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A GENERALIZATION OF ORLICZ SEQUENCE SPACES
BY CESÀRO MEAN OF ORDER ONE

H. DUTTA and F. BAŞAR

Abstract. In this paper, we introduce the Orlicz sequence spaces generated by Cesàro mean of order
one associated with a fixed multiplier sequence of non-zero scalars. Furthermore, we emphasize several
algebraic and topological properties relevant to these spaces. Finally, we determine the Köthe-Toeplitz
dual of the spaces `′

M (C, Λ) and hM (C, Λ).

1. Preliminaries, Background and Notation

By ω, we denote the space of all complex valued sequences. Any vector subspace of ω which
contains φ, the set of all finitely non–zero sequences is called a sequence space. We write `∞, c
and c0 for the classical sequence spaces of all bounded, convergent and null sequences which are
Banach spaces with the sup-norm ‖x‖∞ = supk∈N |xk|, where N = {0, 1, 2, . . . }, the set of natural
numbers. A sequence space X with a linear topology is called a K−space provided each of the
maps pi : X → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space X is called an
FK-space provided X is a complete linear metric space. An FK-space whose topology is normable
is called a BK-space.

A function M : [0,∞) → [0,∞) which is convex with M(u) ≥ 0 for u ≥ 0, and M(u) → ∞ as
u → ∞, is called as an Orlicz function. An Orlicz function M can always be represented in the
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following integral form

M(u) =
∫ u

0

p(t)dt,

where p, the kernel of M , is right differentiable for t ≥ 0, p(0) = 0, p(t) > 0 for t > 0, p is
non–decreasing and p(t)→∞ as t→∞ whenever M(u)

u ↑ ∞ as u ↑ ∞.
Consider the kernel p associated with the Orlicz function M and let

q(s) = sup{t : p(t) ≤ s}.

Then q possesses the same properties as the function p. Suppose now

Φ(x) =
∫ x

0

q(s)ds.

Then, Φ is an Orlicz function. The functions M and Φ are called mutually complementary Orlicz
functions.

Now, we give the following well-known results.
Let M and Φ are mutually complementary Orlicz functions. Then, we have:

(i) For all u, y ≥ 0,

uy ≤M(u) + Φ(y), (Young’s inequality).(1.1)

(ii) For all u ≥ 0,

up(u) = M(u) + Φ(p(u)).(1.2)

(iii) For all u ≥ 0 and 0 < λ < 1,

M(λu) < λM(u).(1.3)
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An Orlicz function M is said to satisfy the ∆2-condition for small u or at 0 if for each k ∈ N, there
exist Rk > 0 and uk > 0 such that M(ku) ≤ RkM(u) for all u ∈ (0, uk]. Moreover, an Orlicz
function M is said to satisfy the ∆2-condition if and only if

lim sup
u→0+

M(2u)
M(u)

<∞.

Two Orlicz functions M1 and M2 are said to be equivalent if there are positive constants α, β and
b such that

M1(αu) ≤M2(u) ≤M1(βu) for all u ∈ [0, b].(1.4)

Orlicz used the Orlicz function to introduce the sequence space `M (see Musielak [10]; Linden-
strauss and Tzafriri [9]), as follows

`M =

{
x = (xk) ∈ ω :

∑
k

M

(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to
∞. For relevant terminology and additional knowledge on the Orlicz sequence spaces and related
topics, the reader may refer to [1, 3, 5, 6, 7, 8, 11, 9, 10] and [12].

Throughout the present article, we assume that Λ = (λk) is the sequence of non–zero complex
numbers. Then for a sequence space E, the multiplier sequence space E(Λ) associated with the
multiplier sequence Λ is defined by

E(Λ) = {x = (xk) ∈ ω : Λx = (λkxk) ∈ E} .

The scope for the studies on sequence spaces was extended by using the notion of associated
multiplier sequences. G. Goes and S. Goes defined the differentiated sequence space dE and
integrated sequence space

∫
E for a given sequence space E, using the multiplier sequences (k−1)
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and (k) in [4], respectively. A multiplier sequence can be used to accelerate the convergence of the
sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used to accelerate
the process of chemical reaction. Sometimes the associated multiplier sequence delays the rate of
convergence of a sequence. Thus it also covers a larger class of sequences for study.

Let C = (cnk) be the Cesàro matrix of order one defined by

cnk :=


1

n+ 1
, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N.

