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NON-DEGENERATE SURFACES OF REVOLUTION IN MINKOWSKI SPACE
THAT SATISFY THE RELATION aH + bK = c

R. LÓPEZ, Ö. BOYACIOĞLU KALKAN and D. SAGLAM

Abstract. In this work we study spacelike and timelike surfaces of revolution in Minkowski space E3
1

that satisfy the linear Weingarten relation aH + bK = c, where H and K denote the mean curvature
and the Gauss curvature of the surface and a, b and c are constants. The classification depends on the
causal character of the axis of revolution. We will give a first integral of the equation of the generating
curve of the surface and obtain explicit solutions for some particular choices of the constants a, b and
c. Also, we completely solve the equation when the axis of revolution of the surface is lightlike.

1. Introduction

Consider the three-dimensional Minkowski space E3
1, that is, the real vector space R3 endowed with

the Lorentzian metric 〈, 〉 = (dx)2 + (dy)2 − (dz)2, where (x, y, z) stand for the usual coordinates
of R3. A vector v ∈ E3

1 is said spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0 and lightlike if
〈v, v〉 = 0 and v 6= 0. A submanifold S ⊂ E3

1 is said spacelike, timelike or lightlike if the induced
metric on S is a Riemannian metric (positive definite), a Lorentzian metric (a metric of index 1)
or a degenerate metric, respectively.
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An immersion x : M → E3
1 of a surface M is said non-degenerate if the induced metric x∗(〈, 〉)

on M is non-degenerate. There are only two possibilities on non-degenerate surfaces. If the metric
x∗(〈, 〉) is positive definite, that is, it is a Riemmannian metric, the immersion is called spacelike.
If x∗(〈, 〉) is a Lorentzian metric, that is, a metric of index 1, the immersion is called timelike.
For spacelike surfaces, the tangent planes are spacelike everywhere, and for timelike surfaces, the
tangent planes are timelike.

We consider non-degenerate surfaces in E3
1 that satisfy the relation

aH + bK = c,(1)

whereH andK are the mean curvature and the Gauss curvature of the surface, respectively, and a, b
and c are constants. We then say that the surface is a linear Weingarten surface of E3

1. In general,
a Weingarten surface is a surface that satisfies a certain smooth relation W = W (H,K) = 0
between H and K. The surfaces that satisfy (1) are the simplest case of W , that is, W is a
linear function in its variables. The family of linear Weingarten surfaces include the surfaces
with constant mean curvature (b = 0) and the surfaces with constant Gauss curvature (a = 0).
Weingarten surfaces were the interest for geometers in the fifties, such as Chern, Hartman, Hopf
and Winter. More recently in Euclidean space, linear Weingarten surfaces were studied for example
in [2, 6, 10, 13, 15]. When the ambient space is Lorenzt-Minkowski space, we refer, among others,
[1, 3, 4, 5, 8] with a focus on ruled and helicoidal surfaces.

We study linear Weingarten surfaces that are rotational, that is, invariant by a group of motions
of E3

1 that pointwised fixed a straight-line. In such case, Equation (1) is a second ordinary differ-
ential equation that describes the shape of the generating curve of the surface. One can not expect
to integrate this equation because even in the trivial cases that a = 0 or b = 0, this integration
is not possible. We will discard the cases that H is constant constant of K which were studied,
for example, in [7, 11, 12]. The simplest examples of linear Weingarten rotational surfaces are
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pseudohyperbolic surfaces and pseudospheres which have both H and K constant. Thus these
surfaces satisfy (1) for many values a, b and c (see Proposition 2.1).

In this work for rotational surfaces, we will obtain a first integration of the linear Weingarten
relation changing (1) into an ordinary differential equation of order 1. The integration will be given
in next sections according to the causal character of the axis of revolution: see Theorems 3.1, 4.1,
4.2 and 5.1 below. A first result appears when the axis of revolution is lightlike. In such cases the
differential equation that describes the generating curve can be integrated by simple methods.

Theorem 1.1. Non-degenerate surfaces of revolution in E3
1 whose axis is lightlike satisfying

the linear Weingarten relation (1) can be explicitly described by parametrizations.

