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ANALYSIS OF A CLASS OF THERMAL FRICTIONAL CONTACT PROBLEM
FOR THE NORTON-HOFF FLUID

F. MESSELMI

Abstract. We consider a mathematical model which describes the static flow of a Norton-Hoff fluid

whose viscosity depends on the temperature, and with mixed boundary conditions, including friction.
The latter is modelled by a general velocity dependent dissipation functional and the temperature. We
derive a weak formulation of the coupled system of the equation of motion and the energy equation,
consisting of a variational inequality for the velocity field. We prove the existence of a weak solution
of the model using compactness, monotonicity, L1-Data theory and a fixed point argument. In the
asymptotic limit case of a high thermal conductivity, the temperature becomes a constant solving an
implicit total energy equation involving the viscosity function and the subdifferential friction. Finally,
we describe a number of concrete thermal friction conditions.

1. Introduction

The model of Norton-Hoff fluid has been used in various publications in order to model the flow
of metals and viscoplastic solids. The literature concerning this topic is extensive, see, e.g., [2],
[27] and references therein. An intrinsic inclusion leads in a natural way to variational equations
which justify the study of problems involving the incompressible viscoplastic Norton-Hoff fluid
using arguments of the variational analysis.
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In this paper we consider a mathematical model which describes the static flow of Norton-
Hoff fluid whose viscosity depends on the temperature. Such problem can describe the flow of
metals in a die as well as the transfer heat in the non-Newtonian Norton-Hoff fluid. The flow is
governed by the coupled system of motion equation and energy conservation equation. Moreover,
we assume that the contact is modeled with a subdifferential boundary condition depending on
the temperature in the form

ϕ (θ,v)− ϕ (θ,u) ≥ −σν · (v − u) ,(1.1)

where u represents the velocity field, θ the temperature, ν the unit outward normal vector, σν
the Cauchy stress vector and ϕ is a given convex function. The inequality in (1.1) holds almost
everywhere on the contact zone. Examples and detailed explanations of inequality problems in
contact mechanics which lead to boundary conditions in the form (1.1), without taking into account
thermal effects, can be found in [3], [18], [12], [24], [25], [26] and references therein. The new
feature in the model is due to the choice of particular forms of the function ϕ, which can be written
as the sum of two contact functions, corresponding to the normal and tangential components of
the Cauchy stress vector. Furthermore, to describe the energy dissipation due to the contact, we
use a Fourier type boundary condition depending on the contact function ϕ.

The differential coupled system containing the dissipative function leads us to prove the existence
of a solution of an elliptic equation with L1-Data. Our main idea in this context is to adapt the
Kakutani-Glicksberg fixed point theorem and use the L1-Data theory.

The paper is organized as follows. In Section 2 we present the mechanical problem of the thermal
flow of a Norton-Hoff fluid and introduce some notations and preliminaries. In Section 3 we derive
the variational formulation of the problem. In Section 4 we prove the existence of solutions as
well as an existence result of the nonlocal Norton-Hoff problem, which can be obtained as an
asymptotic limit case of a very large thermal conductivity. In Section 5 we describe a number of
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concrete thermal frictional conditions which may be cast in the abstract form (1.1) and to which
our main results apply.

2. Problem Statement

We consider a mathematical problem modelling the static flow of a Norton-Hoff fluid in a bounded
domain Ω ⊂ Rn (n = 2, 3) with the boundary Γ of class C1, partitioned into three disjoint
measurable parts Γ0, Γ1 and Γ2 such that meas (Γ0) > 0. The fluid is supposed to be incompressible
and the viscosity depends on the temperature. The fluid is acted upon by given volume forces of
density f and by given surface tractions of density g. In addition, we admit a possible external
heat source proportional to the temperature. On Γ0 we suppose that the velocity is known.
The temperature is given by a Neumann boundary condition on Γ0 ∪ Γ1. We impose on Γ2 a
frictional contact described by a subdifferential type boundary condition which also depends on
the temperature as well as a Fourier boundary condition.

We denote by Sn the space of symmetric tensors on Rn. We define the inner product and the
Euclidean norm on Rn and Sn, respectively, by

u · v = uivi ∀u, v ∈ Rn and σ · τ = σijτij ∀σ, τ ∈ Sn.

|u| = (u · u)
1
2 ∀u ∈ Rn and |σ| = (σ · σ)

1
2 ∀σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation convention over repeated
indices is used.