Definition 1.1. LetM be any Orlicz function and δ(M,x) :=
∑
kM (|xk|), where x = (xk) ∈ ω.

Then, we define the sets ˜̀M (C,Λ) and ˜̀M by

˜̀
M (C,Λ) :=

x = (xk) ∈ ω : δ̂C(M,x) =
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
k + 1

 <∞


and ˜̀

M := {x = (xk) ∈ ω : δ(M,x) <∞} .

Definition 1.2. Let M and Φ be mutually complementary functions. Then, we define the set
`M (C,Λ) by

`M (C,Λ):=

{
x=(xk) ∈ ω :

∑
k

(∑k
j=0 λjxj

k + 1

)
yk converges for all y = (yk) ∈ ˜̀Φ}

which is called as Orlicz sequence space associated with the multiplier sequence Λ = (λk) and
generated by Cesàro matrix of order one.
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Definition 1.3. The α-dual or Köthe-Toeplitz dual Xα of a sequence space X is defined by

Xα :=

{
a = (ak) ∈ ω :

∑
k

|akxk| <∞ for all x = (xk) ∈ X

}
.

It is known that if X ⊂ Y , then Y α ⊂ Xα. It is clear that X ⊂ Xαα. If X = Xαα, then X is
called as an α space. In particular, an α space is called a Köthe space or a perfect sequence space.

The main purpose of this paper is to introduce the sequence spaces `M (C,Λ), ˜̀M (C,Λ), `′M (C,Λ)
and hM (C,Λ), and investigate their certain algebraic and topological properties. Furthermore, it is
proved that the spaces `′M (C,Λ) and hM (C,Λ) are topologically isomorphic to the spaces `∞(C,Λ)
and c0(C,Λ) when M(u) = 0 on some interval, respectively. Finally, the α-dual of the spaces
`′M (C,Λ) and hM (C,Λ) are determined, and therefore the non-perfectness of the space `′M (C,Λ)
is showed when M(u) = 0 on some interval, and some open problems are noted.

2. Main Results

In this section, we emphasize the sequence spaces `M (C,Λ), ˜̀M (C,Λ), `′M (C,Λ) and hM (C,Λ),
and give their some algebraic and topological properties.

Proposition 2.1. For any Orlicz functionM , the inclusion ˜̀M (C,Λ)⊂`M (C,Λ) holds.
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Proof. Let x = (xk) ∈ ˜̀M (C,Λ). Then, since
∑
kM

(
|Pk

j=0 λjxj|
k+1

)
< ∞ we have from (1.1)

that ∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ ≤∑
k

∣∣∣∣∣
(∑k

j=0 λjxj

k + 1

)
yk

∣∣∣∣∣
≤
∑
k

M

(∣∣∣∣∣
∑k
j=0 λjxj

k + 1

∣∣∣∣∣
)

+
∑
k

Φ(|yk|) <∞

for every y = (yk) ∈ ˜̀Φ. Thus, x = (xk) ∈ `M (C,Λ). �

Proposition 2.2. For each x = (xk) ∈ `M (C,Λ),

sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
<∞.(2.1)

Proof. Suppose that (2.1) does not hold. Then for each n ∈ N, there exists yn with δ(Φ, yn) ≤ 1
such that ∣∣∣∣∣∑

k

(∑k
j=0 λjxj

k + 1

)
ynk

∣∣∣∣∣ > 2n+1.
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Without loss of generality, we can assume that
∑k
j=0

λjxj

k+1 , yn ≥ 0. Now, we can define a sequence

z = (zk) by zk =
∑
n

yn
k

2n+1 for all k ∈ N. By the convexity of Φ, we have

Φ

(
l∑

n=0

1
2n+1

ynk

)
≤ 1

2

[
Φ(y0

k) + Φ
(
y1
k +

y2
k

2
+ · · ·+ ylk

2l−1

)]

· · · ≤
l∑

n=0

1
2n+1

Φ(ynk )

for any positive integer l. Hence, using the continuity of Φ, we have

δ(Φ, z) =
∑
k

Φ(zk) ≤
∑
k

∑
n

1
2n+1

Φ(ynk ) ≤
∑
n

1
2n+1

= 1.

