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TRIGONOMETRIC EXPRESSIONS FOR FIBONACCI
AND LUCAS NUMBERS

B. SURY

The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas
numbers. Not only these numbers are popular in expository literature because of their beautiful
properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to
use a certain polynomial identity to express these numbers in terms of trigonometric functions. It
is interesting that these expressions provide natural proofs of old and new divisibility properties for
the Fibonacci numbers. One can naturally recover some divisibility properties and discover/observe
some others which seem to be new. There are some fascinating open questions about the periodicity
of the Fibonacci sequences modulo primes and we shall also prove some partial results on this.

1. Fibonacci and Lucas numbers in trigonometric form

The Fibonacci numbers are recursively defined by Fn+1 = Fn + Fn−1 where F0 = 0, F1 = 1. The
first few are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .
The so-called Cauchy-Binet identity gives an expression in closed form as Fn = (αn − βn)/

√
5

where α = (1 +
√

5)/2, the “golden ratio” and β = (1 −
√

5)/2 = −1/α. The Fibonacci numbers
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have the Lucas numbers as close cousins. The Lucas numbers are defined by the same recursion
Ln+1 = Ln + Ln−1, but the starting numbers are L0 = 2, L1 = 1. The first few are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .

We recall a polynomial identity (an identity which holds for every complex value of the variable)
observed in [6]:

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
(xy)r(x+ y)n−1−2r = xn−1 + xn−2y + · · ·+ yn−1.

Note that it is a simple exercise to prove this polynomial identity by induction on n. The Cauchy-
Binet identity can be deduced from the above identity as in [5] simply by specializing the values
x = α, y = β. The bridge to this deduction is provided by the summatory expression Fn =∑
r≥0

(
n−1−r

r

)
for all n > 0 which is also provable by induction on n! See also [1] for a combinatorial

interpretation of this polynomial identity. We note in passing that Cauchy-Binet type of identity is
easily obtained for a general linear recurrence relation of any order m. In that case the n-th term
is an =

∑m
i=1 ciλ

n
i , where λi are the eigenvalues of the characteristic equation and the constants ci

are evaluated by looking at the initial values. We show there is much more scope in exploiting the
polynomial identity mentioned above; in particular, we use this and similar polynomial identities
to obtain trigonometric and other expressions such as the following.

Theorem 1.

(a) Fn =
[(n−1)/2]∏
r=1

(
3 + 2 cos

2πr
n

)
(b) L2n+1 =

n∏
r=1

(
3− 2 cos

2πr
2n+ 1

)
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(c) L2n =
n−1∏
r=0

(
3− 2 cos

(2r + 1)π
2n

)
(d) L2n+1 =

∑
r≥0

(−1)r
(

2n− r
r

)
5n−r

(e) L2n = − i(x− x−1)
∑
r≥0

(−1)r
(
n− 1− r

r

)
(x+ x−1)n−1−2r

where x =
3 +
√

5
2

e(iπ)/(2n).

From these expressions we shall deduce the following divisibility results:

Corollary 1.

(i) Fn divides Fmn,

(ii) Ln divides L(2m+1)n,

(iii) L2n+1 divides F2n(2m+1),

(iv) F2n + F2n+2 divides F(2n+1)m,

(v) Fn−2k + Fn+2k divides Fmn−2k + Fmn+2k,

(vi) Fn−2k−1 + Fn+2k+1 divides F(2m+1)n−2k−1 + F(2m+1)n+2k+1,

(vii) Fn−k + Fn+k divides Fn−k(2l+1) + Fn+k(2l+1).

It is worth remarking that the divisibility properties like (i) above can be deduced from the Cauchy-
Binet identity equally easily but, there is one subtle difference. Using the Cauchy-Binet identity,
one needs to use factorization while the proof deduced from the trigonometric expression “physically
shows” all the terms of the denominator “appearing” in the numerator.
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The proofs will be given in Section 3 using the polynomial identity. Very interestingly, the Cheby-
chev polynomials are polynomials defined by recursion which generalizes the Fibonacci recursion
and in Section 3 we look at them and give another proof of the trigonometric expression. This
reveals, in a sense, the mysterious connection between Fibonacci numbers and trigonometric func-
tions.

1.1. A sequence interpolating Fn and Ln

While discussing the Fibonacci numbers, we also run across accidentally the sequence {an} which
is defined by:

an =
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r for all n ≥ 1.

We shall also prove the following lemma

Lemma 1.

(i) an =
[(n−1)/2]∏
r=1

(
3− 2 cos

2πr
n

)
.

