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ON EXPLICIT FORMULAE AND LINEAR RECURRENT SEQUENCES

R. EULER and L. H. GALLARDO

Abstract. We notice that some recent explicit results about linear recurrent sequences over a ring

R with 1 were already obtained by Agou in a 1971 paper by considering the euclidean division of
polynomials over R. In this paper we study an application of these results to the case when R = Fq [t]
and q is even, completing Agou’s work. Moreover, for even q we prove that there is an infinity of indices
i such that gi = 0 for the linear recurrent, Fibonacci-like, sequence defined by g0 = 0, g1 = 1, and

gn+1 = gn + ∆gn−1

for n > 1, where ∆ is any nonzero polynomial in R = Fq [t]. A new identity is established.

1. Introduction

Let R be a commutative ring with 1. In a nice, but little known paper of 1971, Agou [2] (see
also [1]) obtained explicit expressions of the remainder and the quotient of the euclidean division
of a polynomial f ∈ R[x] by a polynomial g ∈ R[x]. On the other hand Belbachir and Bencherif
[3], generalizing some work of McLaughlin [7], recently obtained explicit values of the coefficients
appearing in the decomposition of the r-th power of a square matrix A of order n over R, in terms
of some special R-linear combinations of the powers Ak with 0 ≤ k < n. The key of their results
comes from obtaining the explicit expression of the general term of a linear recurrent sequence of
order n in terms of the coefficients of the characteristic polynomial C of the sequence. It turns
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out (see Section 2) that the main results of the above papers are simple consequences of the main
result of Agou and that indeed these results are contained in Agou’s paper. Agou gives a finite
field application of his results, more precisely, he proved the identity

(a2 + 4b)
q−1
2 =

∑
u+2v=q−1,u≥0,v≥0

(
u + v

u

)
aubv.(1)

that holds for elements a, b of the finite field Fq of cardinal q, by considering the special case of
a division by a polynomial of degree 2 over Fq[t]. Observe that when q is even, the identity is
trivial. The object of this paper is to study the case q even, in the more general setting of the ring
R = Fq[t]. Our main results are:

a) We establish the identity (2) over the ring R = Fq[t], q even as an analogue of the identity
(1).

Applying the identity (2) to the numerator and denominator of BQ we can easily deduce
(no details given) an identity of the form Bq−1

Q = f(d)
f(c2) , where f is a polynomial for the

Berlekamp discriminant BQ = d
c2 of the quadratic polynomial Q = x2 + cx + d.

b) A Fibonacci-like sequence defined over the ring of polynomials R = Fq[t], where q is a power
of 2, takes the value 0 infinitely many times.

More precisely we prove the following theorems.

Theorem 1. Let q be a power of 2. Let b ∈ Fq[t] be a nonzero polynomial. Put a = b + 1. The
following identity holds in the ring R = Fq[t]

bq−2 = C + D,(2)

C =
∑

u+2v=q−2,u≥0,v≥0

(
u + v

u

)
aubv.
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and

D =
∑

u+2v=q−3,u≥0,v≥0

(
u + v

u

)
aubv.

Theorem 2. Let q be power of 2. Given any nonzero polynomial ∆ ∈ R = Fq[t], the sequence
of polynomials of R defined by g0 = 0, g1 = 1,

gn+1 = gn + ∆gn−1,

satisfies gi = 0 for an infinity of indices i.

Observe that in Theorem 2 we consider the most difficult case that arises (since the degree of the
characteristic polynomial of the sequence equals the characteristic of the coefficient ring) among
all possible Fibonacci-like sequences defined over Fq[t] where q is any power of a prime number p
(odd or even).

Let q be any power of 2. The reason why in Theorem 2 we consider the special degree 2
polynomial S = x2 + x + ∆ ∈ Fq[t][x] (as the characteristic polynomial of the sequence (gi))
instead of the more general one G = Cx2 + Ax + B ∈ Fq[t][x] is that Cherly et al. [4] proved
that the study of the roots of the latter may be reduced to the study of the roots of the former.
Moreover, Gallardo et al. [5] constructed an algorithm to determine the roots of G in Fq[t] without
factoring G.

