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ON IDEALS AND CONGRUENCE RELATIONS IN TRELLISES

S. P. BHATTA and H. S. RAMANANDA

Abstract. In this paper an attempt has been made to extend the ideal theory of lattices to trellises.

Hashimoto’s results concerning ideals and congruences in lattices are extended to trellises. Also a
characterization of trellises in which every ideal is the kernel of at most one congruence relation is
obtained by extending the corresponding well-known result in lattices due to Grätzer and Schmidt.

1. Introduction

A reflexive and antisymmetric binary relation / on a set A is called a pseudo-order on A. A
pseudo-ordered set or a psoset (A; /) consists of a nonempty set A and a pseudo-order / on A.
By a trellis we mean a psoset in which any two elements have a greatest lower bound and a least
upper bound. The notion of a trellis, introduced by E. Fried [2] and H. L. Skala [8], is a natural
generalization of that of a lattice. There is extensive literature on ideals and congruence relations
in lattices (see Hashimoto [6], G. Grätzer and E. T. Schmidt [4]). These are motivated by the
pioneering work of Hashimoto based on an open problem posed by G. Birkhoff ([1, Problem 73]).
This paper extends some of these well-known results to trellises.

In the first section, some basic theorems on ideals in lattices are extended to trellises with
some modifications. In the second section, by extending Hashimoto’s theorem( see [3]) concerning
lattices to trellises, it is proved that, if in a trellis L, every ideal is the kernel of at least one
congruence relation, then its ideal lattice I(L) is distributive. Also, some necessary and sufficient

Received May 21, 2009; revised November 30, 2009.

2000 Mathematics Subject Classification. Primary 06B05, 06B10.
Key words and phrases. trellis; lattice; ideal lattice of a trellis; congruence relation.



JJ J I II

Go back

Full Screen

Close

Quit

conditions for the existence of a one to one correspondence between ideals and congruence relations
in trellises are obtained. Finally, a characterization of trellises in which every ideal is the kernel of
at most one congruence relation is given.

For undefined notations and terminology, the reader may refer to H. L. Skala [8], G. Grätzer
[3].

2. Ideals in trellises

An element a of a trellis is said to be left transitive if x / y / a implies x / a.
For an element a of a trellis L, (a] := {x ∈ L : x / a}.
A pseudo chain (p-chain) C = {ai|i = 1, 2, . . .} of elements of a psoset (A; /) is said to be an

infinite ascending p-chain in A if a1 / a2 / a3, . . ., where C is infinite. A psoset (A; /) is said to
satisfy the ascending p-chain condition if there is no infinite ascending p-chain in A.

Definition 2.1. A nonempty subset I of a trellis L is called an ideal if I is a subtrellis of L
and for each element a of I, b / a implies that b is in I. For a nonempty subset B of a trellis L,
the ideal generated by B, denoted by 〈B〉, is the intersection of all ideals of L containing B. If B
is a singleton {a}, then we write 〈a〉 for 〈{a}〉. An ideal I is said to be principal if I = 〈a〉 for an
element a of L.

Remark 2.2. For an element a of a trellis L, 〈a〉 = (a] if and only if a is left transitive.

In the case of a lattice every ideal is principal if and only if the lattice satisfies the ascending
chain condition. A partial extension of this result is proved for trellises in the following lemma.

Lemma 2.3. If L is an acyclic trellis satisfying the ascending p-chain condition, then every
ideal I of L is principal and can be written as I = (a] for a unique left transitive element a of L.
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Proof. Let I be an ideal of L. Since L is acyclic and satisfies the ascending p-chain condition,
every nonempty subset of L has a maximal element. Hence I has a maximal element say a. As I
is a subtrellis of L, a is the greatest element of I and clearly I = 〈a〉. Let x / y / a. As I is an
ideal containing a, both y and x belong to I. Since a is the greatest element of I, we have x / a.
Therefore a must be left transitive and hence 〈a〉 = (a]. �

Definition 2.4. For a trellis with the least element 0, the height of an element a is defined to
be the supremum of the cardinalities of all p-chains connecting 0 to a and it is denoted by ht(a). A
trellis L is said to be of finite height if L is acyclic and there exists an integer k such that ht(a)≤ k,
for every element a of L.

Lemma 2.3 is useful in dealing with trellises of finite height, since such trellises are acyclic and
satisfy the ascending p-chain condition.

In the case of lattices every convex sublattice can be written as the intersection of an ideal and
a dual ideal. However, in the case of trellises, even though the intersection of an ideal and a dual
ideal is a convex subtrellis if nonempty, the converse holds only if the trellis is a lattice as proved
in the following:

Lemma 2.5. If every convex subtrellis of a trellis L is the intersection of an ideal and a dual
ideal of L, then L is a lattice.