This theorem will be proved in Section 5 although the expressions of the parametrizations are
cumbersome and it does not deserve to explicit them.

Although we can not completely solve (1) for rotational surfaces in all its generality, we will
discuss some particular cases. First, we recover pseudohyperbolic surfaces and pseudospheres for
particular choices of the constants of integration. Second, we consider the case that the values of
a, b and c in (1) satisfy the relation a2 − 4bcε = 0, where throughout this paper ε = 1 indicates
that M is spacelike and ε = −1 that M is timelike. In Euclidean ambient space, the sign, of
∆ := a2 + 4bc makes differences in the study of linear Weingarten surfaces and according to this
sign the surfaces are classified into elliptic (∆ > 0), hyperbolic (∆ < 0) and parabolic (∆ = 0).
Returning to the Minkowski setting and for parabolic surfaces, we prove the following theorem.

Theorem 1.2. Let M be a non-degenerate rotational surface in E3
1 that satisfies (1). Assume

that a2 − 4bcε = 0. After a rigid motion of the ambient space, a parametrization X(u, v) of M is
given by:
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1. If the axis is timelike, X(u, v) = (u cos(v), u sin(v), z(u)), where

z(u) = ±
√

4εb2

a2
+
(C
a
± u
)2

+ µ, C = 2
√
bε(−b+ λ), µ, λ ∈ R.(2)

2. If the axis is spacelike, we have two possibilities:
(a) The parametrization is X(u, v) = (u, z(u) sinh(v), z(u) cosh(v)), where

z(u) = ±C
a
±
√

4εb2

a2
± (u± µ)2, C = 2

√
bελ, µ, λ ∈ R.(3)

(b) The parametrization is X(u, v) = (u, z(u) cosh(v), z(u) sinh(v)), where

z(u) =
−C
a
±
√

4b2

a2
± (u± µ)2, C = 2

√
bλ, µ, λ ∈ R.(4)

3. If the axis is lightlike, X(u, v) = (−2uv, z(u) + u− uv2, z(u)− u− uv2), where

z(u) =
1
48

(−4acλ+ (cC2 − 2a2λ)u
εcλ(2λ+ cu2)

+ ε
cC2 + 2a2λ√
−2cλ

arc tanh(
√
− c

2λ
u)
)

+ µ, µ, λ ∈ R.
(5)

Finally, we study the case that H and K are proportional, that is, c = 0 in the relation (1).
Even in this case, the integration of (1) is not possible when the axis of revolution is timelike or
spacelike. However in this situation, the laborious expressions announced in Theorem 1.1 now are
easier.

Theorem 1.3. The non-degenerate surfaces in E3
1 with lightlike axis satisfying the relation

H = bK, b 6= 0 that pseudohyperbolic surfaces, pseudospheres are surfaces are locally parametrize
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as X(u, v) = (−2uv, z(u) + u− uv2, z(u)− u− uv2), u 6= 0 and z(u) is given by

z(u) =
1

96λ2

(
εu3 + 12bλu± (u2 + 8εbλ)3/2

)
+ µ,(6)

where λ, µ ∈ R, λ 6= 0.

2. Preliminaries

In this section we describe the surfaces of revolution of E3
1 and we recall the notions of the mean

curvature and the Gauss curvature for a non-degenerate surface (for more details see [9, 14, 16]).
We consider the rigid motions of the ambient space that leave a straight-line pointwised fixed,
called the axis of revolution of the surface. Let L be the axis of the surface. Depending on L,
there are three types of rotational motions. After an isometry of E3

1, the expressions of rotational
motions with respect to the canonical basis {e1, e2, e3} of E3

1 are as follows:

Rv :

 x
y
z

 7−→
 cos v sin v 0
− sin v cos v 0

0 0 1

 x
y
z

 .

Rv :

 x
y
z

 7−→
 1 0 0

0 cosh v sinh v
0 sinh v cosh v

 x
y
z

 .

Rv :

 x
y
z

 7−→
 1 −v v

v 1− v2

2
v2

2

v − v2

2 1 + v2

2

 x
y
z

 .

