∞ (I).

Corollary 2.4. T := {Tj} and ρ be the same as in Corollary 2.3. If ρ satisfies the ∆2-condition,
then the following statements are equivalent:

(a) {Tjei} is strongly convergent to ei for each i = 0, 1, 2,
(b) {Tjf} is strongly convergent to f provided that f is any function belonging to Lρ(I) such

that f − g ∈ XT for every g ∈ C∞ (I).

3. Application

Take I = [0, 1] and let ϕ : [0,∞) → [0,∞) be a continuous function for which the following
conditions hold:

• ϕ is convex,
• ϕ (0) = 0, ϕ (u) > 0 for u > 0 and limu→+∞ ϕ (u) =∞.

Hence, consider the functional ρϕ on X(I) defined by

ρϕ(f) :=
∫ 1

0

ϕ (|f (x)|) dx for f ∈ X (I) .
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In this case, ρϕ is a convex modular on X (I) , which satisfies all assumptions listed in Section 1
(see [5]). Consider the Orlicz space generated by ϕ as follows

Lρϕ(I) := {f ∈ X (I) : ρϕ (λf) < +∞ for some λ > 0} .

Then, consider the following classical Bernstein-Kantorovich operator U := {Un} on the space
Lρϕ (I) (see [5]) which is defined by

Uj(f ;x) :=
j∑

k=0

(
j

k

)
xk (1− x)j−k (j + 1)

∫ (k+1)/(j+1)

k/(j+1)

f (t) dt for x ∈ I.

Observe that the operators Uj map the Orlicz space Lρϕ (I) into itself. Moreover, the property
(2.11) is satisfied with the choice of XU := Lρϕ(I). Then, by Corollary 2.3, we know that, for every
function f ∈ Lρϕ (I) such that f − g ∈ XU for every g ∈ C∞ (I), {Ujf} is modularly convergent to
f.

Assume that A := (An)n≥1 =
(
ankj

)
k,j∈N

is a sequence of infinite matrices defined by ankj = 1
k

if n ≤ j ≤ k + n, (n = 1, 2, . . .), and ankj = 0 otherwise, then A−summability reduces to almost
convergence. Define s = (sn) of the form

0101 . . . 0101
→n1 terms←

; 001001 . . . 001
→ n2 terms ←

; 00010001 . . . 0001
→ n2 terms ←

; . . .(3.1)

where n1 is a multiple of 2, n2 is a multiple of 6, n3 is a multiple of 1, 2, . . . and nk is a multiple of
k (k + 1). So s is almost convergent to zero (see [15]). However, the sequence {sn} is not convergent
to zero. Then, using the operators Uj , we define the sequence of positive linear operators V := {Vn}
on Lρϕ (I) as follows:

Vj(f ;x) = (1 + sj)Uj (f ;x) for f ∈ Lρϕ (I) , x ∈ [0, 1] and j ∈ N,(3.2)
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where s = {sj} is the same as in (3.1). By [5, Lemma 5.1], for every h ∈ XV := Lρϕ(I), all λ > 0
and for an absolute positive constant P, we get

ρϕ (λVjh) =ρϕ (λ (1+sj)Ujh) ≤ρϕ (2λUjh)+ρϕ (2λsjUjh)

=ρϕ (2λUjh) + sjρ
ϕ (2λUjh)=(1+sj) ρϕ (2λUjh)≤(1+sj)Pρϕ (2λh) .

Then, we get

lim sup
k

sup
n

1
k

n+k∑
j=n

ρϕ (λVjh)

 ≤ Pρϕ (2λh) .

So, the condition (2.1) works for our operators Vn given by (3.2) with the choice of XV = XU =
Lρϕ(I).

Now, we show that condition (2.3) in the Theorem 2.1 holds.
First observe that

Vj(e0;x) = 1 + sj ,

Vj(e1;x) = (1 + sj)
(

jx

j + 1
+

1
2 (j + 1)

)
,

Vj(e2;x) = (1 + sj)

(
j (j − 1)x2

(j + 1)2
+

2jx
(j + 1)2

+
1

3 (j + 1)2

)
.