Proof. Let a, b, c ∈ L with a / b / c. We have to show that a / c. By the hypothesis, the convex
subtrellis {a}= I ∩D, for an ideal I and a dual ideal D of L. Since a ∈ I and I is an ideal, clearly
a ∧ c ∈ I. Also a ∈ D, a / b / c and D is a dual ideal so that c ∈ D. Therefore a ∧ c ∈ D. Hence
a ∧ c ∈ I ∩D={a}. Thus a ∧ c = a or equivalently a / c, as desired. �

Definition 2.6. A proper ideal I of a trellis L is said to be
1. prime, if for a, b ∈ L, a ∧ b ∈ I implies that a ∈ I or b ∈ I;
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2. maximal, if L contains no larger proper ideal.

It is known that a lattice L is distributive if and only if every ideal can be written as the
intersection of all prime ideals containing it [3]. For a trellis of finite height, we have the following
result.

Theorem 2.7. Let L be a trellis of finite height. If every ideal of L is the intersection of all
prime ideals containing it, then L is a lattice.

Proof. If L is not a lattice, then there exists an element a of least height such that a / b / c and
a 6 c. Then a ∧ c and a must be left transitive elements. Hence by Remark 2.2, 〈a ∧ c〉 = (a ∧ c]
and 〈a〉 = (a]. Since (a ∧ c] 6= (a], a 6∈ (a ∧ c]. By the hypothesis (a ∧ c] = ∩M , where M=
{P ∈ I(L): P is a prime ideal and a ∧ c ∈ P}. Now a ∧ c ∈ P for every P ∈ M . This implies
a ∈ P for every P ∈M . Thus a ∈ ∩M = (a ∧ c], a contradiction. Hence L must be a lattice. �

Remark 2.8. The following results can be proved as in the case of lattices:
1. Let L be a complemented or a relatively complemented trellis. Then every prime ideal of

L is maximal.
2. Let L be a trellis and I be a prime ideal of L. Then there exists a homomorphism f of L

onto C2 = {0, 1} with 0 / 1 such that f−1(0) = I. Hence every prime ideal is the kernel of
at least one homomorphism.

3. the kernel of a congruence relation

Definition 3.1. A congruence relation ≡ on a trellis L is an equivalence relation such that
whenever a ≡ b and c ≡ d, then a ∨ c ≡ b ∨ d and a ∧ c ≡ b ∧ d.

Definition 3.2. A trellis L is said to be Hashimoto if every ideal of L is the kernel of at least
one congruence relation.
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Hashimoto trellises need not be associative(distributive) in general. One interesting property of
Hashimoto trellises is given in the following theorem.

Theorem 3.3. In a Hashimoto trellis, if x∧ y = x∧ z and x∨ y = x∨ z hold for some x, then
〈y〉 = 〈z〉.

Proof. Clearly x∧y ≡ y(Θ[〈y〉]). Hence x ≡ y∨x = x∨z(Θ[〈y〉]). Also x∧y = x∧z ≡ z(Θ[〈y〉]).
As x ∧ y ∈ 〈y〉 and the trellis is Hashimoto, clearly z ∈ 〈y〉 or equivalently 〈z〉 ⊆ 〈y〉 . Similarly
〈y〉 ⊆ 〈z〉. Hence 〈y〉 = 〈z〉. �

The next theorem shows that if a trellis is Hashimoto, then its ideal lattice is distributive. First
we prove two lemmas.

The following lemma gives a description of the ideal generated by a nonempty subset of a trellis.

Lemma 3.4. For any nonempty subset H of a trellis L, 〈H〉 can be described as follows:

Let I0 = H and for n ≥ 1,

In = {x ∈ L : x / p(y1, y2, . . . , yk), for some k ≥ 1, where p is a polynomial

and yi ∈ In−1 for 1 ≤ i ≤ k}.

Then 〈H〉 =
∞⋃

n=0
In.

Proof. First we shall show that for each n, In−1 ⊆ In. For any nonempty subset X of L, define
o(X) =

⋃
x∈X(x] .
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Call o(X) as o-ideal generated by X. Clearly X ⊆ o(X). Let H be the given nonempty subset
of L. Then as in the case of lattices, the subtrellis generated by H, denoted by[H] is given by

= {x ∈ L :x = p(h1, h2, . . . , hn) for some n ≥ 1 and

some polynomial p, where hi ∈ H, 1 ≤ i ≤ n}.