But for every l ∈ N, it holds∑
k

(∑k
j=0 λjxj

k + 1

)
zk ≥

∑
k

(∑k
j=0 λjxj

k + 1

)
l∑

n=0

1
2n+1

ynk

=
l∑

n=0

∑
k

(∑k
j=0 λjxj

k + 1

)
ynk

2n+1
≥ l.

Hence
∑
k

(Pk
j=0 λjxj

k+1

)
zk diverges and this implies that x /∈ `M (C,Λ), a contradiction. This leads

us to the required result. �

The preceding result encourages us to introduce the following norm ‖ · ‖CM on `M (C,Λ).

Proposition 2.3. The following statements hold:
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(i) `M (C,Λ) is a normed linear space under the norm ‖ · ‖CM defined by

‖x‖CM = sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
.(2.2)

(ii) `M (C,Λ) is a Banach space under the norm defined by (2.2).
(iii) `M (C,Λ) is a BK space under the norm defined by (2.2).

Proof. (i) It is easy to verify that `M (C,Λ) is a linear space with respect to the co-ordinatewise
addition and scalar multiplication of sequences. Now we show that ‖ · ‖CM is a norm on the space
`M (C,Λ).

If x = 0, then obviously ‖x‖CM = 0. Conversely, assume ‖x‖CM = 0. Then using the definition of
the norm given by (2.2), we have

sup

{∣∣∣∣∣∑
k

(∑k
j=0 λjxj

k + 1

)
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
= 0.

This implies that
∣∣∣∣∑k

[Pk
j=0 λjxj

k+1

]
yk

∣∣∣∣ = 0 for all y such that δ(Φ, y) ≤ 1. Now considering y = ek

if Φ(1) ≤ 1 otherwise considering y = ek /Φ(1) so that λkxk = 0 for all k ∈ N, where ek is a
sequence whose only non-zero term is 1 in kth place for each k ∈ N. Hence we have xk = 0 for all
k ∈ N, since (λk) is a sequence of non-zero scalars. Thus, x = 0.

It is easy to show that ‖αx‖CM = |α|‖x‖CM and ‖x + y‖CM ≤ ‖x‖CM + ‖y‖CM for all α ∈ C and
x, y ∈ `M (C,Λ).

(ii) Let (xs) be any Cauchy sequence in the space `M (C,Λ). Then for any ε > 0, there exists a
positive integer n0 such that ‖xs − xt‖CM < ε for all s, t ≥ n0. Using the definition of norm given
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by (2.2), we get

sup

{∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xtj

)
k + 1

]
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε

for all s, t ≥ n0. This implies that∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xtj

)
k + 1

]
yk

∣∣∣∣∣ < ε

for all y with δ(Φ, y) ≤ 1 and for all s, t ≥ n0. Now considering y = ek if Φ(1) ≤ 1, otherwise
considering y = ek /Φ(1) we have (λkxsk) is a Cauchy sequence in C for all k ∈ N. Hence, it is a
convergent sequence in C for all k ∈ N.

Let lims→∞ λkx
s
k = xk for each k ∈ N. Using the continuity of the modulus, we can derive for

all s ≥ n0 as t→∞, that

sup

{∣∣∣∣∣∑
k

[∑k
j=0 λj

(
xsj − xj

)
k + 1

]
yk

∣∣∣∣∣ : δ(Φ, y) ≤ 1

}
< ε.

It follows that (xs − x) ∈ `M (C,Λ). Since xs is in the space `M (C,Λ) and `M (C,Λ) is a linear
space, we have x = (xk) ∈ `M (C,Λ).

(iii) From the above proof, one can easily conclude that ‖xs‖CM → 0 implies that xsk → 0 for
each s ∈ N which leads us to the desired result.

Therefore, the proof of the theorem is completed. �
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Proposition 2.4. `M (C,Λ) is a normed linear space under the norm ‖ · ‖C(M) defined by

‖x‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 .(2.3)

Proof. Clearly ‖x‖C(M) = 0 if x = 0. Now, suppose that ‖x‖C(M) = 0. Then, we have

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 = 0.