So, for any λ > 0, we can see, that

λ |Vj(e0;x)− e0 (x)| = λ |1 + sj − 1| = λsj ,

which implies

ρϕ (λ (Vje0 − e0)) = ρϕ (λsj) =
∫ 1

0

ϕ (λsj) dx = ϕ (λsj) = sjϕ (λ)
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because of the definition of (sj). Since (sj) is almost convergent to zero, we get

lim sup
k

sup
n

1
k

n+k∑
j=n

ρϕ (λ (Vje0 − e0))

 = 0 for every λ > 0,

which guarantees that (2.3) holds true for i = 0. Also, since

λ |Vj(e1;x)− e1 (x)| = λ

∣∣∣∣x( j

j + 1
+

jsj
j + 1

− 1
)

+
1

2(j + 1)
+

sj
2(j + 1)

∣∣∣∣
≤ λ |x|

(∣∣∣∣ j

j + 1
− 1
∣∣∣∣+

jsj
j + 1

)
+

1
2(j + 1)

+
sj

2(j + 1)

≤ λ
{

1
(j + 1)

+
2jsj

2 (j + 1)
+

sj
2 (j + 1)

+
1

2(j + 1)

}
≤ λ

{
3

2(j + 1)
+ sj

(
2j + 1

2 (j + 1)

)}
,

we may write that

ρϕ (λ (Vje1 − e1)) ≤ ρϕ
(
λ

{
sj

(
2j + 1

2 (j + 1)

)
+

3
2(j + 1)

})
≤ sjρϕ

(
λ

(
2j + 1
j + 1

))
+ ρϕ

(
3λ
j + 1

)
by the definitions of (sj) and ρϕ. Since

(
2j+1
j+1

)
is convergent, it is bounded. So there exists a

constant M > 0 such that
(

2j+1
j+1

)
≤ M for every j ∈ N. Then using the monotonicity of ρϕ, we
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have

ρϕ
(
λ

(
2j + 1
j + 1

))
≤ ρϕ (λM)

for any λ > 0, which implies

ρϕ (λ (Vje1 − e1)) ≤ sjρϕ (λM) + ρϕ
(

3λ
j + 1

)
= sjϕ (λM) + ϕ

(
3λ
j + 1

)
.

Since ϕ is continuous, we have lim
j
ϕ
(

3λ
j+1

)
= ϕ

(
lim
j

3λ
j+1

)
= ϕ(0) = 0. So, we get ϕ

(
3λ
j+1

)
is

almost convergent to zero. Using s and ϕ
(

3λ
j+1

)
are almost convergent to zero, we obtain

lim sup
k

sup
n

1
k

n+k∑
j=n

ρϕ (λ (Vje1−e1))

 ≤ lim sup
k

sup
n

1
k

n+k∑
j=n

[
sjϕ (λM)+ϕ

(
3λ
j + 1

)]
=ϕ (λM) lim sup

k

sup
n

1
k

n+k∑
j=n

sj

+lim sup
k

sup
n

1
k

n+k∑
j=n

ϕ

(
3λ
j + 1

) = 0.
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Finally, since

λ |Vj(e2;x)− e2 (x)| = λ

∣∣∣∣∣x2 j (j − 1)
(j + 1)2

+
2jx

(j + 1)2
+

1
3 (j + 1)2

+ sj
j (j − 1)x2

(j + 1)2
+ sj

2jx
(j + 1)2

+ sj
1

3 (j + 1)2
− x2

∣∣∣∣∣
≤ λx2

∣∣∣∣∣j (j − 1)
(j + 1)2

− 1

∣∣∣∣∣+ x2sj
j (j − 1)
(j + 1)2

+ |x|

(
2j

(j + 1)2
+ sj

2j
(j + 1)2

)
+

1
3 (j + 1)2

+sj
1

3 (j + 1)2

≤ λ

{
3j + 1

(j + 1)2
+ sj

j (j − 1)
(j + 1)2

+
2j

(j + 1)2
+ sj

2j
(j + 1)2

+
1

3 (j + 1)2
+ sj

1
3 (j + 1)2

}

≤ λ

{
15j + 4

3 (j + 1)2
+ sj

(
3j2 + 3j + 1

3 (j + 1)2

)}
.