Definition 2.1. A surface M in E3
1 is a surface of revolution (or rotational surface) if M is

invariant by some of the above three groups of rigid motions.
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In what follows we discard spacelike and timelike planes which are trivially surfaces of revolution
and satisfy (1). Our study on the linear Weingarten relation (1) is local. Thus we will work with
local parametrizations of rotational surfaces satisfying (1). Given a surface of revolution, there
exists a planar curve α = α(u) that generates the surface, that is, M is the set of points given by
{Rv(α(u));
u ∈ I, v ∈ R}. After a rigid motion of E3

1, we describe the parametrizations of a rotational
surface.

1. The axis L is timelike. The generating curve is α(u) = (u, 0, z(u)) and the parametrization
of the surface is

X(u, v) = (u cos(v), u sin(v), z(u)), u 6= 0.(7)

2. The axis L is spacelike. We have two types of surfaces:
(a) (Type I) The generating curve is α(u) = (u, 0, z(u)) and the surface is

X(u, v) = (u, z(u) sinh(v), z(u) cosh(v)), u 6= 0.(8)

(b) (Type II) The generating curve is α(u) = (u, z(u), 0) and the surface is

X(u, v) = (u, z(u) cosh(v), z(u) sinh(v)), u 6= 0.(9)

3. The axis L is lightlike. The generating curve is α(u) = (0, u + z(u),−u + z(u)) and the
parametrization of the surface is

X(u, v) = (−2uv, z(u) + u− uv2, z(u)− u− uv2), u 6= 0.(10)

We now define the mean curvature H and the Gauss curvature K of a surface in E3
1. Let M be

an orientable surface and let x : M → E3
1 be a spacelike or timelike immersion. Denote by N the

Gauss map of M .
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Let U, V be vector fields to M and we denote by ∇0 and ∇ the Levi-Civitta connections of E3
1

and M respectively. The Gauss formula says

∇0
UV = ∇UV + II(U, V ),

where II is the second fundamental form of the immersion. The Weingarten endomorphism is
Ap : TpM → TpM defined as Ap(U) = −(∇0

UN)>p = (−dN)p(U). Then we have

II(U, V ) = −ε〈II(U, V ), N〉N = −ε〈AU, V 〉N.

The mean curvature vector ~H is defined as ~H = (1/2)trace(II) and the Gauss curvature K as
the determinant of II computed in both cases with respect to an orthonormal basis. The mean
curvatureH is the function given by ~H = HN , that is, H = −ε〈 ~H,N〉. If {e1, e2} is an orthonormal
basis at each tangent plane, with 〈e1, e1〉 = 1, 〈e2, e2〉 = ε, then

~H =
1
2

(II(e1, e1) + II(e2, e2)) = −ε1
2

(〈Ae1, e1〉+ ε〈Ae2, e2〉)N

= −ε
(

1
2

trace(A)
)
N

K = −εdet(A).

The expressions of H and K using a parametrization X of the surface are:

H = −ε1
2
eG− 2fF + gE

EG− F 2
, K = −ε eg − f2

EG− F 2
,(11)

where {E,F,G} and {e, f, g} are the coefficients of I and II, respectively. Here the Gauss map N
is

N =
Xu ×Xv√
ε(EG− F 2)

.
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We recall that

W := EG− F 2 = ε|Xu ×Xv|2
{

is positive if M is spacelike,

is negative if M is timelike.

In Minkowski ambient space, the role of spheres is played by pseudohyperbolic surfaces and
pseudospheres. If p0 ∈ E3

1 and r > 0, the pseudohyperbolic surface centered at p0 with radius r > 0
is H2,1(r; p0) = {p ∈ E3

1; 〈p − p0, p − p0〉 = −r2} and the pseudosphere centered at p0 and radius
r > 0 is S2,1(r; p0) = {p ∈ E3

1; 〈p − p0, p − p0〉 = r2}. If M is spacelike (resp. timelike) then the
Gauss map N is timelike (resp. spacelike), and N : M → H2,1(1;O) (resp. N : M → S2,1(1;O)),
where O is the origin of E3

1. Taking the orientation N(p) = (p−p0)/r, we obtain for these surfaces
that H = ε/r and K = −ε/r2. Because both H and K are constant, we obtain the following
proposition.

