PRODUCTS OF INTEGRAL-TYPE AND COMPOSITION OPERATORS BETWEEN GENERALLY WEIGHTED BLOCH SPACES

HAIYING LI and TIANSHUI MA

Abstract

Let φ be a holomorphic self-map of the open unit disk \mathbb{D} on the complex plane and $0<\alpha, \beta<+\infty$. The boundedness and compactness of products of integral-type and composition operators between generally weighted Bloch spaces are investigated.

1. Introduction and preliminaries

Let \mathbb{D} be the unit disc on the complex plane and φ a holomorphic self-map of \mathbb{D}. We denote by $H(\mathbb{D})$ the space of all holomorphic functions on \mathbb{D}, denote by $\operatorname{dm}(z)$ the normalized Lebesgue area measure and define the composition operator C_{φ} on $H(\mathbb{D})$ by $C_{\varphi} f=f \circ \varphi$.

The space of analytic functions on \mathbb{D} such that

$$
\|f\|_{B_{\log }}=|f(0)|+\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \log \frac{2}{1-|z|^{2}}<\infty
$$

is called weighted Bloch space $B_{\log } . B_{\mathrm{log}}$ and $B M O A_{\log }$ first appeared in the study of boundedness of the Hankel operators on the Bergman space

$$
A^{1}=\left\{f \in H(\mathbb{D}): \int_{\mathbb{D}}|f(z)| \operatorname{dm}(z)<\infty\right\}
$$

[^0]$44|4| \gg$
Go back

Full Screen
and the Hardy space H^{1}, respectively. $B M O A_{\log }$ also appeared in the study of a Volterra type operator (see e.g. $[1,2,3,4,9,10]$). In [11], Yoneda studied the composition operators from $B_{\text {log }}$ to $B M O A_{\log }$. In $[5,6,7]$, we introduced the space $B_{\log }^{\alpha}, \alpha<0$, the space of analytic functions on \mathbb{D} such that

$$
\|f\|_{B_{\log }^{\alpha}}=|f(0)|+\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\alpha} \log \frac{2}{1-|z|^{2}}<\infty
$$

that is called generally weighted Bloch space $B_{\log }^{\alpha}$.
Let $g \in H(\mathbb{D})$, for $f \in H(\mathbb{D})$ be the integral-type operator I_{g} and J_{g} respectively, defined by

$$
\begin{aligned}
& I_{g} f(z)=\int_{0}^{z} f^{\prime}(\zeta) g(\zeta) \mathrm{d} \zeta \\
& J_{g} f(z)=\int_{0}^{z} f(\zeta) g^{\prime}(\zeta) \mathrm{d} \zeta, \quad z \in D
\end{aligned}
$$

The importance of the operators I_{g} and J_{g} comes from the fact that

$$
I_{\phi} f(z)+J_{\phi} f(z)=M_{\phi} f(z)-f(0) \phi(0), \quad z \in D
$$

where M_{g} is the multiplication operator

$$
\left(M_{g} f\right)(z)=g(z) f(z), \quad f \in H(\mathbb{D}), \quad z \in D .
$$

The products of composition operators and integral-type operators are defined by

$$
\begin{array}{ll}
C_{\varphi} J_{g} f(z)=\int_{0}^{\varphi(z)} f(\xi) g^{\prime}(\xi) \mathrm{d} \xi, & J_{g} C_{\varphi} f(z)=\int_{0}^{z} f(\varphi(\xi)) g^{\prime}(\xi) \mathrm{d} \xi, \\
C_{\varphi} I_{\phi} f(z)=\int_{0}^{\varphi(z)} f^{\prime}(\xi) \phi(\xi) \mathrm{d} \xi, & I_{\phi} C_{\varphi} f(z)=\int_{0}^{z}(f \circ \varphi)^{\prime}(\xi) \phi(\xi) \mathrm{d} \xi .
\end{array}
$$

In this article, we consider the characterization of boundedness and compactness of products of integral-type and composition operators between generally weighted Bloch spaces on the unit disk. Throughout the remainder of this paper C will denote a positive constant, the exact value of which will vary from one appearance to the next.
2. The boundedness and compactness of $C_{\varphi} J_{g}\left(C_{\varphi} I_{g}\right): B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$