Hence by definition of In, In = o([In−1]) for n ≥ 1. This shows that In−1 ⊆ In for each n ≥ 1.
Take K =

⋃∞
n=0 In.

Claim: K is an ideal of L.
Let x, y ∈ K. Then x ∈ In and y ∈ Im for some n and m, say m ≤ n. Then Im ⊆ In so that

x, y ∈ In. But then x ∨ y ∈ In+1 ⊆ K.
Let x ∈ L, y ∈ K. Since y ∈ K, clearly y ∈ In for some n. Now x ∧ y / y ∈ In. This implies

x ∧ y ∈ In+1 ⊆ K. Thus K is an ideal.
It remains to show that K = 〈H〉. Clearly H = I0 ⊆ K so that 〈H〉 ⊆ K. On the other hand,

if a ∈ K, then a ∈ In for some n. By induction on n, it follows that In ⊆ 〈H〉. In fact, if n = 0, I0

= H ⊆ 〈H〉. Let n ≥ 0 and In ⊆ 〈H〉. Since In ⊆ 〈H〉, clearly [In] ⊆ 〈H〉, which in turn implies
that In+1 = o([In] ) ⊆ 〈H〉. Thus 〈H〉 =

⋃∞
n=0 In as desired. �

In the following lemma corresponding to each congruence relation on a trellis, a congruence
relation on the ideal lattice of the trellis has been constructed.

Lemma 3.5. If Θ is a congruence relation on a trellis L, then the binary relation Φ on I(L)
defined by, ′′ for J , K ∈ I(L), J ≡ K(Φ) if and only if for each element a in J there is an element
b in Ksuch that a ≡ b(Θ) and for each element b in K there is an element a in J such that
a ≡ b(Θ)′′, is a congruence relation on I(L).

Proof. Clearly Φ is an equivalence relation on I(L). To show that Φ satisfies the substitution
property, consider S, J ∈ I(L) with S ≡ J(Φ) and K ∈ I(L). We need to prove that
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(i) S ∧K ≡ J ∧K(Φ);
(ii) S ∨K ≡ J ∨K(Φ).

Let a ∈ S ∧K. Since a ∈ S, there exists an element b in J such that a ≡ b(Θ). Then a ≡ a∧ b(Θ),
and a ∧ b ∈ J ∩K = J ∧K.

Similarly, for each x ∈ J∧K there exists y ∈ S∧K such that x ≡ y(Θ). Hence S∧K ≡ J∧K(Φ),
which proves (i).

To prove (ii), we first note that S ∨ K = 〈S ∪K〉. Also by Lemma 3.4, 〈S ∪K〉 =
⋃∞

n=0 In,
where I0 = S ∪K and In = o([In−1]), for n ≥ 1. Similarly J ∨K =

⋃∞
n=0 I ′n, where I ′0 = J ∪K

and I ′n = o([I ′n−1]), for n ≥ 1.
We shall show, by induction on n, that for each element a in In, there exists an element b in I ′n

such that a ≡ b(Θ).
Let a ∈ I0= S ∪K. Then either a ∈ S or a ∈ K. If a ∈ S, then as S ≡ J(Φ), there exists an

element b in J such that a ≡ b(Θ). Now, b ∈ J ⊆ J ∪K. Hence b ∈ J ∪K such that a ≡ b(Θ). If
a ∈ K, then clearly a ∈ K ∪ J and a ≡ a(Θ). Thus result is true when n = 0.

Let n ≥ 0 and assume that the result is true for In. Let a ∈ In+1. Then a / p(y1, y2, . . . , yk),
for some k ≥ 1 , for some polynomial p and yi ∈ In. As yi ∈ In, by induction hypothesis, there
is zi ∈ I ′n such that yi ≡ zi(Θ), for 1 ≤ i ≤ k. Therefore p(y1, y2, . . . , yk) ≡ p(z1, z2, . . . , zk)(Θ).
Hence a=a ∧ p(y1, y2, . . . , yk) ≡ a ∧ p(z1, z2, . . . , zk)(Θ) and a ∧ p(z1, z2, . . . , zk)∈ I ′n+1 .

Hence for each a in In+1 there is an element b in I ′n+1 such that a ≡ b(Θ).
Similarly it follows that for each a ∈ I ′n, there is an element b ∈ In such that a ≡ b(Θ). This

proves (ii). Thus Φ is a congruence relation on I(L). �

Now we are ready to prove the main theorem.

Theorem 3.6. If a trellis L is Hashimoto, then I(L) is distributive.
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Proof. To prove that I(L) is distributive, by [5], it suffices to show that every principal ideal of
I(L) is the kernel of at least one congruence relation on I(L). Let I be the kernel of a congruence
relation Θ on L. Let (I]∗ denote the principal ideal of I(L) generated by I. To show that (I]∗ is the
kernel of at least one congruence relation on I(L), it is required to show that (I]∗ is a congruence
class modulo Φ for some congruence relation Φ on I(L).