Proposition 2.1. Pseudohyperbolic surfaces and pseudospheres are linear Weingarten surfaces.
Exactly, for any a, b ∈ R (resp. b, c ∈ R or a, c ∈ R), there exists c ∈ R (resp. a ∈ R or b ∈ R)
such that the surfaces satisfy the relation aH + bK = c.

3. Rotational surfaces with timelike axis

If the axis is timelike, we know that a parametrization of a rotational surface is given by (7) and
the generating curve is α(u) = (u, 0, z(u)), u > 0. Here the function W = u2(1−z′2). Thus z′2 < 1
if the surface is spacelike, and z′2 > 1 if M is timelike. Using the expressions of H and K in (11),
we have

H = −1
2

(
εz′

u
√
ε(1− z′2)

+
z′′

(ε(1− z′2))3/2

)
, K = − z′z′′

u(1− z′2)2
.
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Then the relation (1) writes as

a

2

(
εz′

u
√
ε(1− z′2)

+
z′′

(ε(1− z′2))3/2

)
+ b

z′z′′

u(1− z′2)2
= −c.

Multiplying both sides by u, we obtain

a

(
u

εz′√
ε(1− z′2)

)′
+ b

(
1

1− z′2

)′
= −2cu.

A first integral of this equation is

ε
auz′√
ε(1− z′2)

+
b

1− z′2
= −cu2 + λ,(12)

where λ is a constant of integration. Let

φ =
z′√

ε(1− z′2)
.

Then 1 + εφ2 = 1/(1− z′2) and Equation (12) writes as bφ2 + auφ+ ε(b+ cu2 − λ) = 0. Hence we
can obtain the value of φ and thus we get following theorem.

Theorem 3.1. The linear Weingarten rotational surfaces in E3
1 whose axis is timelike are

locally parametrized as X(u, v) = (u cos(v), u sin(v), z(u)), where z = z(u) satisfies

z′√
ε(1− z′2)

=
−au±

√
(a2 − 4bcε)u2 + 4bε(−b+ λ)

2b
, λ ∈ R.(13)

We study this differential equation in three particular cases:
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1. Consider λ = b. From (13) we have

z′√
ε(1− z′2)

=
−a±

√
a2 − 4bcε
2b

u = Cu, C =
−a±

√
a2 − 4bcε
2b

.

Then a solution of this equation is

z(u) = ±
√
ε+ C2u2

C
+ µ, µ ∈ R.

From the parametrization (7) of the surface, one concludes that M satisfies the equation x2+
y2−(z−µ)2 = −ε/C2. Letting p0 = (0, 0, µ), if ε = 1, the surface M is the pseudohyperbolic
surface H2,1(1/|C|; p0) and when ε = −1, M is the pseudosphere S2,1(1/|C|; p0).

2. Assume a2 − 4bcε = 0. Then Equation (13) writes as
z′√

ε(1− z′2)
=
−au± C

2b
, C = 2

√
bε(−b+ λ).

The solution of this equation is given by (2) in Theorem 1.2. See Figure 1.
3. If H and K are proportional, then c = 0 in (1). Rewriting as H = bK, then Equation (13)

writes as
z′√

ε(1− z′2)
=
u±

√
u2 − 4bε(b+ λ)

2b
, λ ∈ R.
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Figure 1. Rotational surfaces with timelike axis where a2 − 4bcε = 0. Here a = 2, b = ε and µ = 0. On the left,
the surface is spacelike with λ = 2 and on the right, the surface is timelike with λ = 0.

4. Rotational surfaces with spacelike axis

We distinguish two cases according to the two possible parametrizations.
Type I. Assume that the parametrization is given by (8). The relation (1) writes as

a

2

(
ε

z
√
ε(1− z′2)

+
z′′

(ε(1− z′2))3/2

)
+ b

z′′

z(1− z′2)2
= −c.

Multiplying by zz′, we obtain a first integral. So there exists a constant of integration λ ∈ R such
that

ε
az√

ε(1− z′2)
+

b

1− z′2
= −cz2 + λ.