At the beginning, the following Lemma 2.1 can be seen in [5].
Lemma 2.1. Let $f \in B_{\log }^{\alpha}$ and $z \in \mathbb{D}$, then
(a) For $0<\alpha<1,|f(z)| \leq\left(1+\frac{1}{(1-\alpha) \log 2}\right)\|f\|_{B_{\log }^{\alpha}}$;
(b) For $\alpha=1,|f(z)| \leq \frac{\log \frac{4}{1-|z|^{2}}}{\log 2}\|f\|_{B_{\log }^{\alpha}}$;
(c) For $\alpha>1,|f(z)| \leq\left(1+\frac{2^{\alpha-1}}{(\alpha-1) \log 2}\right) \frac{1}{\left(1-|z|^{2}\right)^{\alpha-1}}\|f\|_{B_{\log }^{\alpha}}$.

Lemma 2.2. Assume that φ is a holomorphic self-map of \mathbb{D} and $\alpha, \beta>0$. Then $C_{\varphi} J_{g}$ (or $\left.C_{\varphi} I_{g}\right): B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact if and only if for any bounded sequence $\left(f_{j}\right)_{j \in N}$ in $B_{\log }^{\alpha}$, when $f_{j} \rightarrow 0$ uniformly on compact subsets of $\mathbb{D},\left\|C_{\varphi} J_{g} f_{j}\right\|_{B_{\log }^{\beta}} \rightarrow 0$ or $\left.\left\|C_{\varphi} I_{g} f_{j}\right\|_{B_{\log }^{\beta}}\right) \rightarrow 0$ as $j \rightarrow \infty$.

The result follows from standard arguments similar to those in [4].

It is easy to obtain the following result by a similar method in [8] for $0<\alpha<1$.

Lemma 2.3. Assume that φ is a holomorphic self-map of \mathbb{D} and $0<\alpha<1, \beta>0$. Then $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact if and only if for any bounded sequence $\left(f_{j}\right)_{j \in N}$ in $B_{\log }^{\alpha}$, when $f_{j} \rightarrow 0$ uniformly on $\overline{\mathbb{D}},\left\|C_{\varphi} J_{g} f_{j}\right\|_{B_{\log }^{\beta}} \rightarrow 0$ as $j \rightarrow \infty$.

Lemma 2.4. Assume that $h \in H(\mathbb{D}), f \in B_{\log }^{\alpha}$, $\alpha>0$ for a fixed $z_{0} \in \mathbb{D}$. Then there exists a positive constant C independent of f such that

Go back

Full Screen

Close

$$
\begin{aligned}
& \left|\int_{0}^{z_{0}} f(\zeta) h(\zeta) \mathrm{d} \zeta\right| \leq C\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)|, \\
& \left|\int_{0}^{z_{0}} f^{\prime}(\zeta) h(\zeta) \mathrm{d} \zeta\right| \leq C\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| .
\end{aligned}
$$

Proof. For $h \in H(\mathbb{D}), f \in B_{\log }^{\alpha}$, then

$$
\begin{aligned}
\left|\int_{0}^{z_{0}} f(\zeta) h(\zeta) \mathrm{d} \zeta\right| & \leq \max _{|\zeta| \leq\left|z_{0}\right|}|f(\zeta)| \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| \\
& \leq\left(|f(0)|+\left|z_{0}\right| \max _{|\zeta| \leq\left|z_{0}\right|}\left|f^{\prime}(\zeta)\right|\right) \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| \\
& \leq \max \left\{1, \frac{\left|z_{0}\right|}{\left(1-\left|z_{0}\right|^{2}\right)^{\alpha} \log \frac{2}{1-\left|z_{0}\right|^{2}}}\right\}\|f\|_{B_{\log \mid}^{\alpha}} \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\left|\int_{0}^{z_{0}} f^{\prime}(\zeta) h(\zeta) \mathrm{d} \zeta\right| & \leq\left|z_{0}\right| \max _{|\zeta| \leq\left|z_{0}\right|}\left|f^{\prime}\right| \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| \\
& \leq \frac{\left|z_{0}\right|}{\left(1-\left|z_{0}\right|^{2}\right)^{\alpha} \log \frac{2}{1-\left|z_{0}\right|^{2}}}\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq\left|z_{0}\right|}|h(\zeta)| .
\end{aligned}
$$

