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ANALYSIS OF A CLASS OF THERMAL FRICTIONAL
CONTACT PROBLEM FOR THE NORTON-HOFF FLUID

F. MESSELMI

Abstract. We consider a mathematical model which describes the static flow of

a Norton-Hoff fluid whose viscosity depends on the temperature, and with mixed
boundary conditions, including friction. The latter is modelled by a general velocity

dependent dissipation functional and the temperature. We derive a weak formula-

tion of the coupled system of the equation of motion and the energy equation,
consisting of a variational inequality for the velocity field. We prove the existence

of a weak solution of the model using compactness, monotonicity, L1-Data theory

and a fixed point argument. In the asymptotic limit case of a high thermal conduc-
tivity, the temperature becomes a constant solving an implicit total energy equation

involving the viscosity function and the subdifferential friction. Finally, we describe

a number of concrete thermal friction conditions.

1. Introduction

The model of Norton-Hoff fluid has been used in various publications in order to
model the flow of metals and viscoplastic solids. The literature concerning this
topic is extensive, see, e.g., [2], [27] and references therein. An intrinsic inclusion
leads in a natural way to variational equations which justify the study of problems
involving the incompressible viscoplastic Norton-Hoff fluid using arguments of the
variational analysis.

In this paper we consider a mathematical model which describes the static flow
of Norton-Hoff fluid whose viscosity depends on the temperature. Such problem
can describe the flow of metals in a die as well as the transfer heat in the non-
Newtonian Norton-Hoff fluid. The flow is governed by the coupled system of
motion equation and energy conservation equation. Moreover, we assume that the
contact is modeled with a subdifferential boundary condition depending on the
temperature in the form

ϕ (θ,v)− ϕ (θ,u) ≥ −σν · (v − u) ,(1.1)

where u represents the velocity field, θ the temperature, ν the unit outward normal
vector, σν the Cauchy stress vector and ϕ is a given convex function. The inequal-
ity in (1.1) holds almost everywhere on the contact zone. Examples and detailed
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explanations of inequality problems in contact mechanics which lead to boundary
conditions in the form (1.1), without taking into account thermal effects, can be
found in [3], [18], [12], [24], [25], [26] and references therein. The new feature
in the model is due to the choice of particular forms of the function ϕ, which can
be written as the sum of two contact functions, corresponding to the normal and
tangential components of the Cauchy stress vector. Furthermore, to describe the
energy dissipation due to the contact, we use a Fourier type boundary condition
depending on the contact function ϕ.

The differential coupled system containing the dissipative function leads us to
prove the existence of a solution of an elliptic equation with L1-Data. Our main
idea in this context is to adapt the Kakutani-Glicksberg fixed point theorem and
use the L1-Data theory.

The paper is organized as follows. In Section 2 we present the mechanical prob-
lem of the thermal flow of a Norton-Hoff fluid and introduce some notations and
preliminaries. In Section 3 we derive the variational formulation of the problem.
In Section 4 we prove the existence of solutions as well as an existence result of
the nonlocal Norton-Hoff problem, which can be obtained as an asymptotic limit
case of a very large thermal conductivity. In Section 5 we describe a number of
concrete thermal frictional conditions which may be cast in the abstract form (1.1)
and to which our main results apply.

2. Problem Statement

We consider a mathematical problem modelling the static flow of a Norton-Hoff
fluid in a bounded domain Ω ⊂ Rn (n = 2, 3) with the boundary Γ of class C1,
partitioned into three disjoint measurable parts Γ0, Γ1 and Γ2 such that meas
(Γ0) > 0. The fluid is supposed to be incompressible and the viscosity depends on
the temperature. The fluid is acted upon by given volume forces of density f and
by given surface tractions of density g. In addition, we admit a possible external
heat source proportional to the temperature. On Γ0 we suppose that the velocity
is known. The temperature is given by a Neumann boundary condition on Γ0∪Γ1.
We impose on Γ2 a frictional contact described by a subdifferential type boundary
condition which also depends on the temperature as well as a Fourier boundary
condition.

We denote by Sn the space of symmetric tensors on Rn. We define the inner
product and the Euclidean norm on Rn and Sn, respectively, by

u · v = uivi ∀u, v ∈ Rn and σ · τ = σijτij ∀σ, τ ∈ Sn.

|u| = (u · u)
1
2 ∀u ∈ Rn and |σ| = (σ · σ)

1
2 ∀σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation con-
vention over repeated indices is used.

Let 1 < p < 2. We consider the rate of deformation operator by

ε(u) = (εij(u))1≤i,j≤n, εij(u) =
1
2

(ui,j + uj,i).
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defined for all u ∈W 1,p (Ω)n. We denote by ν the unit outward normal vector on
the boundary Γ. For each vector field v ∈W 1,p(Ω)n, we also write v for its trace
on Γ. The normal and the tangential components of v on the boundary are given
by

vν = v · ν, vτ = v − vνν.
Similarly, for a regular tensor field σ, we denote by σν and στ the normal and

tangential components of σ on the boundary given by

σν = σν · ν, στ = σν − σνν.