Theorem 4.1. The linear Weingarten rotational surfaces in E3
1 whose axis is spacelike and of

Type I are locally parametrized as

X(u, v) = (u, z(u)sinh(v), z(u) cosh(v)),
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where z = z(u) satisfies

1√
ε(1− z′2)

=
−az ±

√
(a2 − 4bcε)z2 + 4bελ

2b
, λ ∈ R.(14)

We solve this differential equation in three particular cases:

1. Consider λ = 0. From (14) we have

1√
ε(1− z′2)

=
−a±

√
a2 − 4bcε
2b

z = Cz, C =
−a±

√
a2 − 4bcε
2b

.

The solution of this differential equation is

z(u) = ±
√

ε

C2
± (u± Cµ)2, µ ∈ R}.

From the parametrization (8) of the surface, one concludes that M satisfies the equation
(x − Cµ)2 + y2 − z2 = − ε

C2 . Thus, if we set p0 = (±Cµ, 0, 0), for ε = 1, we obtain that
M is the pseudohyperbolic surface H2,1(1/|C|; p0) and for ε = −1, M is the pseudosphere
S2,1(1/|C|; p0).

2. Assume a2 − 4bcε = 0. Then

1√
ε(1− z′2)

=
−az ± C

2b
, C = 2

√
bελ.

The integration of this equation is the function z = z(u) defined in (3) of Theorem 1.2. See
Figure 2.
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3. If the Weingarten relation is H = bK, then Equation (14) is

1√
ε(1− z′2)

=
z ±
√
z2 − 4bελ
2b

, λ ∈ R.

Figure 2. Rotational surfaces with spacelike axis of type I where a2 − 4bcε = 0. Here a = 2, b = ε, λ = 1 and

µ = 0. On the left, the surface is spacelike and on the right, it is timelike.

Type II. The expression of the parametrization is (9). In this case, the surface is timelike, since
EG− F 2 = −z2(1 + z′2). The Weingarten relation (1) is

a

2

(
−1

z
√

1 + z′2
+

z′′

(1 + z′2)3/2

)
− b z′′

z(1 + z′2)2
= c
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and doing a similar reasoning as in the previous case, it follows the existence of a constant of
integration λ ∈ R such that

− az√
1 + z′2

+
b

1 + z′2
= cz2 + λ.

Hence one obtains the following theorem.

Theorem 4.2. The linear Weingarten rotational surfaces in E3
1 whose axis is spacelike and of

type II are locally parametrized as

X(u, v) = (u, z(u) cosh(v), z(u) sinh(v)),

where z = z(u) satisfies

1√
1 + z′2

=
az ±

√
(a2 + 4bc)z2 + 4bλ

2b
, λ ∈ R.(15)

As in the previous case, we solve this equation in the next three cases:
1. If λ = 0, then (15) simplifies into

1√
1 + z′2

=
−a±

√
a2 + 4bc

2b
z = Cz, C =

a±
√
a2 + 4bc
2b

.

The solution of this equation is

z(u) = ±
√

1
C2
− (u± Cµ)2, µ ∈ R}.

This surface is the pseudosphere S2,1(1/|C|; p0), with p0 = (±Cµ, 0, 0).
2. If a2 + 4bc = 0, then Equation (15) leads to

1√
1 + z′2

=
az ± C

2b
, C = 2

√
bλ.
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The solution of this equation is given by (4) in Theorem 1.2.
3. If H and K are proportional, with H = bK, then the function z satisfies

1
1 + z′2

=
−z ±

√
z2 − 4bλ

2b
, λ ∈ R.

5. Rotational surfaces with lightlike axis

Consider the parametrization given in (10). Then EG − F 2 = 16u2z′ and the relation (1) writes
as

a

2

(
1

2u
√
εz′
− εz′′

4(εz′)3/2

)
+ b

z′′

8uz′2
= c.

Multiplying by u, we obtain the first integral. There exists a constant of integration λ ∈ R such
that

a

4
u√
εz′
− b

8z′
=
c

2
u2 + λ.