(ii) The sequence {an} satisfies the following Cauchy-Binet-type of identity:

an =


(1 +

√
5)n − (

√
5− 1)n

2n
for odd n

(1 +
√

5)n − (
√

5− 1)n

2n
√

5
for even n
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(iii) The sequence {an} satisfies the recursion

a2n+1 = 5a2n − a2n−1

a2n+2 = a2n+1 − a2n

(iv) an = Fn or Ln according as n is even or odd.

(v) am|an if m|n.

Note the first few values of {an} are 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, . . . As it is
not increasing, the divisibility result seems surprising!

2. Proofs using polynomial identity

Proof of Theorem 1(a). Start with the polynomial identity from [6]

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r = 1 + x+ · · ·+ xn−1

The right hand side equals (xn−1)/(x−1) =
∏n−1
r=1 (x− e2 i rπ/n). It is crying out that we combine

the terms corresponding to r and n − r; if n is even, there is a middle term corresponding to
r = n/2 which is x+ 1. We obtain

(n−2)/2∑
r=0

(
n− 1− r

r

)(
−x

(1 + x)2

)r
(1 + x)n−1 = (x+ 1)

(n−2)/2∏
r=1

(
x2 − 2x cos

2πr
n

+ 1
)
.



JJ J I II

Go back

Full Screen

Close

Quit

Let us take for x a solution of the quadratic equation (x + 1)2 = −x (that is, x2 + 3x + 1 = 0).
Thus, one has for even n

(1 + x)n−1

(n−2)/2∑
r=0

(
n− 1− r

r

)
= (−x)(n−2)/2(1 + x)

(n−2)/2∏
r=1

(
3 + 2 cos

2πr
n

)
.

As (1 +x)2 = −x, we have for even n that (1 +x)n−1 = (1 +x)(−x)(n−2)/2 which, therefore, gives
the first formula

Fn =
[(n−1)/2]∏
r=1

(
3 + 2 cos

2πr
n

)
for all n ≥ 1,

where, as usual, the usual convention is that an empty product equals 1. This proves (a). �

Proof of Lemma 1. (i) Let us try to carry over the above proof for the sequence

an =
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r.

The polynomial identity
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r =

xn − 1
x− 1

=
n−1∏
r=1

(x− e2 i rπ/n)

has the right hand side

(1 + x)
(n/2)−1∏
r=1

(
x2 − 2x cos

(
2πr
n

)
+ 1
)

or
(n/2)−1∏
r=1

(
x2 − 2x cos

(
2πr
n

)
+ 1
)
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according as n is even or odd.
If we now take x to be a solution of x2 − 3x+ 1 = 0 (so (x+ 1)2 = 5x), we obtain for odd n

(n−1)/2∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r =

(n−1)/2∏
r=1

(
3− 2 cos

2πr
n

)
and for even n

(n−2)/2∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−2)/2]−r =

(n−2)/2∏
r=1

(
3− 2 cos

2πr
n

)
.

Therefore, we obtain the identity for all n ≥ 1

an =
(n−1)/2∏
r=1

(
3− 2 cos

2πr
n

)
.

So (i) is proved.

(ii) In the polynomial identity

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r =

xn − 1
x− 1

specialize x to a root of (x+ 1)2 = 3x.
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Combining the two expressions, we have

an =
[(n−1)/2]∏
r=1

(
3− 2 cos

2πr
n

)
=


(1 +

√
5)n − (

√
5− 1)n

2n
for odd n,

(1 +
√

5)n − (
√

5− 1)n

2n
√

5
for even n.

(iii) As an is positive (as it is clear from the right hand side of the Cauchy-
-Binet-type of identity above) and is an integer (from the definition!) and, since

(
(
√

5− 1)/2
)n
< 1,

it also follows that

an =

[(√
5 + 1
2

)n]
or

1√
5

[(√
5 + 1
2

)n]
according as n is odd or even. Now, one may use the Cauchy-Binet-type identity to obtain the
recursion which defines an’s. That is

a2n+1 = 5a2n − a2n−1;
a2n+2 = a2n+1 − a2n.

(iv) The Cauchy-Binet-type identity or simply the expression

a2n =
n−1∏
r=1

(
3− 2 cos

πr

n

)
makes it clear that a2n = F2n for all n.
As a2n+1 = a2n + a2n+2 = F2n + F2n+2, we have a2n+1 = L2n+1.

(v) The proof of this divisibility result is the same as for corollary (i) given below. �
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Proof of the rest of the Theorem 1. The proofs of (b), (d) are immediate from Lemma 1(i) and
(iii).

For (e), we look again at the polynomial identity
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
(xy)r(x+ y)n−1−2r = xn−1 + xn−2y + · · ·+ yn−1

which has for its right hand side the expression (xn − yn)/x− y whereas L2n = α2n + β2n, where
α = (1 +

√
5)/2, β = −1/α. If we simply take x = eiπ/2n α2, y = x−1, we have xn − yn =

i(α2n + β2n) = iL2n. Thus, we have

L2n = − i(x− x−1)
∑
r≥0

(−1)r
(
n− 1− r

r

)
(x+ x−1)n−1−2r

where x = eiπ/2n α2. This proves (e).