We consider the following mechanical coupled problem.

Problem 1. Find a velocity field u = (ui)1≤i≤n : Ω −→ Rn, stress field
σ = (σij)1≤i,j≤n : Ω −→ Sn and a temperature θ : Ω −→ R such that

Div(σ) + f = 0 in Ω(2.1)

σ = µ(θ) |ε(u)|p−2
ε(u) + Pδ in Ω(2.2)

div(u) = 0 in Ω(2.3)

− k∆θ = σ · ε(u)− αθ in Ω(2.4)

u = 0 on Γ0(2.5)

σν = g on Γ1(2.6)

ϕ(θ,v)− ϕ(θ,u) ≥ −σν · (v − u) on Γ2(2.7)
∂θ

∂ν
= 0 on Γ0 ∪ Γ1(2.8)

k
∂θ

∂ν
+ βθ = −σν · u on Γ2(2.9)

where Div(σ) = (σij,j) and div(u) = ui,i. The flow is given by the equation
(2.1) where the density is assumed equal to one. Equation (2.2) represents the
constitutive law of a Norton-Hoff fluid whose viscosity µ depends on the tempera-
ture, P represents the hydrostatic pressure, 1 < p < 2 is the sensibility coefficient
of the material to the rate of the deformation tensor and δ is the identity ten-
sor. (2.3) represents the incompressibility condition. Equation (2.4) represents
the energy conservation where the specific heat is assumed to be equal to one,
k > 0 is the thermal conductivity and the term αθ represents the external heat
source with α > 0. (2.5) gives the velocity on Γ0 and (2.6) is the surface trac-
tion on Γ1. Condition (2.7) represents a subdifferential boundary condition on Γ2

and ϕ : R × Γ2 × Rn −→ R is a measurable convex function. (2.8) is a homoge-
neous Neumann boundary condition on Γ0∪Γ1. Finally, (2.9) represents a Fourier
boundary condition on Γ2, where β ≥ 0 represents the Robin coefficient.

Remark 2.1.
1. The viscosity function can be given by the Arrhenius law

µ(θ) = µc exp
(

1
θ + θ0

)
,
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where µc ∈ L∞(Ω) represents the consistency of the material and θ0 is a
positive function.

2. The linear external heat source of the form αθ has been introduced to
guarantee the thermodynamical consistence of the irreversible processes.
Moreover, the use of such external heat source in fluid mechanics permits
to obtain non-local existence results.

We denote by V the set

V =
{
v ∈W 1,p(Ω)n : div(v) = 0 in Ω and v = 0 on Γ0

}
.

V is a Banach space equipped with the following norm

‖v‖V = ‖v‖W 1,p(Ω)n .

For the rest of this article, we will denote by c possibly different positive con-
stants depending only on the data of the problem.

Denote the conjugate of p, q, respectively, by p′, q′ where 1 < q < n
n−1 . We

introduce the following functionals

φ : W 1,1(Ω)× V −→ R ∪ {+∞},

φ(θ,v) =
{ ∫

Γ2
ϕ(θ,v)dγ if ϕ(θ,v) ∈ L1(Γ2),

+∞ otherwise,

f̃ : V −→ R,

f̃(v) =
∫

Ω

f · vdx+
∫

Γ1

g · vdγ

where dγ represents the surface element. We assume

∀x ∈ Ω, µ(., x) ∈ C0(R) : ∃µ1, µ2 > 0, µ1 ≤ µ(y, x) ≤ µ2

∀y ∈ R, ∀x ∈ Ω.
(2.10)

The function ϕ is the sum of two contact functions, corresponding to the normal
and tangential components of the stress tensor on the boundary, respectively.

ϕ(θ,v) = υ1(θ)ψ1(v) + υ2(θ)ψ2(v),

where

∀x ∈ Γ2, υi(., x) ∈ C0(R) : ∃υ0 > 0, 0 ≤ υi(y, x) ≤ υ0

∀y ∈ R, ∀x ∈ Γ2, i = 1, 2,
(2.11)

and the function ψi : Γ2 × Rn −→ R (i = 1, 2) is measurable, positive, convex on
Γ2 and continuous on V and verifying the following hypothesis

∃ωi ∈ [1, 2] , ∃C > 0 : ‖ψi(v)‖L2(Γ2) ≤ C ‖v‖ωiL2ωi (Γ2)n

∀v ∈ V, i = 1, 2.
(2.12)
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We can easily prove that the Fourier boundary condition holds, using the sub-
differential condition (2.7)

k
∂θ

∂ν
+ βθ ≥ ϕ(θ,u) on Γ2.(2.13)

Since the term σν · u in the Fourier boundary condition (2.9) represents the
energy dissipated due to the contact, we can suppose in this paper that the condi-
tion in the abstract (2.13) can be written as sum of two dissipative contributions
(see [7])

k
∂θ

∂ν
+ βθ = ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u) on Γ2,(2.14)

here, ω1, ω2 may be interpreted as the powers of the contact functions υ1(θ)ψ1(u),
υ2(θ)ψ2(u), respectively, (see examples in Section 5). Then, in the mechanical
Problem 1 we can replace the condition (2.9) by the Fourier condition (2.14).