Theorem 5.1. The linear Weingarten rotational surfaces in E3
1 whose axis is lightlike are

locally parametrized as X(u, v) = (−2uv, z(u) + u− uv2, z(u)− u− uv2), where z = z(u) satisfies

√
εz′ =

aεu±
√

(a2 − 4bcε)u2 − 8bελ
4ε(cu2 + 2λ)

, λ ∈ R.(16)

Differential equation (16) can be solved by direct integrations. However, the variety of cases
that appear make that it is not possible to give a general formula for solutions due to the resulting
expressions are cumbersome. We give some details proving Theorem 1.1. First, we discard the
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cases that λ = 0, a2 − 4bcε = 0 and c = 0 which will be considered below. Then (16) writes as

z′ = ε

(
au±

√
(a2 − 4bc)u2 − 8bλ
4(cu2 + 2λ)

)2

,(17)

where λc(a2−4bc) 6= 0. We develop the right hand side in (17) obtaining the next types of integrals
(in what follows, by (ct) we indicate a constant):

1. Integrals of type
∫

u2

(cu2 + 2λ)2
and

∫
1

(cu2 + 2λ)2
du. Depending on the signs of the con-

stants c and λ, the solutions are functions of type,

(ct)
u

cu2 + 2λ
+ (ct) arctan ((ct)u) or (ct)

u

cu2 + 2λ
+ (ct) arctanh ((ct)u).

2. Integrals of type
∫
u
√

(a2 − 4bc)u2 − 8bλ
(cu2 + 2λ)2

du. According to the signs of the constants again,

we have that the solutions are

(ct)
u
√

(a2 − 4bc)u2 − 8bλ
cu2 + 2λ

+ (ct) arctan

(
au√

(a2 − 4bc)u2 − 8bλ

)
or

(ct)
u
√

(a2 − 4bc)u2 − 8bλ
cu2 + 2λ

+ (ct) arctanh

(
au√

(a2 − 4bc)u2 − 8bλ

)
.

In the following, we show two examples of choices of constants in Equation (17). We con-
sider spacelike surfaces (ε = 1) and take the sign ’+’ in ’±’ that appears before the square root√

(a2 − 4bcε)u2 − 8bλ. For the computations, we have used Mathematica to obtain the explicit
integrals of (17).
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Example 5.1. Let a = b = c = −λ = 1. Then the solution of (17) is

z(u) =
1
64

(
4u

2− u2
+

4
√

8− 3u2

2− u2

+ 3
√

2

(
2 arctanh

(√
4− 3u2

2

)
− log

(√
2 + u√
2− u

)))
.

Example 5.2. Let a = −b = c = 1 and λ = 1/2. Then the solution of (17) is

z(u) =
5(1 + u2)(arctan (u) + arctan (

√
4 + 5u2)− u−

√
4 + 5u2

16(1 + u2)
.

Figure 3. Rotational surfaces with lightlike axis where a2 − 4bcε = 0. Here a = 2, b = −ε, λ = 1 and µ = 0. On
the left, the surface is spacelike and on the right, the surface is timelike.
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As in the previous sections, we distinguish three particular cases. In all of them, the previous
integrals are easily solved.

1. If λ = 0, then
√
εz′ =

a± ε
√
a2 − 4bcε
4c

1
u

:=
C

u
and C =

a± ε
√
a2 − 4bcε
4c

. We solve this
equation obtaining

z(u) = −εC
2

u
+ µ, µ ∈ R.

From the parametrization (10), we see that M satisfies the equation x2 + y2 − (z − µ)2 =
−4εC2. Thus, if p0 = (0, 0, µ), we have that M = H2,1(2|C|; p0) if ε = 1, and M =
S2,1(2|C|; p0) if ε = −1.

2. Assume a2 − 4bcε = 0. Then
√
εz′ =

aεu± C
4ε(cu2 + 2λ)

and C =
√
−8bελ. We point out that

−8bελ > 0 and that combining with a2 − 4bcε = 0, we have cλ ≤ 0. The solution of this
equation is (5). See Figure 3.

3. Suppose that H and K are proportional with H = bK, b ∈ R. Then Equation (16) simplifies
into

√
εz′ =

εu±
√
u2 + 8bελ
8ελ

.

The solutions of this differential equation are given in (6) proving Theorem 1.3.
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