Let 1 < p < 2. We consider the rate of deformation operator by

ε(u) = (εij(u))1≤i,j≤n, εij(u) =
1
2

(ui,j + uj,i).
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defined for all u ∈ W 1,p (Ω)n. We denote by ν the unit outward normal vector on the boundary
Γ. For each vector field v ∈ W 1,p(Ω)n, we also write v for its trace on Γ. The normal and the
tangential components of v on the boundary are given by

vν = v · ν, vτ = v − vνν.
Similarly, for a regular tensor field σ, we denote by σν and στ the normal and tangential

components of σ on the boundary given by

σν = σν · ν, στ = σν − σνν.
We consider the following mechanical coupled problem.

Problem 1. Find a velocity field u = (ui)1≤i≤n : Ω −→ Rn, stress field σ = (σij)1≤i,j≤n :
Ω −→ Sn and a temperature θ : Ω −→ R such that

Div(σ) + f = 0 in Ω(2.1)

σ = µ(θ) |ε(u)|p−2
ε(u) + Pδ in Ω(2.2)

div(u) = 0 in Ω(2.3)

− k∆θ = σ · ε(u)− αθ in Ω(2.4)

u = 0 on Γ0(2.5)

σν = g on Γ1(2.6)

ϕ(θ,v)− ϕ(θ,u) ≥ −σν · (v − u) on Γ2(2.7)
∂θ

∂ν
= 0 on Γ0 ∪ Γ1(2.8)

k
∂θ

∂ν
+ βθ = −σν · u on Γ2(2.9)



JJ J I II

Go back

Full Screen

Close

Quit

where Div(σ) = (σij,j) and div(u) = ui,i. The flow is given by the equation (2.1) where the
density is assumed equal to one. Equation (2.2) represents the constitutive law of a Norton-
Hoff fluid whose viscosity µ depends on the temperature, P represents the hydrostatic pressure,
1 < p < 2 is the sensibility coefficient of the material to the rate of the deformation tensor and δ is
the identity tensor. (2.3) represents the incompressibility condition. Equation (2.4) represents the
energy conservation where the specific heat is assumed to be equal to one, k > 0 is the thermal
conductivity and the term αθ represents the external heat source with α > 0. (2.5) gives the
velocity on Γ0 and (2.6) is the surface traction on Γ1. Condition (2.7) represents a subdifferential
boundary condition on Γ2 and ϕ : R × Γ2 × Rn −→ R is a measurable convex function. (2.8)
is a homogeneous Neumann boundary condition on Γ0 ∪ Γ1. Finally, (2.9) represents a Fourier
boundary condition on Γ2, where β ≥ 0 represents the Robin coefficient.

Remark 2.1.
1. The viscosity function can be given by the Arrhenius law

µ(θ) = µc exp
(

1
θ + θ0

)
,

where µc ∈ L∞(Ω) represents the consistency of the material and θ0 is a positive function.
2. The linear external heat source of the form αθ has been introduced to guarantee the ther-

modynamical consistence of the irreversible processes. Moreover, the use of such external
heat source in fluid mechanics permits to obtain non-local existence results.

We denote by V the set

V =
{
v ∈W 1,p(Ω)n : div(v) = 0 in Ω and v = 0 on Γ0

}
.

V is a Banach space equipped with the following norm

‖v‖V = ‖v‖W 1,p(Ω)n .



JJ J I II

Go back

Full Screen

Close

Quit

For the rest of this article, we will denote by c possibly different positive constants depending
only on the data of the problem.

Denote the conjugate of p, q, respectively, by p′, q′ where 1 < q < n
n−1 . We introduce the

following functionals

φ : W 1,1(Ω)× V −→ R ∪ {+∞},

φ(θ,v) =
{ ∫

Γ2
ϕ(θ,v)dγ if ϕ(θ,v) ∈ L1(Γ2),

+∞ otherwise,

f̃ : V −→ R,

f̃(v) =
∫

Ω

f · vdx+
∫

Γ1

g · vdγ

where dγ represents the surface element. We assume

∀x ∈ Ω, µ(., x) ∈ C0(R) : ∃µ1, µ2 > 0, µ1 ≤ µ(y, x) ≤ µ2

∀y ∈ R, ∀x ∈ Ω.
(2.10)

The function ϕ is the sum of two contact functions, corresponding to the normal and tangential
components of the stress tensor on the boundary, respectively.