3. Variational Formulation

The aim of this section is to derive a variational formulation to the Problem 1. To
do so we need the following lemma.

Lemma 3.1. Assume that f ∈ V ′ and g ∈W−
1
p ,p
′
(Γ)n. If {u, σ, θ} are regular

functions satisfying (2.1)–(2.9), then∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(θ,v)− φ(θ,u)

≥ f̃(v − u) ∀v ∈ V,
(3.1)

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

F (θ,u)τdx+
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω),

(3.2)

where

F (θ,u) = µ(θ) |ε(u)|p .(3.3)

Proof. Let us start by the proof of variational inequality (3.1). Let {u, σ, θ} be
regular functions satisfying (2.1)–(2.9) and let v ∈ V .

Using Green’s formula and (2.1), (2.2), (2.3), (2.5) and (2.6), we obtain∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx

=
∫

Ω

f · (v − u)dx+
∫

Γ1

g · (v − u)dγ +
∫

Γ2

σν · (v − u)dγ.
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On the other hand, by (2.7)∫
Γ2

σν · (v − u)dγ ≥
∫

Γ2

ϕ(θ,u)dγ −
∫

Γ2

ϕ(θ,v)dγ.

Then (3.1) holds. Now, to prove the variational equation (3.2) we proceed
as follows. Applying Green’s formula and (2.4), (2.8) and (2.14), after a simple
calculation we get

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

= (σ · ε(u), τ) +
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω).

(3.4)

By definition of σ, using (2.2) and (2.3), we can infer

(σ · ε(u), τ) =
∫

Ω

µ(θ) |ε(u)|p τdx.

According to (3.3), we eventually obtain (3.2). �

Remark 3.2. In (3.2), the first and second terms on the right-hand side make
sense since τ ∈W 1,q′(Ω) ↪→ C0(Ω) for q′ > n, that is, q <

n

n− 1
.

Lemma 3.1 leads us to consider the following variational system.

Problem 2. For prescribed data f ∈ V ′ and g ∈W−
1
p ,p
′
(Γ)n. Find u ∈ V and

θ ∈W 1,q(Ω), satisfying the variational system∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(θ,v)− φ(θ,u)

≥ f̃(v − u) ∀v ∈ V,
(3.5)

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

F (θ,u)τdx+
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω).

(3.6)

Now, we consider the weak nonlocal formulation to the mechanical problem
(2.1)–(2.3) and (2.5)–(2.7) corresponding formally to the limit model k = ∞
(modelling the flow of a Norton-Hoff fluid with temperature dependent nonlocal
viscosity and subdifferential friction).
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Problem 3. For prescribed data f ∈ V ′ and g ∈ W−
1
p ,p
′
(Γ)n, find u ∈ V and

Θ ∈ R+ satisfying the variational inequality

µ(Θ)
∫

Ω

|ε(u)|p−2
ε(u) · (ε(v)− ε(u))dx

+ υ1(Θ)
∫

Γ2

(ψ1(v)− ψ1(u))dγ + υ2(Θ)
∫

Γ2

(ψ2(v)− ψ2(u))dγ

≥ f̃(v − u) ∀v ∈ V,

(3.7)

where Θ is a solution to the implicit scalar equation

(αmeas(Ω) + βmeas(Γ2))Θ

= µ(Θ)
∫

Ω

|ε(u)|p dx+ ω1υ1(Θ)
∫

Γ2

ψ1(u)dγ + ω2υ2(Θ)
∫

Γ2

ψ2(u)dγ.
(3.8)

4. Existence Results

In this section we establish two existence theorems to the Problems 2 and 3.

Theorem 4.1. The Problem 2 has a solution (u, θ) satisfying

u ∈ V,(4.1)

θ ∈W 1,q(Ω).(4.2)

Theorem 4.2. There exists (u,Θ) ∈ V ×R+, a solution to the nonlocal Prob-
lem 3, which can be obtained as a limit of solutions (uk, θk) of Problem 2 in
V ×W 1,q(Ω) as k −→∞.