Go back

Full Screen

Close

Theorem 2.5. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha \in(0,1), \beta>0$, then $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\mathrm{log}}^{\beta}$ is bounded if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}<\infty . \tag{2.1}
\end{equation*}
$$

44 4
Go back

Full Screen
Proof. Assume that $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded. Then by the definition of the operator $C_{\varphi} J_{g}$,

$$
\begin{equation*}
\left(C_{\varphi} J_{g} f\right)^{\prime}(z)=f(\varphi(z)) g^{\prime}(\varphi(z)) \varphi^{\prime}(z) . \tag{2.2}
\end{equation*}
$$

Let $f_{0}(z)=1$, then $f_{0} \in B_{\log }^{\alpha}$. Then by the boundedness of $C_{\varphi} J_{g}$

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right| g^{\prime}(\varphi(z)) \left\lvert\, \log \frac{2}{1-|z|^{2}} \leq\left\|C_{\varphi} J_{g}\right\|\| \| f_{0}\right. \|_{B_{\log }^{\alpha}}<\infty \tag{2.3}
\end{equation*}
$$

Then (2.1) holds by (2.3).
Conversely, assume that (2.1) holds. Then by Lemma 2.1 and (2.2)

$$
\begin{align*}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \tag{2.4}\\
& \quad \leq C\|f\|_{B_{\log }^{\alpha}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} .
\end{align*}
$$

Then, by Lemma 2.4, with $h=g^{\prime}$ and $z_{0}=\varphi(0)$,

$$
\begin{equation*}
\left|\left(C_{\varphi} J_{g} f_{j}\right)(0)\right|=\left|\int_{0}^{\varphi(0)} f(\zeta) g^{\prime}(\zeta) d \zeta\right| \leq C\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| . \tag{2.5}
\end{equation*}
$$

By (2.4), we have

$$
\begin{gathered}
\left\|C_{\varphi} J_{g} f\right\|_{B_{\log }^{\beta}} \leq \\
+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \\
\left.+\max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right|\right)\|f\|_{B_{\log }^{\alpha}} .
\end{gathered}
$$

By (2.1) and (2.5), the boundedness of $C_{\varphi} J_{g}$ is obtained.

Theorem 2.6. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha \in(0,1), \beta>0$, then $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact if and only if

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}<\infty
$$

Proof. Assume that $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact, then it is bounded, hence (2.1) holds by Theorem 2.5.

Conversely, assume that (2.1) holds. Then by Theorem 2.5, $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded. By Lemma 2.3 for any bounded sequence $\left(f_{j}\right)_{j \in N}$ in $B_{\text {log }}^{\alpha}$, when $f_{j} \rightarrow 0$ uniformly on $\overline{\mathbb{D}}$, we need only to prove that $\left\|C_{\varphi} J_{g} f_{j}\right\|_{B_{\log }^{\beta}} \rightarrow 0$ as $j \rightarrow \infty$. Then

$$
\begin{gathered}
\lim _{j \rightarrow \infty} \sup _{z \in \overline{\mathbb{D}}}\left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f_{j}\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
\leq \sup _{z \in \overline{\mathbb{D}}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\left\|g^{\prime}(\varphi(z)) \left\lvert\, \log \frac{2}{1-|z|^{2}} \lim _{j \rightarrow \infty}\right.\right\| f_{j} \|_{\infty}=0 .\right. \\
\left|\left(C_{\varphi} J_{g} f_{j}\right)(0)\right|=\left|\int_{0}^{\varphi(0)} f_{j}(\zeta) g^{\prime}(\zeta) d \zeta\right| \leq C\left\|f_{j}\right\|_{\infty} \max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| \rightarrow 0 \text { as } j \rightarrow \infty .
\end{gathered}
$$

Then the compactness of $C_{\varphi} J_{g}$ is completed.
Theorem 2.7. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D})$, $\beta>0$.
(i) If