(c) Now L2n = α2n + β2n = α2n + α−2n = (α4n + 1)/α2n = Rn(α4)/α2n where the polynomial
Rn(x) = xn + 1 satisfies

Rn(x) =
x2n − 1
xn − 1

=
n−1∏
r=0

(
x− e2 iπ(2r+1)/2n

)
.

Thus,

Rn(x2) =
n−1∏
r=0

(
x− e2 iπ(2r+1)/2n

)(
x− e−2 iπ(2r+1)/2n

)
=
n−1∏
r=0

(
x2 − 2x cos

(2r + 1)π
2n

+ 1
)
.
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Finally, if we take x = α2 and note that α4 + 1 = 3α2 for the golden ratio α = (1 +
√

5)/2, we
obtain the product expression

L2n =
n−1∏
r=0

(
3− 2 cos

(2r + 1)π
2n

)
.

This proves (c). �

Proof of Corollary 1. All the parts follow from the product expressions and the identification
of the sequence {an} with the sums of Fibonacci and Lucas numbers. Let us indicate the proof of
(i) in detail.
In the expression

Fmn =
[(mn−1)/2]∏

r=1

(
3 + 2 cos

2πr
mn

)
,

there are terms corresponding to r = n, 2n, . . . , n[(m − 1)/2] since n[(m − 1)/2] ≤ [(mn − 1)/2].
Each of these terms is also a term for Fm and, in fact, comprises all the terms of Fm! Hence
Fmn/Fm is a product of expressions of the form 3 + 2 cos(2πr/mn). Each of these is an algebraic
integer and thus, the ratio Fmn/Fm is simultaneously an algebraic integer and a rational number.
Hence the ratio is an integer. Thus (i) is proved.

Similarly (ii) follows when n is odd. Now, observe that L2n divides L2n(2m+1), because in the
product

L2n(2m+1) =
n(2m+1)−1∏

r=0

(
3− 2 cos

(2r + 1)π
2n(2m+ 1)

)
the terms corresponding to 2r+1 = 2n+1, 3(2n+1), · · · , (2n−1)(2m+1) are exactly the terms in
the product for L2n. Therefore, we have (ii) also for even n. The rest of the divisibility properties
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asserted follows from the above divisibility property for Ln’s and an’s by using the expressions

Fn−k + Fn+k = FkLn or LkFn according as k is odd or even.

Note that these well-known expressions themselves follow from the corresponding Cauchy-Binet
identities. The corollary is proved. �

Let us finish this theme by writing out a few more such applications of the polynomial identity
followed by specializations.

Remark 1. In the polynomial identity, specializations x = e2iπ/3, x = i yield, respectively,

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
= (−1)[(n−1)2]

[(n−1)/2]∏
r=1

(
1 + 2 cos

2πr
n

)
= 0, (−1)n−1 or (−1)n according as n = 0, 1 or 2 mod 3

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
2[(n−1)/2]−r = (−2)[(n−1)/2]

[(n−1)/2]∏
r=1

cos
2πr
n

= 0, (−1)(n−1)/4, (−1)(n−2)/4, or (−1)(n−3)/4 according as
n = 0, 1, 2 or 3 mod 4.

Finally, the most general identity obtainable by this method is the following.
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Remark 2. For an arbitrary complex number µ 6= −2, we have(
µ+ 2

2

)n−1 [(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)(
2µ

µ2 + 4

)r

=
2n − µn

2n−1(2− µ)
=

[(n−1)/2]∏
r=1

(
µ2 + 4

4
− µ cos

2πr
n

)
.

When µ = −2, the corresponding identity is

[(n−1)/2]∏
r=1

4 cos2
πr

n
=
n

2
or 1

according as n is even or odd. The latter identity was referred to by some people (see [4]) as
‘grandma’s identity’.

3. Fibonacci polynomials

Consider the polynomials Fn(x) defined recursively by

F0(x) = 0, F1(x) = x, Fn+1(x) = xFn(x) + Fn−1(x).

Observe that Fn(1) = Fn, the Fibonacci numbers. We remark in passing that the Chebychev
polynomials are related to these polynomials. Recalling the standard method of expressing a
member of a linear recursion in terms of the characteristic equation (as mentioned in the intro-
duction) one has the following. The recursion is expressed formally by the generating function∑
n≥1 Fn(x)yn = y

1−xy−y2 . The characteristic polynomial (in y) 1− xy− y2 (for each fixed x) has
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the ‘roots’ (α, β) = −x±
√
x2+4

2 . Note that αβ = −1. Therefore,

Fn(x) =

1
αn+1

− 1
βn+1

α− β
= (−1)n

αn+1 − βn+1

α− β
.