2. Agou’s main result

Agou [1] proved the following result.

Lemma 1. Let R be a ring with 1. Let S = xn − s1x
n−1 − · · · − sn ∈ R[x] be a polynomial

of degree n > 0. Let k > 0 be a positive integer. Let T =
∑n−1

j=0 tk,jx
j be the remainder of the
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euclidean division (long division) of the monomial M = xk+n−1 by the polynomial S in R[x]. Then
for j = 0, . . . , n− 1, one has

tk,j =
∑

u1+2u2+···+nun=k+n−j−1,
ui≥0,i=1,...,n

(
(u1 + · · ·+ un − 1)!

u1! · · ·un!

j∑
t=0

un−t

)
su1
1 · · · sun

n .

3. Consequences of Agou’s result

Throughout this section the coefficients of polynomials and the matrix entries are elements of a
fixed commutative ring R with 1.

J. McLaughlin [7] proved it as his main result (which also appeared as [3, Theorem 1])

Proposition 1. The n-th power of a 2× 2 matrix M = (mi,j) of trace t and determinant d is
given by

Mn =

[
yn −m2,2yn−1 m1,2yn−1

m2,1yn−1 yn −m1,1yn−1

]

yn =
bn

2 c∑
k=0

(
n− k

k

)
tn−2k(−d)k.

Proof. This follows as a special case of a power of a 2 × 2 matrix from the formula of Mn+k

given in [2, page 120], which is a consequence of Lemma 1. �

The main results of Belbachir and Bencherif [3, Theorem 3, Theorem 4] are contained in the
following two propositions:
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Proposition 2. The linear recurrent sequence defined by x−n = bn for
0 ≤ n < m and

xn =
m∑

k=1

akxn−k

for n > 0, can be written as

xn =
m−1∑
k=0

ckyn+k,

−ck =
m−1∑
i=k

ai−kbi

(3)

for 0 ≤ k < m with a0 = −1, and with

yn =
∑

k1+2k2+···+mkm=n

(
k1 + · · ·+ km

k1, . . . , km

)
ak1
1 · · · akm

m(4)

for n > −m.

Proof. Formula (3) appears in a slightly different notation in [2, page 118]. It is also a conse-
quence of Lemma 1. �

Proposition 3. For n > 0, the n-th power, of an m×m matrix M of characteristic polynomial

CM (x) = xm − a1x
m−1 − · · · − am
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can be written as

Mn =
m∑

k=1

yn−m+kAm−k

where

−Ak =
k∑

i=0

aiM
k−i

for 0 ≤ k < m with a0 = −1 and yn being defined by (4).

Proof. This follows after some computation from the formula for Mn+k in Agou’s paper [1,
page 120]. �

4. Proof of Theorem 1

From Lemma 1, by taking n = 2, and k = q − 2, we can write the remainder R of the euclidean
division of the monomial M = xq−1 by the polynomial S = x2− ax− b in the form R = C1x + D1

where

tq−2,0 = D1 =
∑

u+2v=q−1,u≥0,v≥0

(u + v − 1)!
u!v!

vaubv(5)

and

tq−2,1 = C1 =
∑

u+2v=q−2,u≥0,v≥0

(u + v − 1)!
u!v!

(u + v)aubv.(6)
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Observe that with w = v − 1 the equation (5) becomes

tq−2,0 = D1 =
∑

u+2w=q−3,u≥0,w≥−1

(
u + w

u

)
aubw+1 = bD.(7)

On the other hand, we see immediately that

tq−2,1 = C1 =
∑

u+2v=q−2,u≥0,v≥0

(
u + v

u

)
aubv = C.(8)

Setting x = b in the equality
M = xq−1 = QS + R

where Q is the quotient of the euclidean division of M by S and R is the remainder we get

bq−1 = R(b) = C1b + D1 = Cb + Db

since b (and 1) are the roots of the polynomial S = x2 + ax + b. Simplifying by b, we get the result
immediately. This proves the theorem.