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}<\infty, \tag{2.6}
\end{equation*}
$$

then $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is bounded.
(ii) If $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is bounded, then

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \log \frac{2}{1-|\varphi(z)|^{2}}<\infty . \tag{2.7}
\end{equation*}
$$

Proof. (i) For $f \in B_{\mathrm{log}}$, by Lemma 2.1, it holds

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \quad \leq C\|f\|_{B_{\log }\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}} \quad .
\end{aligned}
$$

By (2.6), we have that $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is bounded.
(ii) Assume that $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is bounded. For $w \in D$, set

$$
f_{w}(z)=\log \log \frac{2}{1-\bar{w} z}
$$

Then

Then $\left|f_{w}(0)\right|=\log \log 2$ and

$$
f_{w}^{\prime}(z)=\frac{1}{\log \frac{2}{1-\bar{w} z}} \cdot \frac{\bar{w}}{1-\bar{w} z} .
$$

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|f_{w}^{\prime}(z)\right| \log \frac{2}{1-|z|^{2}} & =\frac{\left(1-|z|^{2}\right)|w| \log \frac{2}{1-|z|^{2}}}{|1-\bar{w} z| \log \frac{2}{|1-\bar{w} z|}} \\
& \leq \frac{\left(1-|z|^{2}\right) \log \frac{2}{1-|z|^{2}}}{|1-z| \log \frac{2}{|1-z|}}<\infty .
\end{aligned}
$$

Thus $f_{w} \in B_{\mathrm{log}}$. Hence by the boundedness of $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$, we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \log \frac{2}{1-|\varphi(z)|^{2}} \\
& \quad \leq C\left\|C_{\varphi} J_{g} f_{\varphi(z)}\right\|_{B_{\log }^{\beta}} \leq\left\|C_{\varphi} J_{g}\right\| \cdot\left\|f_{\varphi(z)}\right\|_{B_{\log }}<\infty .
\end{aligned}
$$

Theorem 2.8. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \beta>0$.
(i) If

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}<\infty
$$

and

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}=0 \tag{2.8}
\end{equation*}
$$

then $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is compact.
(ii) If $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is compact, then

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \log \frac{2}{1-|\varphi(z)|^{2}}=0 . \tag{2.9}
\end{equation*}
$$

Proof. (i) By (2.8), we have that for any $\varepsilon>0$ there exists an $r_{0} \in(0,1)$ such that

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}<\varepsilon \tag{2.10}
\end{equation*}
$$

for every $|\varphi(z)|>r_{0}$.

Let $\left(f_{j}\right)_{j \in N}$ be a norm bounded sequence in $B_{\log }$ such that $f_{j} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$. By Lemma 2.1, (2.1) and (2.10), we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f_{j}\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \leq \sup _{|\varphi(z)| \leq r_{0}}\left|f_{j}(\varphi(z))\right| \sup _{|\varphi(z)| \leq r_{0}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \\
& +C\left\|f_{j}\right\|_{B_{\log }} \sup _{|\varphi(z)|>r_{0}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}} \\
& \leq C \sup _{|\zeta| \leq r_{0}}\left|f_{j}(\zeta)\right|+C \varepsilon\left\|f_{j}\right\|_{B_{\log }} . \\
& \left|\left(C_{\varphi} J_{g} f_{j}\right)(0)\right|=\left|\int_{0}^{\varphi(0)} f(\zeta) g^{\prime}(\zeta) \mathrm{d} \zeta\right| \\
& \leq \max _{|\zeta| \leq|\varphi(0)|}\left|f_{j}(\zeta)\right| \max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| \rightarrow 0 \quad(j \rightarrow \infty) .
\end{aligned}
$$