This yields the fact for a given ε > 0 that there exists some ρε ∈ (0, ε) such that

sup
k∈N

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1

which implies that

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1

for all k ∈ N. Thus,

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ε(k + 1)

 ≤M

∣∣∣∑k

j=0 λjxj

∣∣∣
ρε(k + 1)

 ≤ 1
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for all k ∈ N. Suppose |
Pni

j=0 λjxj|
ni+1 6= 0 for some ni ∈ N. Then, |

Pni
j=0 λjxj|
ε(ni+1) → ∞ as ε → 0. It

follows that M
(
|Pni

j=0 λjxj|
ε(k+1)

)
→∞ as ε→ 0 for some ni ∈ N, which is a contradiction. Therefore,

|Pk
j=0 λjxj|
k+1 = 0 for all k ∈ N. It follows that λkxk = 0 for all k ∈ N. Hence x = 0, since (λk) is a

sequence of non-zero scalars.
Let x = (xk) and y = (yk) be any two elements of `M (C,Λ). Then, there exist ρ1, ρ2 > 0 such

that

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1(k + 1)

 ≤ 1 and
∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2(k + 1)

 ≤ 1.

Let ρ = ρ1 + ρ2. Then by the convexity of M , we have

∑
k

M


∣∣∣∑k

j=0 λj(xj + yj)
∣∣∣

ρ(k + 1)

 ≤ ρ1

ρ1 + ρ2

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1(k + 1)


+

ρ2

ρ1 + ρ2

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2(k + 1)

 ≤ 1.
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Hence, we have

‖x+ y‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj(xj + yj)
∣∣∣

ρ

 ≤ 1


≤ inf

ρ1 > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ1

 ≤ 1


+ inf

ρ2 > 0 :
∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ2

 ≤ 1


which gives that ‖x+ y‖C(M) ≤ ‖x‖

C
(M) + ‖y‖C(M).

Finally, let α be any scalar and define r by r = ρ/|α|. Then,

‖αx‖C(M) = inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 αλjxj

∣∣∣
ρ(k + 1)

 ≤ 1


= inf

r|α| > 0 :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
r(k + 1)

 ≤ 1

 = |α|‖x‖C(M).

This completes the proof. �

Proposition 2.4 inspires us to define the following sequence space.
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Definition 2.5. For any Orlicz function M , we define

`′M (C,Λ) :=

x = (xk) ∈ ω :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for some ρ > 0

 .

Now, we can give the corresponding proposition on the space `′M (C,Λ) to the Proposition 2.3.

Proposition 2.6. The following statements hold:

(i) `′M (C,Λ) is a normed linear space under the norm ‖ · ‖C(M) defined by (2.3).
(ii) `′M (C,Λ) is a Banach space under the norm defined by (2.3).
(iii) `′M (C,Λ) is a BK space under the norm defined by (2.3).

Proof. (i) Since the proof is similar to the proof of Proposition 2.4, we omit the detail.
(ii) Let (xs) be any Cauchy sequence in the space `′M (C,Λ). Let δ > 0 be fixed and r > 0

be given such that 0 < ε < 1 and rδ ≥ 1. Then, there exists a positive integer n0 such that
‖xs − xt‖C(M) < ε/rδ for all s, t ≥ n0. Using the definition of the norm given by (2.3), we get

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
ρ(k + 1)

 ≤ 1

 <
ε

rδ

for all s, t ≥ n0. This implies that

∑
k

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤ 1
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for all s, t ≥ n0. It follows that

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤ 1

for all s, t ≥ n0 and for all k ∈ N. For r > 0 with M(rδ/2) ≥ 1, we have

M


∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
‖xs − xt‖C(M)(k + 1)

 ≤M (
rδ

2

)
for all s, t ≥ n0 and for all k ∈ N. Since M is non-decreasing, we have∣∣∣∑k

j=0 λj
(
xsj − xtj

)∣∣∣
k + 1

≤ rδ

2
· ε
rδ

=
ε

2
for all s, t ≥ n0 and for all k ∈ N. Hence, (λkxsk) is a Cauchy sequence in C for all k ∈ N which
implies that it is a convergent sequence in C for all k ∈ N.

Let lims→∞ λkx
s
k = xk for each k ∈ N. Using the continuity of an Orlicz function and modulus,

we can have

inf

ρ > 0 :
∑
k

M


∣∣∣∑k

j=0 λj(x
s
j − xj)

∣∣∣
ρ(k + 1)

 ≤ 1

 < ε

for all s ≥ n0, as j → ∞. It follows that (xs − x) ∈ `′M (C,Λ). Since xs is in the space `′M (C,Λ)
and `′M (C,Λ) is a linear space, we have x = (xk) ∈ `′M (C,Λ).