5. Proof of Theorem 2

Let m ≥ 0 be a non-negative integer. Let A ∈ Fq[t] be any nonzero polynomial. We claim that for
any sequence (fn) defined by fm = 0, fm+1 = A and fn+m+1 = fn+m + ∆fn+m−1 for all integers
n > 0, there exists an integer h > 0 such that fm+h+1 = 0.

Assuming the claim we prove that there is an infinity of integers h > 0 such that fh = 0. If
this is not true, then let h0 > 0 be the largest integer h > 0 for which fh = 0. By the claim
with m = h0 and A = fh0+1 6= 0, there exists an integer h1 > 0 such that fm+1+h1 = 0. Take
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h = m + 1 + h1. We then have h > h0 > 0 and fh = 0 contradicting the maximality of h0. This
proves that there is an infinity of integers h > 0 such that fh = 0.

Now we prove the claim. Assume that for all integers n > 1 we have fm+n 6= 0. Set s0 = 0,

s1 = ∆, sn = fn+m+1
fn+m

for all integers n > 1. Note that this sequence is well defined because we are
assuming fn+m 6= 0.

Observe that one has

sn(sn+1 + 1) = ∆.(9)

Let x ∈ F = Fq(t), where F is a fixed algebraic closure of the rational field Fq(t), be such that

x2 + x = ∆.(10)

Since ∆ 6= 0, one has x /∈ {0, 1}. We define the sequence (tn) ∈ F by tn = sn + x for all integers
n > 0. From the definition of (tn) and from (9), one has

(x + tn)(x + 1 + tn+1) = ∆ 6= 0.(11)

So tn 6= x for any such n. This is true for all n > 1. Thus, x /∈ {tn, tn+1}.
Now from (11) and (10), one has

tn+1 =
tn(x + 1)
tn + x

.(12)

From this, by replacing n by n + 1 in (12) and using (12) again, we obtain

tn+2 =
tn+1(x + 1)
tn+1 + x

=
tn(x + 1)2

tnx + tn + x2 + xtn
(13)

so that

tn+2 =
tn(x + 1)2

tn + x2
.(14)
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If tn = x2, then from (14) we get tn = 0 since x 6= 1. Since x 6= 0, one has

tn 6= x2.(15)

But tn+2 6= x. Observe that this implies tn+1 6= x2 since from

tn+2 =
tn+1(x + 1)
tn+1 + x

we get tn+2 = x if tn+1 = x2. Now, in order to obtain tn+3 we have two possible paths. The first
one is to replace n by n + 2 in (12) and use (14). This gives

tn+3 =
tn+2(x + 1)
tn+2 + x

=
tn(x + 1)3

tn(x + 1)2 + x2(tn + x2)
(16)

tn+3 =
tn(x + 1)3

tn + x4
.(17)

The second path is to replace n by n + 1 in (14) and use (12). This gives

tn+3 =
tn+1(x + 1)2

tn+1 + x2
=

tn(x + 1)3

tn(x + 1) + x2(tn + x)
(18)

so that we get

tn+3 =
tn(x + 1)3

tn(x2 + x + 1) + x3
.(19)

So from (17) and (19), we obtain

tnx(x + 1) = x3(x + 1).(20)

Recall that x /∈ {0, 1}. Thus, from (20) we get

tn = x2.(21)
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But (21) contradicts (15). This proves the claim, thereby proving the theorem.

Acknowledgment. The authors are grateful to the referee for careful reading and detailed
suggestions. The result is an improved paper. An interesting question of the referee concerns the
possible periodicity of the linear sequence considered in this paper. We do not know how to answer
the question, but this encourages us to do more work on this area.
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