Go back

Full Screen

Taking the supremum over $z \in \mathbb{D}$ and letting $j \rightarrow \infty$, we have $\left\|C_{\varphi} J_{g} f_{j}\right\|_{B_{\text {log }}^{\beta}} \rightarrow 0$ as $j \rightarrow \infty$. Thus $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is compact.
(ii) Assume that $C_{\varphi} J_{g}: B_{\log } \rightarrow B_{\log }^{\beta}$ is compact and $\left(z_{n}\right)_{n \in N}$ is a sequence in \mathbb{D} such that $\lim _{n \rightarrow \infty}\left|\varphi\left(z_{n}\right)\right|=1$. Let

$$
f_{n}(z)=\left(\log \log \frac{2}{1-\left|\varphi\left(z_{n}\right)\right|^{2}}\right)^{-1}\left(\log \log \frac{2}{1-\overline{\varphi\left(z_{n}\right)}}\right)^{2}, \quad n \in N
$$

Then f_{n} is a uniformly bounded family on $B_{\log }$ that converges to 0 on compact subsets of \mathbb{D}. Then $\left\|C_{\varphi} J_{g} f_{n}\right\|_{B_{\text {log }}^{\beta}} \rightarrow 0$ as $n \rightarrow \infty$.

$$
\begin{aligned}
\left\|C_{\varphi} J_{g} f_{n}\right\|_{B_{\log }^{\beta}} & \geq \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f_{n}\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \left.\geq 1-\left|z_{n}\right|^{2}\right)^{\beta}\left|\varphi^{\prime}\left(z_{n}\right) \| g^{\prime}\left(\varphi\left(z_{n}\right)\right)\right| \log \frac{2}{1-\left|z_{n}\right|^{2}} \log \log \frac{2}{1-\left|\varphi\left(z_{n}\right)\right|^{2}} .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(1-\left|z_{n}\right|^{2}\right)^{\beta}\left|\varphi^{\prime}\left(z_{n}\right)\right|\left|g^{\prime}\left(\varphi\left(z_{n}\right)\right)\right| \log \frac{2}{1-\left|z_{n}\right|^{2}} \log \log \frac{2}{1-\left|\varphi\left(z_{n}\right)\right|^{2}}=0
$$

So (2.9) holds.
Theorem 2.9. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>1, \beta>0$. If

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}<\infty, \tag{2.11}
\end{equation*}
$$

then $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded.
Proof. By Lemma 2.1 and (2.11), for $f \in B_{\log }^{\alpha}$,

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \quad \leq C\|f\|_{B_{\log }^{\alpha}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z) \| g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}<\infty .
\end{aligned}
$$

$$
\begin{aligned}
\left|\left(C_{\varphi} J_{g} f\right)(0)\right| & \leq \max _{|\zeta| \leq|\varphi(0)|}|f(\zeta)| \max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| \\
& \leq \max \left\{1, \frac{\left|\varphi\left(z_{0}\right)\right|}{\left(1-\left|\varphi\left(z_{0}\right)\right|^{2}\right) \log \frac{2}{1-\left|z_{0}\right|^{2}}}\right\}\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| .
\end{aligned}
$$

Then the boundedness of $C_{\varphi} J_{g}$ is obtained.

Theorem 2.10. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>1, \beta>0$. If

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}<\infty
$$

and

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}=0 \tag{2.12}
\end{equation*}
$$

then $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.
Proof. By (2.12), then for any $\varepsilon>0$, there exists an $r_{0} \in(0,1)$ such that

$$
\frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}<\varepsilon, \quad \text { for every }|\varphi(z)|>r_{0} .
$$

Let $\left(f_{j}\right)_{j \in N}$ be a norm bounded sequence in $B_{\log }^{\alpha}$ such that $f_{j} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$. By Lemma 2.1, we have

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} J_{g} f_{j}\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \leq \sup _{|\varphi(z)| \leq r_{0}}\left|f_{j}(\varphi(z))\right| \sup _{|\varphi(z)| \leq r_{0}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \\
& \quad+C\left\|f_{j}\right\|_{B_{\log }^{\alpha}} \sup _{|\varphi(z)|>r_{0}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}} \\
& \leq C \sup _{|\zeta| \leq r_{0}}\left|f_{j}(\zeta)\right|+C \varepsilon\left\|f_{j}\right\|_{B_{\log }^{\alpha}} . \\
& \quad\left|\left(C_{\varphi} J_{g} f_{j}\right)(0)\right|=\left|\int_{0}^{\varphi(0)} f(\zeta) g^{\prime}(\zeta) \mathrm{d} \zeta\right| \leq C\left\|f_{j}\right\|_{B_{\log }^{\alpha}}^{\max _{|\zeta| \leq|\varphi(0)|}\left|g^{\prime}(\zeta)\right| .}
\end{aligned}
$$

Taking the supremum over $z \in \mathbb{D}$ and letting $j \rightarrow \infty,\left\|C_{\varphi} J_{g} f_{j}\right\|_{B_{\log }^{\beta}} \rightarrow 0$. Thus $C_{\varphi} J_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.