(iii) From the above proof, one can easily conclude that ‖xs‖CM → 0 as s → ∞, which implies
that xsk → 0 as k →∞ for each s ∈ N. This leads us to the desired result. �
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Proposition 2.7. The inequality
∑
kM

(
|Pk

j=0 λjxj|
‖x‖C

(M)(k+1)

)
≤ 1 holds for all x = (xk) ∈ `′M (C,Λ).

Proof. This is immediate from the definition of the norm ‖ · ‖C(M) defined by (2.3). �

Definition 2.8. For any Orlicz function M , we define

hM (C,Λ) :=

x = (xk) ∈ ω :
∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for each ρ > 0

 .

Clearly hM (C,Λ) is a subspace of `′M (C,Λ).
Here and after we shall write ‖ · ‖ instead of ‖ · ‖C(M) provided it does not lead to any confusion.

The topology of hM (C,Λ) is induced by ‖ · ‖.

Proposition 2.9. Let M be an Orlicz function. Then, (hM (C,Λ), ‖ · ‖) is an AK-BK space.

Proof. First we show that hM (C,Λ) is an AK space. Let x = (xk) ∈ hM (C,Λ). Then for each
ε ∈ (0, 1), we can find n0 such that

∑
i≥n0

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ε(k + 1)

 ≤ 1.
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Define the nth section x(n) of a sequence x = (xk) by x(n) =
∑n
k=0 xk ek. Hence for n ≥ n0, it

holds ∥∥∥x− x(n)
∥∥∥ = inf

ρ > 0 :
∑
k≥n0

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1


≤ inf

ρ > 0 :
∑
k≥n

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 ≤ 1

 < ε.

Thus, we can conclude that hM (C,Λ) is an AK space.
Next to show that hM (C,Λ) is a BK space, it is enough to show hM (C,Λ) is a closed subspace

of `′M (C,Λ). For this, let (xn) be a sequence in hM (C,Λ) such that ‖xn−x‖ → 0 as n→∞ where
x = (xk) ∈ `′M (C,Λ). To complete the proof we need to show that x = (xk) ∈ hM (C,Λ), i.e.,

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for all ρ > 0.
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There is l corresponding to ρ > 0 such that ‖xl − x‖ ≤ ρ/2. Then, using the convexity of M ,
we have by Proposition 2.7 that

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)


=
∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣− 2
(∣∣∣∑k

j=0 λjx
l
j

∣∣∣− ∣∣∣∑k
j=0 λjxj

∣∣∣)
2ρ(k + 1)


≤ 1

2

∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣
ρ(k + 1)

+
1
2

∑
k

M

2
∣∣∣∑k

j=0 λj
(
xlj − xj

)∣∣∣
ρ(k + 1)


≤ 1

2

∑
k

M

2
∣∣∣∑k

j=0 λjx
l
j

∣∣∣
ρ(k + 1)

+
1
2

∑
k

M

2
∣∣∣∑k

j=0 λj
(
xlj − xj

)∣∣∣
‖xl − x‖(k + 1)


<∞.

Hence, x = (xk) ∈ hM (C,Λ) and consequently hM (C,Λ) is a BK space. �

Proposition 2.10. Let M be an Orlicz function. If M satisfies the ∆2-condition at 0, then
`′M (C,Λ) is an AK space.

Proof. We shall show that `′M (C,Λ) = hM (C,Λ) if M satisfies the ∆2-condition at 0. To do
this it is enough to prove that `′M (C,Λ) ⊂ hM (C,Λ). Let x = (xk) ∈ `′M (C,Λ). Then for some



JJ J I II

Go back

Full Screen

Close

Quit

ρ > 0,

∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞.

This implies that

lim
k→∞

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 = 0.(2.4)

Choose an arbitrary l > 0. If ρ ≤ l, then
∑
kM

(
|Pk

j=0 λjxj|
l(k+1)

)
< ∞. Now, let l < ρ and put

k = ρ/l. Since M satisfies ∆2-condition at 0, there exist R ≡ Rk > 0 and r ≡ rk > 0 with
M(kx) ≤ RM(u) for all x ∈ (0, r]. By (2.4), there exists a positive integer n1 such that

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <
r

2
p
(r

2

)
for all k ≥ n1.