The proof of Theorem 4.1 is based on the application of the Kakutani-Glicksberg
fixed point theorem for multivalued mappings using two auxiliary existence results.
The first one results from the classical theory for inequalities with a monotone
operator. The second one results from the elliptic equations theory and L1-Data
theory. Finally, compactness arguments are used to conclude the proofs. For
reader’s convenience, let us recall the fixed point theorem (see [14]).

Theorem 4.3 (Kakutani-Glicksberg). Let X be a locally convex Hausdorff
topological vector space and K be a nonempty, convex, and compact subset of X.
If L : K−→P (K) is an upper semicontinuous mapping and L(z) 6= ∅ is a convex
and closed subset in K for every z ∈ K, then there exists at least one fixed point,
z ∈ L(z).

The first auxiliary existence result is given by the next proposition.

Proposition 4.4. For every λ ∈ W 1,1(Ω), there exists a unique solution
u = u(λ) ∈ V to the problem∫

Ω

(µ(λ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(λ,v)− φ(λ,u)

≥ f̃(v − u) ∀v ∈ V,
(4.3)
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and it satisfies the estimate

‖u‖V ≤ c

‖f‖V ′ + ‖g‖
W
− 1
p
,p′

(Γ)n

µ1


1
p−1

.(4.4)

Proof of Proposition 4.4. Introducing the following functional

J : Lp(Ω)n×ns ⊂ Sn −→ R, σ 7−→ J(σ) =
∫

Ω

µ

p
|σ|p dx.

The functional is convex, lower semi-continuous on Lp(Ω)n×ns and Gâteaux
differentiable. Its Gâteaux derivate at any point σ is

(DJ(σ), η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns
=
∫

Ω

µ |σ|p−2
σ · ηdx ∀η ∈ Lp(Ω)n×ns .

Consequently, DJ is hemi-continuous and monotone. Moreover, DJ is strictly
monotone and bounded, and we have

(DJ(σ)−DJ(η), σ − η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns

≥
∫

Ω

µ(|σ| − |η|)(|σ|p−1 − |η|p−1)dx.

Then if σ 6= η, we find (DJ(σ)−DJ(η), σ−η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns
> 0. It means

that DJ is strictly monotone. On the other hand, for every σ ∈ Lp(Ω)n×ns ,∫
Ω

∣∣∣µ |σ|p−2
σ
∣∣∣p′ dx ≤ µp′2 ∫

Ω

|σ|p dx,

which proves that DJ is bounded on Lp
′
(Ω)n×ns .

Now, we consider the following differential operator{
A : V −→ V ′, u 7−→ Au
(Au,v)V ′×V = (DJ(ε(u)), ε(v))Lp′ (Ω)n×ns ×Lp(Ω)n×ns

∀v ∈V.(4.5)

We deduce that A is hemi-continuous, strictly monotone and bounded on V.
Therefore, for every u ∈ V , we have

(Au,u)V ′×V
‖u‖V

≥ µ1

∫
Ω
|ε(u)|p dx
‖u‖V

.

Applying the generalized Korn inequality, we find

(Au,u)V ′×V
‖u‖V

≥ µ1 ‖u‖p−1
V .

It follows that the operator A is coercive on V.
Furthermore, the function ψi (i = 1, 2) is measurable, positive, convex and

continuous on V . It follows that φ is positive, proper, convex and lower semi-
continuous on V . Consequently, the existence and uniqueness of the solution result
from the classical theorems (see [9]) on variational inequalities with monotone
operators and convex functionals.
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To prove the estimate (4.4) we proceed as follows, by choosing v = 0 as test
function in (4.3) and using (2.12), we obtain∫

Ω

µ(λ) |ε(u)|p dx ≤ ‖f‖V ′ ‖u‖V + ‖g‖
W
− 1
p
,p′

(Γ)n
‖u‖

W
1− 1

p
,p

(Γ)n
.

Hence, Korn’s inequality combined with the Sobolev trace inequality allow us
to conclude that (4.4) holds true. �

The second auxiliary existence result is given by the next proposition.

Proposition 4.5. Let u = u(λ) be the solution of problem (4.3) given by
Proposition 4.4. Then there exists θ = θ(u, λ) ∈ W 1,q(Ω), 1 < q <

n

n− 1
, a

solution to the problem

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

µ(λ) |ε(u)|p τdx+
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω),

(4.6)

and it satisfies the estimate

‖θ‖Lq(Ω) + β ‖θ‖Lq(Γ) +
√
k ‖∇θ‖Lq(Ω)n

≤ F(υ0, µ1, c, ‖f‖V ′ , ‖g‖W− 1
p
,p′

(Γ)n
),

(4.7)

where F is a positive function.