Go back

Full Screen
Theorem 2.11. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha \in(0,1), \beta>0$, then $J_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded if and only if $J_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact if and only if $g \in B_{\log }^{\beta}$.

Theorem 2.12. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \beta>0$, If

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \log \frac{1}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}<\infty
$$

then $J_{g} C_{\varphi}: B_{\log } \rightarrow B_{\log }^{\beta}$ is bounded.

* 4 4 \mid • \mid

Go back

$$
\lim _{|\varphi(z)| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \log \frac{2}{1-|z|^{2}} \log \frac{2}{1-|\varphi(z)|^{2}}=0
$$

then $J_{g} C_{\varphi}: B_{\log } \rightarrow B_{\log }^{\beta}$ is compact.
Theorem 2.14. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>1, \beta>0$. If

$$
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}<\infty
$$

then $J_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded.
Theorem 2.15. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>1, \beta>0$. If

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \log \frac{2}{1-|z|^{2}}<\infty
$$

and

$$
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|g^{\prime}(z)\right| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha-1}}=0
$$

then $J_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.
Theorem 2.16. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>0, \beta>0$,. If

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}<\infty \tag{2.13}
\end{equation*}
$$

then $C_{\varphi} I_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded.

44 4 | \bullet •
Go back

Full Screen

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}=0, \tag{2.15}
\end{equation*}
$$

then $C_{\varphi} I_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.
By (2.13), we have $C_{\varphi} I_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded.
Theorem 2.17. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>0, \beta>0$,. If

$$
\begin{equation*}
\sup _{z \in D}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}<\infty \tag{2.14}
\end{equation*}
$$

and

$$
\begin{aligned}
& \left(1-|z|^{2}\right)^{\beta}\left(C_{\varphi} I_{g} f\right)^{\prime}(z) \log \frac{2}{1-|z|^{2}} \\
& \quad \leq \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}\|f\|_{B_{\log }^{\alpha}} . \\
& \left|\left(C_{\varphi} I_{g} f\right)(0)\right|=\left|\int_{0}^{\varphi(0)} f^{\prime}(\zeta) g(\zeta) \mathrm{d} \zeta\right| \leq C\|f\|_{B_{\log }^{\alpha}} \max _{|\zeta| \leq|\varphi(0)|}|g(\zeta)| .
\end{aligned}
$$

Proof. By the definition of $C_{\varphi} I_{g},\left(C_{\varphi} I_{g} f\right)^{\prime}(z)=\varphi^{\prime}(z) g(\varphi(z)) f^{\prime}(\varphi(z))$. For $f \in B_{\log }^{\alpha}$, we have

$$
2-4+2
$$

Proof. By (2.15), for any $\varepsilon>0$, there exists an $r \in(0,1)$ such that

$$
\begin{equation*}
\frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}<\varepsilon \tag{2.16}
\end{equation*}
$$

for every $r<|\varphi(z)|<1$.
Let $\left(f_{j}\right)_{j \in N}$ be a norm bounded sequence in $B_{\log }^{\alpha}$ such that $f_{j} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$. Then