For the congruence relation Θ on L, let Φ be the congruence relation on I(L) as defined in
Lemma 3.5.

To complete the proof it suffices to prove that (I]∗ = [I]Φ.
Let J ∈ (I]∗. Then J ⊆ I. To show J ≡ I(Φ), consider any j ∈ J . Then clearly j ∈ I and

j ≡ j(Θ). On the other hand, let x ∈ I. Then, since J ⊆ I =[x]Θ, clearly j ≡ x(Θ) holds for any
j ∈ J . Thus J ≡ I(Φ); therefore J ∈ [I]Φ.

Let J ∈ [I]Φ and j ∈ J . Then, since J ≡ I(Φ), there is an element x in I such that j ≡ x(Θ).
But then j ∈ [x]Θ = I. Hence J ∈ (I]∗. Thus (I]∗ = [I]Φ. �

Remark 3.7. The following counterexample shows that for a trellis L, distributivity of I(L)
need not imply that L is Hashimoto.

Counterexample 3.8. In Figure 1, L and I(L) represent a trellis and its ideal lattice, respec-
tively (In the diagram the dashed curve indicates that the transitivity is removed between its end
points ). Observe that the ideal 〈b〉 of L is not the kernel of any congruence relation. If 〈b〉 is the
kernel of a congruence relation Θ of L, then clearly 0 ≡ a(Θ) so that d = 0 ∨ d ≡ a ∨ d = 1(Θ).
But then b = d ∧ c ≡ 1 ∧ c = c(Θ) and c /∈ 〈b〉, a contradiction.

A characterization of Hashimoto trellises is given in the following theorem.

Theorem 3.9. The following statements are equivalent for a trellis L:
1. L is Hashimoto;
2. for any ideal I of L, x ≡ y(Θ[I]) implies 〈x〉 ∨ I = 〈y〉 ∨ I in I(L).
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Proof. Let L be Hashimoto. Let I be an ideal of L and x ≡ y(Θ[I]). Now x ∈ [y]Θ[I ∨ 〈y〉] =
I ∨ 〈y〉 since y ∈ I ∨ 〈y〉 which is the kernel of a congruence relation. Hence 〈x〉 ⊆ I ∨ 〈y〉 in I(L)
so that 〈x〉 ∨ I ⊆ I ∨ 〈y〉 in I(L). Similarly 〈y〉 ∨ I ⊆ I ∨ 〈x〉 in I(L). Hence 〈x〉 ∨ I = 〈y〉 ∨ I in
I(L).

Conversely, let 2. hold and let a be an element of an ideal I of L. Clearly I ⊆ [a]Θ[I]. On the
other hand, if b ∈ [a]Θ[I], then b ≡ a(Θ[I]). Hence by the hypothesis, 〈a〉 ∨ I = 〈b〉 ∨ I in I(L). As
a ∈ I, clearly 〈a〉 ∨ I = I and therefore 〈b〉 ⊆ I or equivalently b ∈ I. Thus I = [a]Θ[I]. �

The following theorem generalizes the well-known Hashimoto theorem [3] to trellises.

Theorem 3.10. The following statements are equivalent for a trellis L:

Figure 1. I(L) is distributive ; L is Hashimoto.
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1. every ideal of L is the kernel of exactly one congruence relation of L and every congruence
relation of L has a kernel;

2. L is bounded below, Hashimoto and if I = [0](Θ(a, b)) for some a, b ∈ L with a / b, then
Θ[I] = Θ(a, b).

Proof. 1. implies 2. Since every congruence relation has a kernel, the equality relation ω also
has a kernel and therefore L must be bounded below.

Also L is Hashimoto. Let a / b and I = [0]Θ(a, b). Since every ideal of L is the kernel of exactly
one congruence relation and I is already the kernel of Θ(a, b), clearly Θ[I] = Θ(a, b).

2. implies 1. Let I be the kernel of a congruence relation Ψ. Then clearly Θ[I] ⊆ Ψ. On the
other hand, let x ≡ y(Ψ). Then x ∧ y ≡ y(Ψ) and y ≡ x ∨ y(Ψ). Let I1 = [0]Θ(x ∧ y, y) and
I2 = [0]Θ(y, x∨ y). As [0]Θ(x, y) ⊆ [0]Ψ = I, it is clear that I1 ⊆ I and I2 ⊆ I. Since I is an ideal,
I1 ∨ I2 ⊆ I. Now x ∧ y ≡ y ≡ x ∨ y(Θ[I1] ∨Θ[I2]). Moreover, Θ[I1] ∨Θ[I2] ⊆ Θ[(I1 ∨ I2)] ⊆ Θ[I],
so that x ≡ y(Θ[I]), which proves that Θ[I] = Ψ.