Proof of Proposition 4.5. Technically, it is difficult to obtain a solution of such
a problem. To end this we introduce the following approximate problem

k

∫
Ω

∇θm · ∇τdx+ α

∫
Ω

θmτdx+ β

∫
Γ2

θmτdγ

=
∫

Ω

Fmτdx+
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ

∀τ ∈ H1(Ω),

(4.8)

where m ∈ N and

Fm =
mµ(λ) |ε(u)|p

m+ µ(λ) |ε(u)|p
∈ L∞(Ω).(4.9)

By the Hölder inequality, it hods∣∣∣∣∫
Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ
∣∣∣∣

≤ υ0(‖ψ1(u)‖L2(Γ2) + ‖ψ2(u)‖L2(Γ2)) ‖τ‖L2(Γ2) .
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By virtue of (2.12), using the Sobolev trace inequality and the estimate (4.4), we
find ∣∣∣∣∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ
∣∣∣∣ ≤ c ‖τ‖H1(Ω) .

Consequently, from the Lax-Milgram theorem, there exists a unique solution
θm ∈ H1(Ω) to the problem (4.8).

Now, we test the approximate equation (4.8) with the function

τ = sign(θm)
[
1− 1

(1 + |θm|)ξ

]
∈ H1(Ω) ∩ L∞(Ω), ξ > 0.(4.10)

By using integration by parts (see for instance [10]), we find

ξk

∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx+ βC(ξ)

∫
Γ2

|θm|dγ ≤M,(4.11)

where M = M

(
υ0, µ1,c, ‖f‖V ′ , ‖g‖W− 1

p
,p′

(Ω)n

)
is a positive function.

Particularly ∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx ≤ M

ξk
.(4.12)

The function γ is denoted

γ(r) =

r∫
0

dt

(1 + |t|) ξ+1
2

.

Then

∇γ(θm) =
∇θm

(1 + |θm|)
ξ+1
2

.

We deduce from (4.12) that ∇γ(θm) is bounded in L2(Ω), hence γ(θm) is bounded
in H1(Ω). Sobolev’s imbedding asserts that H1(Ω) ⊂ L

2n
n−2 (Ω).

Keeping in mind that γ(r) ∼ r
1−ξ
2 as r −→ +∞. Then |θm|

1−ξ
2 is bounded in

L
2n
n−2 (Ω). Consequently

|θm|
n(1−ξ)
n−2 is bounded in L1(Ω).(4.13)

Moreover, by Hölder’s inequality, we get∫
Ω

|∇θm|q dx ≤

(∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx

) q
2 (∫

Ω

(1 + |θm|)
(ξ+1)q
2−q dx

) 2−q
2

.

Hence, from (4.12), we find∫
Ω

|∇θm|q dx ≤
(
M

kξ

) q
2
(∫

Ω

(1 + |θm|)
(ξ+1)q
2−q dx

) 2−q
2

.(4.14)
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Let us choose the couple (ξ, q) such that
n(1− ξ)
n− 2

=
(ξ + 1)q

2− q
. It means that

q =
n(1− ξ)
n− ξ − 1

. Then if 0 < ξ <
1

n− 1
, we find the condition 1 < q <

n

n− 1
.

Consequently, by using (4.13) and (4.14), the following estimate holds

θm is bounded in W 1,q(Ω).(4.15)

Combining with the estimate (4.11), we can extract a subsequence (θm)m satisfying

θm −→ θ in W 1,q(Ω) weakly,(4.16)

θm −→ θ in L2(Γ) weakly.(4.17)

Rellich-Kondrachof’s theorem affirms the compactness of the imbedding
W 1,q(Ω) −→ L1(Ω). It then follows that we can extract a subsequence of θm,
still denoted by θm, such that

θm −→ θ in L1(Ω) strongly,(4.18)

We recall that by the Sobolev theorem the trace of θm belongs to W 1− 1
p ,q(Γ). Via

the compactness of the imbedding W 1− 1
p ,q(Γ) −→ L1(Γ) (see [1]), after a new

extraction, still denoted by θm we can obtain,

θm −→ θ in L1(Γ) strongly.(4.19)

We conclude that the problem (4.6) admits a solution θ = θ(u, λ) ∈W 1,q(Ω).
Using (4.11), (4.13) and (4.14), the estimate (4.7) follows immediately. �

Proof of Theorem 4.1. In order to apply the Kakutani-Glicksberg fixed point
theorem, let us consider the closed convex ball

K =
{
λ ∈W 1,q(Ω) : ‖λ‖W 1,q(Ω) ≤ R1

}
,(4.20)

where R1 ≥
(
M

kξ

) q
2

. The ball K is compact when the topological vector space

is provided by the weak topology. Let us built the operator L : K −→ P (K) as
follows

λ 7−→ L(λ) = {θ} ⊂ K.

For all λ ∈ K, equation (4.6) is linear with respect to the solution θ, and the
solution u is unique in the space V . Consequently, the set L(λ) is convex. To
conclude the proof it remains to verify the closeness in K ×K of the graph set

G(L) = {(λ, θ) ∈ K ×K : θ ∈ L(λ)} .