Now it is easy to find the roots of Fn(x) (they correspond to β/α being a nontrivial (n + 1)-th
root of unity); we get

Fn(x) =
n−1∏
r=1

(
x− 2 i cos

rπ

n

)
.

We get

Fn = Fn(1) =
n−1∏
r=1

(
1− 2 i cos

rπ

n

)

=
[(n−1)/2]∏
r=1

(
1 + 4 cos2

rπ

n

)
=

[(n−1)/2]∏
r=1

(
3 + 2 cos

2rπ
n

)
.

4. Periodicity modulo primes

We recall one open question about the Fibonacci numbers

If p is a fixed prime number, what is the period of the sequence Fn mod p?

Here is a partial answer

Theorem 2.
(a) For any prime p 6= 5, we have Fp ≡ (5/p) and Fp−(p/5) ≡ 0 mod p.
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(b) For every prime p, the sequence {Fn} is periodic mod p. The period divides p − 1 if
(5/p) = 1; it is a divisor of 2p+ 2 but not of p+ 1 when (5/p) = −1. In case of the prime
5, the period is 20.

In the above statements, we have used the Legendre symbol (a/p) for a prime p. For instance,
a prime p satisfies (p/5) = 1 if p ≡ ±1 mod 5 and satisfies (p/5) = −1 if p ≡ ±2 mod 5.

Proof. (a) We may assume p 6= 2 as obviously F2 = 1 = (5/2) mod 2 and F3 = 2.
We shall use the expression

Fn =

[(n−1)/2]∑
r=0

(
n

2r + 1

)
5r

2n−1

which is just the binomial expansion of the Cauchy-Binet identity. Then, we have

2p−1Fp =
[(p−1)/2]∑
r=0

(
p

2r + 1

)
5r ≡ 5(p−1)/2 mod p

since
(
p
s

)
≡ 0 mod p for 1 ≤ s < p.

The first statement of (a) follows as 2p−1 ≡ 1 and 5(p−1)/2 ≡ (5/p) mod p.
Let us now prove the second one.

First, let (p/5) = −1, i.e., p ≡ ±2 mod 5. Then, (5/p) = −1, i.e., 5(p−1)/2 ≡ −1 mod p. Now,

2pFp+1 =
(p−1)/2∑
r=0

(
p+ 1
2r + 1

)
5r ≡ 1 + 5(p−1)/2 ≡ 0 mod p

since
(
p+1
s

)
≡ 0 mod p for 0 < s < p. Thus, p divides 2pFp+1 and so, it divides Fp+1.
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Now, take (p/5) = 1, i.e., p ≡ ±1 mod 5. Then,

2p−2Fp−1 =
(p−3)/2∑
r=0

(
p− 1
2r + 1

)
5r ≡

(p−3)/2∑
r=0

−5r

since
(
p−1
2r+1

)
≡ −1 mod p for 0 ≤ r ≤ (p− 3)/2.

Therefore, since (5/p) = 1, i.e., 5(p−1)/2 ≡ 1 mod p, we have

4 · 2p−2Fp−1 ≡ 4 ·
(p−3)/2∑
r=0

−5r = 1− 5(p−1)/2 ≡ 0.

This proves (a).

(b) Once again, we assume that p 6= 2, 5 as these two cases are verified individually easily. Recall
that (5/p) = (p/5) from the quadratic reciprocity law. Thus, we have mod p,

Fp−1 ≡ 0, Fp ≡ 1 if (p/5) = 1,

Fp+1 ≡ 0, Fp ≡ −1 if (p/5) = −1.

The first two equations mean that if p ≡ ±1 mod 5, then Fp ≡ 1 and Fp+1 = Fp−1 + Fp ≡ 1, i.e.,

Fp−1+n ≡ Fn mod p for all n ≥ 1.

The second pair of equations means that if p ≡ ±2 mod 5, then Fp+2 = Fp + Fp+1 ≡ −1 and
Fp+3 = Fp+2 + Fp+1 ≡ −1 mod p.

Thus, Fp+1+n ≡ −Fn for all n ≥ 1. This gives periodicity to a divisor of 2p+ 2 but not of p+ 1
when p ≡ ±2 mod 5. Our contention is proved. �
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Finally, let us end with a simple consequence which was implicit in the above discussion.
Let p > 5 be a prime and let q be a prime dividing Fp. Then, q ≡ ±1 mod p. Moreover,

q ≡ 1 mod p implies q ≡ ±1 mod 5;
q ≡ −1 mod p implies q ≡ ±2 mod 5.
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