We claim that |
Pk

j=0 λjxj|
ρ(k+1) ≤ r for all k ≥ n1. Otherwise, we can find d > n1 with |

Pd
j=0 λjxj|
ρ(d+1) > r

and thus

M


∣∣∣∑d

j=0 λjxj

∣∣∣
ρ(d+ 1)

 ≥ ∫ |Pd
j=0 λjxj|/ρ(d+1)

r/2

p(t)dt >
r

2
p
(r

2

)
,
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a contradiction. Hence our claim is true. Then, we can find that

∑
k≥n1

M


∣∣∣∑k

j=0 λjxj

∣∣∣
l(k + 1)

 ≤ R ∑
k≥n1

M


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 .

Hence, ∑
k

M


∣∣∣∑k

j=0 λjxj

∣∣∣
l(k + 1)

 <∞ for all l > 0.

This completes the proof. �

Proposition 2.11. Let M1 and M2 be two Orlicz functions. If M1 and M2 are equivalent,
then `′M1

(C,Λ) = `′M2
(C,Λ) and the identity map I :

(
`′M1

(C,Λ), ‖ · ‖CM1

)
→
(
`′M2

(C,Λ), ‖ · ‖CM2

)
is

a topological isomorphism.

Proof. Let α, β and b be constants from (1.3). Since M1 and M2 are equivalent, it is obvious
that (1.3) holds. Let us take any x = (xk) ∈ `′M2

(C,Λ). Then,

∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞ for some ρ > 0.

Hence, for some l ≥ 1, |
Pk

j=0 λjxj|
lρ(k+1) ≤ b for all k ∈ N. Therefore,

∑
k

M1

α
∣∣∣∑k

j=0 λjxj

∣∣∣
lρ(k + 1)

 ≤∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
ρ(k + 1)

 <∞
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which shows that the inclusion

`′M2
(C,Λ) ⊂ `′M1

(C,Λ)(2.5)

holds. One can easily see in the same way that the inclusion

`′M1
(C,Λ) ⊂ `′M2

(C,Λ)(2.6)

also holds.
By combining the inclusions (2.5) and (2.6), we conclude that `′M1

(C,Λ) = `′M2
(C,Λ).

For simplicity in notation, let us write ‖ · ‖1 and ‖ · ‖2 instead of ‖ · ‖CM1
and ‖ · ‖CM2

, respectively.
For x = (xk) ∈ `′M2

(C,Λ), we get

∑
k

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
‖x‖2(k + 1)

 ≤ 1.

One can find µ > 1 with (b/2)µp2(b/2) ≥ 1, where p2 is the kernel associated with M2. Hence,

M2


∣∣∣∑k

j=0 λjxj

∣∣∣
‖x‖2(k + 1)

 ≤ b

2
µp2

(
b

2

)
for all k ∈ N.

This implies that ∣∣∣∑k
j=0 λjxj

∣∣∣
µ‖x‖2(k + 1)

≤ b for all k ∈ N.

Therefore, ∑
k

M1

α
∣∣∣∑k

j=0 λjxj

∣∣∣
µ‖x‖2(k + 1)

 < 1.
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Hence, ‖x‖1 ≤ (µ/α)‖x‖2. Similarly, we can show that ‖x‖2 ≤ βγ‖x‖1 by choosing γ with γβ > 1
such that γβ(b/2)p1(b/2) ≥ 1. Thus, αµ−1‖x‖1 ≤ ‖x‖2 ≤ βγ‖x‖1 which establish that I is a
topological isomorphism. �

Proposition 2.12. Let M be an Orlicz function and p be the corresponding kernel. If p(x) = 0
for all x in [0, b], where b is some positive number, then the spaces `′M (C,Λ) and hM (C,Λ) are
topologically isomorphic to the spaces `∞(C,Λ) and c0(C,Λ), respectively; where `∞(C,Λ) and
c0(C,Λ) are defined by

`∞(C,Λ) =

x = (xk) ∈ ω : sup
k∈N

k∑
j=0

|λjxj |
k + 1

<∞


and

c0(C,Λ) =

x = (xk) ∈ ω : lim
k→∞

k∑
j=0

|λjxj |
k + 1

= 0

 .

It is easy to see that the spaces `∞(C,Λ) and c0(C,Λ) are the Banach spaces under the norm

‖x‖C∞ = supk∈N
|Pk

j=0 λjxj|
k+1 .