Since
(

3j2+3j+1
3(j+1)2

)
is convergent, it is bounded. So there exists a constant K > 0 such that∣∣∣ 3j2+3j+1

3(j+1)2

∣∣∣ ≤ K for every j ∈ N. Then using the monotonicity of ρϕ and the definition of (sj), we
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have

ρϕ (λ (Vje2 − e2)) ≤ ρϕ
(

2λ

(
15j + 4

3 (j + 1)2

))
+ ρϕ

(
2λsj

(
3j2 + 3j + 1

3 (j + 1)2

))

≤ ρϕ
(
λ

(
30j + 8

3 (j + 1)2

))
+ ρϕ (2λsjK) ,

where which yields

ρϕ (λ (Vje2 − e2)) ≤ ϕ

(
λ

(
30j + 8

3 (j + 1)2

))
+ sjϕ (2λK)(3.3)

Since ϕ is continuous, we have lim
j
ϕ
(
λ 30j+8

3(j+1)2

)
= ϕ

(
λ lim

j

30j+8
3(j+1)2

)
= ϕ(0) = 0. So, we get

ϕ
(
λ 30j+8

3(j+1)2

)
is almost convergent to zero. Using s and ϕ

(
λ 30j+8

3(j+1)2

)
are almost convergent to

zero, it follows from (3.3) that

lim sup
k

sup
n

1
k

n+k∑
j=n

ρϕ (λ (Vje2 − e2))

 = 0 uniformly in n for every λ > 0.

Our claim (2.3) holds true for each i = 0, 1, 2 and for any λ > 0. So, we can say that our sequence
V := {Vj} defined by (3.2) satisfy all assumptions of Theorem 2.1. Therefore, we conclude that

lim sup
k

sup
n

1
k

n+k∑
j=n

ρϕ (λ0 (Vjf − f))

 = 0 uniformly in n for some λ0 > 0

holds for every f ∈ Lρϕ (I) such that f − g ∈ XV = Lρϕ(I) for every g ∈ C∞ (I).
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However, since (sj) is not convergent to zero, it is clear that {Vjf} is not modularly convergent
to f . So, Corollary 2.3 does not work for the sequence V := {Vj}.

1. Atlıhan Ö. G. and Orhan C., Matrix summability and positive linear operators, Positivity 11 (2007), 387–389.

2. , Summation process of positive linear operators, Computers & Mathematics with Applications, 56
(2008), 1188–1195.

3. Bell H. T., Order summability and almost convergence, Proc. Am. Math. Soc. 38 (1973), 548–553.
4. Bardaro C. and Mantellini I., Approximation properties in abstract modular spaces for a class of general

sampling-type operators, Appl. Anal. 85 (2006), 383–413.
5. , Korovkin’s theorem in modular spaces, Commentationes Math. 47 (2007), 239–253.
6. Bardaro C., Musielak J. and Vinti G., Nonlinear Integral Operators and Applications, de Gruyter Series in

Nonlinear Analysis and Appl. Vol. 9, Walter de Gruyter Publ., Berlin, 2003.
7. Bojanic R. and Cheng F., Estimates for the rate of approximation of functions of bounded variation by Hermite-

Fejer polynomials, Proceedings of the conference of Canadian Math. Soc. 3 (1983), 5–17.
8. Bojanic R. and Khan M. K., Summability of Hermite-Fejer interpolation for functions of bounded variation,

J. Nat. Sci. Math. 32(1) (1992), 5–10.
9. Devore R. A., The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in

Mathematics, Springer-Verlag, 293, Berlin 1972.
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