$$
\begin{align*}
\left\|C_{\varphi} I_{g} f_{j}\right\|_{B_{\log }^{\beta}} \leq & \sup _{|\varphi(z)| \leq r}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))|\left|f_{j}^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \\
& +\sup _{|\varphi(z)|>r}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))|\left|f_{j}^{\prime}(\varphi(z))\right| \log \frac{2}{1-|z|^{2}} \\
& +\max _{|\zeta| \leq|\varphi(0)|}\left|f_{j}^{\prime}(\zeta)\right| \max _{|\zeta| \leq|\varphi(0)|}|g(\zeta)| \tag{2.17}\\
\leq & \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}} \sup _{|\zeta| \leq r}\left|f_{j}^{\prime}(\zeta)\right| \\
& +\sup _{|\varphi(z)|>r} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(\varphi(z))| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}\left\|f_{j}\right\|_{B_{1 \log }^{\alpha}} \\
& +\max _{|\zeta| \leq|\varphi(0)|}\left|f_{j}^{\prime}(\zeta)\right| \max _{|\zeta| \leq|\varphi(0)|}|g(\zeta)| .
\end{align*}
$$

Since $f_{j} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$, by Cauchy's estimate, $f_{j}^{\prime} \rightarrow 0$ uniformly on compact subsets of \mathbb{D} as $j \rightarrow \infty$. Hence by (2.14), (2.16) and (2.17), we have $\left\|C_{\varphi} I_{g} f_{j}\right\|_{B_{\log }^{\beta}} \rightarrow 0$ as $j \rightarrow \infty$. Hence $C_{\varphi} I_{g}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.

Theorem 2.18. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>0, \beta>0$,. If

$$
\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(z)| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}<\infty,
$$

then $I_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is bounded.
Theorem 2.19. Assume that φ is a holomorphic self-map of $\mathbb{D}, g \in H(\mathbb{D}), \alpha>0, \beta>0$. If

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(z)| \log \frac{2}{1-|z|^{2}}<\infty
$$

and

$$
\lim _{|\varphi(z)| \rightarrow 1} \frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right||g(z)| \log \frac{2}{1-|z|^{2}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \log \frac{2}{1-|\varphi(z)|^{2}}}=0,
$$

then $I_{g} C_{\varphi}: B_{\log }^{\alpha} \rightarrow B_{\log }^{\beta}$ is compact.
Acknowledgment. This work is supported by the Natural Science Foundation of Henan (No. 2008B110006; 2010A110009; 102300410012) and the Foster Foundation of Henan Normal University (No. 2010PL01).

1. Attele K. R., M. Toeplitz and Hankel on Bergman one space, Hokaido Math J., 21 (1992), 279-293.
2. Benke G., and Chang D. C., A note on weighted Bergman spaces and the Cesàro operator, Nagoya Mathematical J., 159 (2000), 25-43.
3. Cima J., Stegenda D., Hankel operators on H^{p}, in: Berkson E. R., Peck N. T.and Ulh J. (Eds.), Analysis at Urbana 1, London Math. Soc. Lecture Note ser., Cambridge Univ. Press, Cambridge, 137 (1989), 133-150.
4. Cowen C. C. and MacCluer B. D., Composition operators on spaces of analytic functions, Boca Roton: CRC Press, 1995.
5. Li H., Liu P. and Wang M., Composition operators between generally weighted Bloch spaces of polydisk, J. Inequal Pure Appl. Math, 8(3) (2007), 1-8.
6. Li H. and Liu P., Composition operators between generally weighted Bloch space and $Q_{\log }^{q}$ space. Banach Journal of Mathematical Analysis, 3(1) (2009), 99-110.

Go back
Full Screen

Close

Quit
7. Li H. and Yang X., Products of integral-type and composition operators from generally weighted Bloch space to $F(p, q, s)$ space. Filomat, 23(3) (2009), 231-241.
8. Ohno S., Stroethoff K. and Zhao R., Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33(1) (2003), 191-215.
9. Ramey W. and Ulrich D., Bounded mean oscillation of Bloch pull-backs, Math. Ann., 291 (1991), 591-606.
10. Siskakis A. and Zhao R. A Volterra type operator on spaces of analytic functions, Contemp. Math, 232 (1999), 299-311.
11. Yoneda R., The composition operators on the weighted Bloch space, Arch. Math., 78 (2002), 310-317.

Haiying Li, College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China, e-mail: tslhy2001@yahoo.com.cn

Tianshui Ma, College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China, e-mail: matianshui@yahoo.com

[^0]: Key words and phrases. holomorphic self-map; composition operator; generally weighted Bloch space.