Proof. Let p(x) = 0 for all x in [0, b]. If y ∈ `∞(C,Λ), then we can find ρ > 0 such that
|Pk

j=0 λjyj|
ρ(k+1) ≤ b for k ∈ N. Hence,

∑
kM

(
|Pk

j=0 λjyj|
ρ(k+1)

)
<∞. That is to say that y ∈ `′M (C,Λ).

On the other hand, let y ∈ `′M (C,Λ). Then for some ρ > 0, we have

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣
ρ(k + 1)

 <∞.
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Therefore, |
Pk

j=0 λjyj|
k+1 ≤ K < ∞ for a constant K > 0 and for all k ∈ N which yields that

y ∈ `∞(C,Λ). Hence, y ∈ `∞(C,Λ) if and only if y ∈ `′M (C,Λ). We can easily find b such that

M(u0) ≥ 1. Let y ∈ `∞(C,Λ) and α = ‖y‖∞ = supk∈N

(∣∣∣∣Pk
j=0 λjyj

k+1

∣∣∣∣) > 0. For every ε ∈ (0, α),

we can determine d with
∣∣∣∣Pd

j=0 λjyj

d+1

∣∣∣∣ > α− ε and so

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣ b
α(k + 1)

 ≥M (
α− ε
α

b

)
.

Since M is continuous,
∑
kM

(
|Pk

j=0 λjyj|b
α(k+1)

)
≥ 1, and so ‖y‖∞ ≤ b‖y‖, otherwise∑

kM

(
|Pk

j=0 λjyj|
‖y‖(k+1)

)
> 1 which contradicts Proposition 2.7. Again,

∑
k

M


∣∣∣∑k

j=0 λjyj

∣∣∣ b
α(k + 1)

 = 0

which gives that ‖y‖ ≤ ‖y‖∞/b. That is to say that the identity map I : (`′M (C,Λ), ‖ · ‖) →
(`∞(C,Λ), ‖ · ‖) is a topological isomorphism.

For the last part, let y ∈ hM (C,Λ). Then for any ε > 0, |
Pk

j=0 λjyj|
k+1 ≤ εb for all sufficiently

large k, where b is a positive number such that p(b) > 0. Hence, y ∈ c0(C,Λ). Conversely,

let y ∈ c0(C,Λ). Then, for any ρ > 0, |
Pk

j=0 λjyj|
ρ(k+1) < b/2 for all sufficiently large k. Thus,
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∑
kM

(
|Pk

j=0 λjyj|
ρ(k+1)

)
< ∞ for all ρ > 0 and so y ∈ hM (C,Λ). Hence, hM (C,Λ) = c0(C,Λ) and

this step completes the proof. �

Prior to giving our final two consequences concerning the α-dual of the spaces `′M (C,Λ) and
hM (C,Λ), we present the following easy lemma without proof.

Lemma 2.13. For any Orlicz function M , Λx = (λkxk) ∈ `∞ whenever x = (xk) ∈ `′M (C,Λ).

Proposition 2.14. Let M be an Orlicz function and p be the corresponding kernel of M . Define
the sets D1 and D2 by

D1 :=

{
a = (ak) ∈ ω :

∑
k

∣∣λ−1
k ak

∣∣ <∞}
and

D2 :=
{
b = (bk) ∈ ω : sup

k∈N
|λkbk| <∞

}
.

If p(x) = 0 for all x in [0, d], where d is some positive number, then the following statements hold:
(i) Köthe-Toeplitz dual of `′M (C,Λ) is the set D1.

(ii) Köthe-Toeplitz dual of D1 is the set D2.

Proof. Since the proof of Part (ii) is similar to that of the proof of Part (i), to avoid the repetition
of the similar statements we prove only Part (i).

Let a = (ak) ∈ D1 and x = (xk) ∈ `′M (C,Λ). Then, since∑
k

|akxk| =
∑
k

∣∣akλ−1
k

∣∣ |λkxk| ≤ sup
k∈N
|λkxk| ·

∑
k

∣∣akλ−1
k

∣∣ <∞,
applying Lemma 2.13, we have a = (ak) ∈ {`′M (C,Λ)}α. Hence, the inclusion

D1 ⊂ {`′M (C,Λ)}α(2.7)
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holds.
Conversely, suppose that a = (ak) ∈ {`′M (C,Λ)}α. Then, (akxk) ∈ `1, the space of all absolutely

convergent series, for every x = (xk) ∈ `′M (C,Λ). So, we can take xk = λ−1
k for all k ∈ N

because (xk) ∈ `′M (C,Λ) by Proposition 2.12 whenever (xk) ∈ `∞(C,Λ). Therefore,
∑
k