If Θ is any congruence relation of L, then [0]Θ is the ideal kernel of Θ and hence every congruence
relation of L has a kernel. �

Remark 3.11. A trellis with the least element 0 is said to be sectionally complemented if for
any two elements x, y such that 0 / x / y there exists an element x′ such that x ∧ x′ = 0 and
x ∨ x′ = y. Note that even if a trellis L satisfies the condition (1) of the above theorem, it is not
necessary that L or I(L) is sectionally complemented (see Figure 2, where I(L) is the ideal lattice
of the trellis L and Con L is the congruence lattice of L. In Con L, Θ1 = Θ(0, a), Θ2 = Θ(a, b) and
Θ3 = Θ(a, c)).

In the case of a relatively complemented trellis of finite height, we have a nice description for
the kernel of a congruence relation. The proof uses some ideas from[8, Theorem 45].
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Theorem 3.12. Let I be an ideal of a relatively complemented trellis L of finite height. Then
the following statements are equivalent:

1. I is the kernel of a congruence relation;
2. x ≡ y(Θ[I]) if and only if x ∨ i = y ∨ i, for some i ∈ I.

Proof. Let I be an ideal of a trellis L of finite height. Then I = (a] for some left transitive
element a ∈ I.

1. implies 2. Suppose x ≡ y(Θ (a]). Note that a /(x∨a)∧(y∨a) / (x∨a). Let b be an (a, x∨a)-
complement of (x ∨ a) ∧ (y ∨ a). Then 0 ≡ a = b ∧ ((x ∨ a) ∧ (y ∨ a)) ≡ b ∧ (x ∨ y) ≡ b ∧ x(Θ (a]).
This shows that

(i) 0 ≡ b ∧ x(Θ (a]).
Also x ≡ x ∨ a = b ∨ ((x ∨ a) ∧ (y ∨ a)) ≡ b ∨ (x ∨ y) ≡ b ∨ x(Θ (a]). Therefore

Figure 2. .
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(ii) x ∧ b ≡ b(Θ (a]).
Now 0 ≡ b(Θ (a]) from (i) and (ii). Since I = (a] is the kernel of a congruence relation, clearly
b ∈ I = (a] so that b / a. Moreover, a / b since a = b ∧ ((x ∨ a) ∧ (y ∨ a)) and hence a = b. But
then x∨ a = b∨ ((x∨ a)∧ (y ∨ a)) = a∨ ((x∨ a)∧ (y ∨ a)) = (x∨ a)∧ (y ∨ a), whence x∨ a / y ∨ a.
Similarly y ∨ a / x ∨ a. Thus x ∨ a = y ∨ a.
On the other hand suppose x ∨ i = y ∨ i for some i ∈ I. Since 0 ≡ i(Θ (a]), clearly x ≡ x ∨ i =
y ∨ i ≡ y(Θ (a]) .

2. implies 1. We are going to show that I = [0]Θ[I]. Evidently I ⊆ [0]Θ[I]. Conversely, let
x ∈ [0]Θ[I]. Then x ≡ 0(Θ[I]), which implies x ∨ i = 0 ∨ i for some i ∈ I, by 2. Thus x / i, hence
x ∈ I. �

The following theorem gives a characterization of trellises in which every ideal is a congruence
class under, at most, one congruence relation. The proof would be the same as that of one
Theorem 3.10.

Theorem 3.13. The following statements are equivalent for a trellis L:
1. every congruence relation has a kernel and every ideal is a congruence class under, at most,

one congruence relation;
2. L is bounded below and if I = [0](Θ(a, b)) for some a, b ∈ L with a / b, then Θ[I] = Θ(a, b).

Corollary 3.14. In a sectionally complemented trellis every ideal is the kernel of, at most, one
congruence relation.

Proof. It is easy to observe that a sectionally complemented trellis satisfies the condition 2. of
the above theorem. �

Acknowledgement. The authors are grateful to the learned referees for many fruitful sugges-
tions.



JJ J I II

Go back

Full Screen

Close

Quit

1. Birkhoff, G., Lattice theory, Second edition, Amer. Math. Soc. coll. publ., vol. 25, New York, 1948.

2. Fried E., Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151–164.
3. Grätzer, G., General Lattice Theory, Second Edition, Birkhäuser Verlag, 1998.
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