To do so, we consider a sequence λn ∈ K such that λn −→ λ inW 1,q(Ω) weakly and
θn ∈ L(λn). Let us remember that θn is the solution to the following variational
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equation

k

∫
Ω

∇θn · ∇τdx+ α

∫
Ω

θnτdx+ β

∫
Γ2

θnτdγ

=
∫

Ω

µ(λn) |ε(un)|p τdx+
∫

Γ2

(ω1υ1(λn)ψ1(un) + ω2υ2(λn)ψ2(un))τdγ

∀τ ∈W 1,p′(Ω),

(4.21)

where un is the unique solution of the following variational inequality∫
Ω

(µ(λn) |ε(un)|p−2
ε(un)) · (ε(v)− ε(un))dx+ φ(λn,v)− φ(λn,un)

≥ f̃(v − un) ∀v ∈ V.
(4.22)

Then, from Propositions 4.4 and 4.5, we have

‖un‖V ≤ R2 and ‖θn‖W 1,q(Ω) ≤ R1,

where R2 ≥ c

‖f‖V ′ + ‖g‖
W
− 1
p
,p′

(Γ)n

µ1

 1
p−1

. Thus, we can extract subsequences

um and θm such that

um −→ u in V weakly,(4.23)

θm −→ θ in W 1,q(Ω) weakly.(4.24)

It follows from Rellich-Kondrachov’s theorem and Sobolev’s trace theorem that
we can extract subsequences of (λm,um, θm), still denoted by (λm,um, θm), such
that

λm −→ λ in L1(Ω) strongly,(4.25)

um −→ u in L1(Ω)n strongly,(4.26)

θm −→ θ in L1(Ω) strongly,(4.27)

um −→ u in L1(Γ)n strongly,(4.28)

θm −→ θ in L1(Γ) strongly.(4.29)

We prove now that ε(um) −→ ε(u) a.e. in Ω. To do so, we proceed as follows.
Introducing the positive function

hm(x) = {µ(λm(x)) |ε(um(x))|p−2
ε(um(x))

− µ(λm(x)) |ε(u(x))|p−2
ε(u(x))} · (ε(um(x))− ε(u(x))).

(4.30)
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We get∫
Ω

hm(x)dx =
∫

Ω

µ (λm (x)) |ε (um (x))|p−2
ε (um (x)) · (ε (um (x))− ε (u (x))) dx

−
∫

Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x)))dx

≤ f̃(um − u) + φ(λm,u)− φ(λm,um)

−
∫

Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x)))dx.

(4.31)

On the other hand, we have

φ(λm,um) =
∫

Γ2

(ω1υ1(λm(x))− ω1υ1(λ(x)))ψ1(um(x))dγ

+
∫

Γ2

(ω2υ2(λm(x))− ω2υ2(λ(x)))ψ2(um(x))dγ

+
∫

Γ2

ω2υ2(λ(x))ψ1(um(x))dγ +
∫

Γ2

ω1υ1(λ(x))ψ2(um(x))dγ.

Since λm −→ λ a.e. in Ω and on Γ, the function υi is continuous and due to the
weak lower semicontinuity of the continuous and convex function ψi (i = 1, 2),
combined with the hypothesis (2.12) and the convergence result (4.23), we deduce
from the Lebesgue dominated convergence theorem that

lim inf φ(λm,um) ≥ φ(λ,u),(4.32)

limφ(λm,u) = φ(λ,u).(4.33)

Moreover, since λm −→ λ a.e. in Ω and on Γ, the function µ is continuous and
due to (4.23) and the fact that |ε(u(x))|p−2

ε(u(x)) is bounded in Lp
′
(Ω)n×ns , we

obtain by the Lebesgue dominated convergence theorem that∫
Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x))(ε(um(x))− ε(u(x)))dx −→ 0.(4.34)

Consequently, (4.31), (4.32), (4.33) and (4.34) give

lim ‖hm‖L1(Ω) = 0 and hm −→ 0 a.e.(4.35)

Furthermore, hm(x) can be rewritten as follows

hm(x) = µ(λm(x)) |ε(um(x))|p − µ(λm(x)) |ε(um(x))|p−2
ε(um(x)) · ε(u(x))

− µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x))).(4.36)

Then
µ(λm(x)) |ε(um(x))|p ≤ hm(x) + cµ(λm(x)) |ε(um(x))|p−1

+ cµ(λm(x)) |ε(um(x))|+ c.