∣∣akλ−1
k

∣∣ =∑
k |akxk| <∞ and we have a = (ak) ∈ D1. This leads us to the inclusion

{`′M (C,Λ)}α ⊂ D1.(2.8)

By combining the inclusion relations (2.7) and (2.8), we have {`′M (C,Λ)}α = D1. �

Proposition 2.14 (ii) shows that {`′M (C,Λ)}αα 6= `′M (C,Λ) which leads us to the consequence
that `′M (C,Λ) is not perfect under the given conditions.

Proposition 2.15. Let M be an Orlicz function and p be the corresponding kernel of M and
the set D1 be defined as in the Proposition 2.14. If p(x) = 0 for all x in [0, b], where b is a positive
number, then the Köthe-Toeplitz dual of hM (C,Λ) is the set D1.

Proof. Let a = (ak) ∈ D1 and x = (xk) ∈ hM (C,Λ). Then, since∑
k

|akxk| =
∑
k

∣∣akλ−1
k

∣∣ |λkxk| ≤ sup
k∈N
|λkxk| ·

∑
k

∣∣akλ−1
k

∣∣ <∞,
we have a = (ak) ∈ {hM (C,Λ)}α. Hence, the inclusion

D1 ⊂ {hM (C,Λ)}α(2.9)

holds.
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Conversely, suppose that a = (ak) ∈ {hM (C,Λ)}α \D1. Then, there exists a strictly increasing
sequence (ni) of positive integers ni such that

ni+1∑
k=ni+1

|ak| |λk|−1
> i.

Define x = (xk) by

xk :=
{
λ−1
k sgn ak/i , (ni < k ≤ ni+1),

0 , (0 ≤ k < n0),

for all k ∈ N. Then, since x = (xk) ∈ c0(C,Λ), x = (xk) ∈ hM (C,Λ) by Proposition 2.12.
Therefore, we have ∑

k

|akxk| =
n1∑

k=n0+1

|akxk|+ · · ·+
ni+1∑

k=ni+1

|akxk|+ · · ·

=
n1∑

k=n0+1

∣∣akλ−1
k

∣∣+ · · ·+ 1
i

ni+1∑
k=ni+1

∣∣akλ−1
k

∣∣+ · · ·

> 1 + · · ·+ 1 + · · · =∞,

which contradicts the hypothesis. Hence, a = (ak) ∈ D1. This leads us to the inclusion

{hM (C,Λ)}α ⊂ D1.(2.10)

By combining the inclusion relations (2.9) and (2.10), we obtain the desired result
{hM (C,Λ)}α = D1.

This completes the proof. �
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3. Conclusion

The difference Orlicz spaces `M (∆,Λ) and ˜̀M (∆,Λ) were recently been studied by Dutta [2]. Of
course, the sequence spaces introduced in this paper can be redefined as a domain of a suitable
matrix in the Orlicz sequence space `M . Indeed, if we define the infinite matrix C(λ) = {cnk(λ)}
via the multiplier sequence Λ = (λk) by

cnk(λ) :=


λk
n+ 1

, (0 ≤ k ≤ n),

0, (k > n),

for all k, n ∈ N, then the sequence spaces `′M (C,Λ), c0(C,Λ) and `∞(C,Λ) represent the domain
of the matrix C(λ) in the sequence spaces `M , c0 and `∞, respectively. Since cnn(λ) 6= 0 for all
n ∈ N, i.e., C(λ) is a triangle, it is obvious that those spaces `′M (C,Λ), c0(C,Λ) and `∞(C,Λ) are
linearly isomorphic to the spaces `M , c0 and `∞, respectively.

Although some algebraic and topological properties of these new spaces are investigated, the
following further suggestions remain open:

(i) What is the relation between the norms ‖ · ‖CM and ‖ · ‖C(M)? Are they equivalent?
(ii) What is the relation between the spaces `M (C,Λ) and `′M (C,Λ)? Do they coincide?
(iii) What are the β- and γ-duals of the spaces `′M (C,Λ) and hM (C,Λ)?
(iv) Under which conditions an infinite matrix transforms the sets `′M (C,Λ) or hM (C,Λ) to the

sequence spaces `∞ and c?
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