It follows that (ε(um(x)))m is bounded in Rn×n. Then we can extract a subse-
quence, still denoted by (ε(um(x)))m, that converges to ξ ∈ Rn×n. By passage to
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the limit in hm, we deduce that

(µ(λ) |ξ|p−2
ξ − µ(λ) |ε(u(x))|p−2

ε(u(x))) · (ξ − ε(u(x))) = 0,

which implies that ε(u(x)) = ξ. We conclude that

ε(um) −→ ε(u) a.e. in Ω.(4.37)

Thus, the sequence (µ(λm(x)) |ε(um(x))|p−2
ε(um(x)))m converges a.e. in Ω to

µ(λ(x)) |ε(u(x))|p−2
ε(u(x)). Moreover, this sequence is bounded in Lp

′
(Ω)n×ns ,

then the Lp−Lq compactness theorem (see [11] or [13]) entrains the convergence
in Lr(Ω)n×ns for all 1 < r < p′.

By choosing ϕ ∈ D(Ω)n as test function in inequality (4.22), we obtain∫
Ω

(µ(λ) |ε(u)|p−2
ε(u)) · ε(ϕ)dx+ φ(λ, ϕ)− f̃(ϕ− u)

≥
∫

Ω

µ(λm) |ε(um)|p dx+ φ(λm,um).
(4.38)

Using now (4.32), the fact that λm −→ λ a.e. in Ω, the continuity of µ and
the weak lower semicontinuity of the norm ‖.‖W 1,p(Ω)n . We conclude that u is a
solution to the problem (4.3).

Our final goal is to show that

um −→ u in V strongly.(4.39)

To do so, we proceed as follows. We introduce the function

χm(x) = µ(λm(x)) |ε(um(x))|p .(4.40)

From (4.37), we remark that χm −→ χ a.e. in Ω, where

χ(x) = µ(λ(x)) |ε(u(x))|p .(4.41)

Substituting it in the inequality (4.22), taking v = u as test function and using
Lebesgue’s dominated convergence theorem, the passage to limit, gives

lim
∫

Ω

χm(x)dx ≤
∫

Ω

χ(x)dx.(4.42)

On the other hand, we know from the weak lower semicontinuity of the norm
‖·‖W 1,p(Ω)n that

lim inf
∫

Ω

χm(x)dx ≥
∫

Ω

χ(x)dx.(4.43)

(4.42) and (4.43) combined with the Lebesgue dominated convergence theorem
lead to

lim
∫

Ω

|ε(um(x))|p dx =
∫

Ω

|ε(u(x))|p dx.(4.44)

The use of (4.37) and (4.44) combined with Vitali’s theorem affirms that
(|ε(um(x))|p)m is L1-equi-integrable which asserts that (|ε(um(x))|)m is Lp-equi-
integrable. Vitali’s theorem and the convergence result (4.37) prove that

ε(um) −→ ε(u) in Lp(Ω)n×ns strongly.(4.45)
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Using Korn’s inequality, we obtain (4.39), which shows that∫
Ω

µ(λm) |ε(um)|p τdx −→
∫

Ω

µ(λ) |ε(u)|p τdx.(4.46)

Furthermore, the continuity of ψi (i = 1, 2) on V leads to ψi(um) −→ ψi(u). Then
the use of the continuity of υi (i = 1, 2) and the Lebesgue dominated convergence
theorem gives ∫

Γ2

(ω1υ1(λm)ψ1(um) + ω2υ2(λm)ψ2(um))τdγ

−→
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ.
(4.47)

Thus, we conclude that θ is the solution to the problem (4.21).
Hence, θn −→ θ ∈ L(λ) in W 1,q(Ω) weakly. By virtue of Kakutani-Glicksberg’s

fixed point theorem, the application admits a fixed point θ ∈ L(θ). Finally, (u, θ)
solves the Problem 2. �

Remark 4.6. This proof permits also to verify the continuous dependence of
the solution u(λ) ∈ V of problem (4.3) and the solution θ(λ) ∈W 1,q(Ω) of problem
(4.6) with respect to the arbitrary function λ ∈W 1,1(Ω).

Proof of Theorem 4.2. Let (uk, θk) be a solution to the Problem 2, correspond-
ing to each k > 0 and let k −→ +∞. From the estimates (4.4), (4.7) and using
Rellich-Kondrachov’s theorem, we can extract a subsequence of (uk, θk), still de-
noted by (uk, θk), satisfying

uk −→ u in V weakly,

uk −→ u in L1(Ω)n strongly,

∇θk −→ 0 in L1(Ω)n strongly,

θk −→ Θ = constant in L1(Ω) strongly.

We can proceed as in the proof of Theorem 4.1 to get a strong convergence of
uk to u in V. Then, we can pass to the limit k −→ +∞ in (3.6) and take τ = 1
to obtain the implicit scalar equation (3.8). Now, taking the limit k −→ +∞ in
(3.5), it follows that u solves the nonlocal inequality (3.7).

Moreover, the scalar equation (3.8) asserts that Θ ≥ 0. �

5. Examples of Subdifferential Contact Condition

In this section we present some examples of contact and dry friction laws which
lead to an inequality of the form (2.7), (see, e.g., [3], [4], [5], [18], [22], [25]
and [26]). We conclude by Theorem 4.1, the boundary value problem for each of
the following examples has a solution and by Theorem 4.2, the nonlocal problem
admits a solution.
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Example 5.1 (Bilateral contact with thermal Tresca’s friction law). It is in the
form of the following boundary conditions: uν = 0, |στ | ≤ υ1(θ),

|στ | < υ1(θ) =⇒ uτ = 0, on Γ2.
|στ | = υ1(θ) =⇒ uτ = −λστ , λ ≥ 0.

(5.1)

Here λ represents the friction bound, i.e. the magnitude of the limiting friction
at which slip occurs. The contact is assumed to be bilateral, i.e. there is no
loss of contact during the process. We suppose that the function υ1 verifies the
hypothesis (2.11).

It is straightforward to show that if {u, σ, θ} are regular functions satisfying
(5.1), then

σν · (v − u) ≥ υ1(θ) |uτ | − υ1(θ) |vτ | ∀v ∈ V, ∀θ ∈W 1,q(Ω) a.e on Γ2.

So, (2.7) holds with the choice

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,

where ψ1(x,y) = |yτ (x)|. We obtain

φ(θ,v) =
∫

Γ2

υ1(θ, x)ψ1(x,v)dγ ∀v ∈ V, ∀θ ∈W 1,q(Ω).

In addition, we have

‖ψ1(v)‖L2(Γ2) ≤ C ‖v‖L2(Γ2) ∀v ∈ V.

Then, ψ verifies the assertion (2.12) with the choice ω1 = 1.

Example 5.2 (Bilateral contact with thermal viscoelastic friction condition).
We consider the following boundary conditions

uν = 0, στ = −υ1(θ) |uτ |a−1 uτ on Γ2,(5.2)

where 0 < a ≤ 1 and υ1(θ) is the coefficient of friction. Here, the tangential shear
is proportional to the power a of the tangential speed. In addition, we suppose
that the function υ1 verifies the hypothesis (2.11). It is straightforward to show
that if {u, σ,θ} are regular functions satisfying (5.2), then (2.7) holds with

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,

where, ψ1(x,y) =
1

a+ 1
|yτ (x)|a+1. We deduce that

φ(θ,v) =
∫

Γ2

υ1(θ, x)ψ1(x,v)dγ ∀v ∈ V, ∀θ ∈W 1,q(Ω).

In addition, we have

‖ψ1(v)‖La(Γ2) ≤ C ‖v‖
a+1
L2(a+1)(Γ2) ∀v ∈ V.

Then, ψ1 verifies the assertion (2.12) with the choice ω1 = a+ 1.
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Example 5.3 (Viscoelastic contact with thermal Tresca’s friction law). We
consider the contact problem with the boundary conditions: σν = −υ2(θ) |uν |b−1

uν , |στ | ≤ υ1(θ),
|στ | < υ1(θ) =⇒ uτ = 0, on Γ2.
|στ | = υ1(θ) =⇒ uτ = −λστ , λ ≥ 0,

(5.3)

Here 0 < b ≤ 1, the normal contact stress depends on a power of the normal
speed (this condition may describe, for example, the motion of a fluid, a wheel
on a granular material, the sand on the beach). In addition, we suppose that the
function υi (i = 1, 2) verify the hypothesis (2.11).

We can easily verifies that

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) + υ2(θ, x)ψ2(x,y), ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,

where

ψ1(x,y) = |yτ (x)| , ψ2(x,y) =
1

b+ 1
|yν(x)|b+1

,

ω1 = 1 and ω2 = b+ 1.

Example 5.4 (Viscoelastic contact with thermal friction). We consider the
contact problem with the boundary conditions:

στ = −υ1(θ) |uτ |a−1 uτ , σν = −υ2(θ) |uν |b−1
uν on Γ2,(5.4)

where 0 < a, b ≤ 1. Here, the fluid is moving on sand or a granular material
and the normal stress is proportional to a power of the normal speed while the
tangential shear is proportional to a power of the tangential speed. In addition,
we suppose that the function υi, (i = 1, 2) verifies the hypothesis (2.11).

We prove that

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) + υ2(θ, x)ψ2(x,y), ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,

where

ψ1(x,y) =
1

a+ 1
|yτ (x)|a+1

, ψ2(x,y) =
1

b+ 1
|yν(x)|b+1

,

ω1 = a+ 1 and ω2 = b+ 1.

Remark 5.5. In these different examples, we can easily verify that

−σν · u = ω1υ1(θ, x)ψ1(x,y) + ω2υ2(θ, x)ψ2(x,y),

which permits to give reason to hypothesis (2.14).
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