ϕ(θ,v) = υ1(θ)ψ1(v) + υ2(θ)ψ2(v),

where

∀x ∈ Γ2, υi(., x) ∈ C0(R) : ∃υ0 > 0, 0 ≤ υi(y, x) ≤ υ0

∀y ∈ R, ∀x ∈ Γ2, i = 1, 2,
(2.11)



JJ J I II

Go back

Full Screen

Close

Quit

and the function ψi : Γ2×Rn −→ R (i = 1, 2) is measurable, positive, convex on Γ2 and continuous
on V and verifying the following hypothesis

∃ωi ∈ [1, 2] , ∃C > 0 : ‖ψi(v)‖L2(Γ2) ≤ C ‖v‖ωiL2ωi (Γ2)n

∀v ∈ V, i = 1, 2.
(2.12)

We can easily prove that the Fourier boundary condition holds, using the subdifferential condi-
tion (2.7)

k
∂θ

∂ν
+ βθ ≥ ϕ(θ,u) on Γ2.(2.13)

Since the term σν · u in the Fourier boundary condition (2.9) represents the energy dissipated
due to the contact, we can suppose in this paper that the condition in the abstract (2.13) can be
written as sum of two dissipative contributions (see [7])

k
∂θ

∂ν
+ βθ = ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u) on Γ2,(2.14)

here, ω1, ω2 may be interpreted as the powers of the contact functions υ1(θ)ψ1(u), υ2(θ)ψ2(u),
respectively, (see examples in Section 5). Then, in the mechanical Problem 1 we can replace the
condition (2.9) by the Fourier condition (2.14).

3. Variational Formulation

The aim of this section is to derive a variational formulation to the Problem 1. To do so we need
the following lemma.
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Lemma 3.1. Assume that f ∈ V ′ and g ∈ W−
1
p ,p
′
(Γ)n. If {u, σ, θ} are regular functions

satisfying (2.1)–(2.9), then∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(θ,v)− φ(θ,u)

≥ f̃(v − u) ∀v ∈ V,
(3.1)

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

F (θ,u)τdx+
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω),

(3.2)

where

F (θ,u) = µ(θ) |ε(u)|p .(3.3)

Proof. Let us start by the proof of variational inequality (3.1). Let {u, σ, θ} be regular functions
satisfying (2.1)–(2.9) and let v ∈ V .

Using Green’s formula and (2.1), (2.2), (2.3), (2.5) and (2.6), we obtain∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx

=
∫

Ω

f · (v − u)dx+
∫

Γ1

g · (v − u)dγ +
∫

Γ2

σν · (v − u)dγ.
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On the other hand, by (2.7)∫
Γ2

σν · (v − u)dγ ≥
∫

Γ2

ϕ(θ,u)dγ −
∫

Γ2

ϕ(θ,v)dγ.

Then (3.1) holds. Now, to prove the variational equation (3.2) we proceed as follows. Applying
Green’s formula and (2.4), (2.8) and (2.14), after a simple calculation we get

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

= (σ · ε(u), τ) +
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω).

(3.4)

By definition of σ, using (2.2) and (2.3), we can infer

(σ · ε(u), τ) =
∫

Ω

µ(θ) |ε(u)|p τdx.

According to (3.3), we eventually obtain (3.2). �

Remark 3.2. In (3.2), the first and second terms on the right-hand side make sense since
τ ∈W 1,q′(Ω) ↪→ C0(Ω) for q′ > n, that is, q <

n

n− 1
.

Lemma 3.1 leads us to consider the following variational system.
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Problem 2. For prescribed data f ∈ V ′ and g ∈ W−
1
p ,p
′
(Γ)n. Find u ∈ V and θ ∈ W 1,q(Ω),

satisfying the variational system∫
Ω

(µ(θ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(θ,v)− φ(θ,u)

≥ f̃(v − u) ∀v ∈ V,
(3.5)

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

F (θ,u)τdx+
∫

Γ2

(ω1υ1(θ)ψ1(u) + ω2υ2(θ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω).

(3.6)

Now, we consider the weak nonlocal formulation to the mechanical problem (2.1)–(2.3) and
(2.5)–(2.7) corresponding formally to the limit model k =∞ (modelling the flow of a Norton-Hoff
fluid with temperature dependent nonlocal viscosity and subdifferential friction).

Problem 3. For prescribed data f ∈ V ′ and g ∈W−
1
p ,p
′
(Γ)n, find u ∈ V and Θ ∈ R+ satisfying

the variational inequality

µ(Θ)
∫

Ω

|ε(u)|p−2
ε(u) · (ε(v)− ε(u))dx

+ υ1(Θ)
∫

Γ2

(ψ1(v)− ψ1(u))dγ + υ2(Θ)
∫

Γ2

(ψ2(v)− ψ2(u))dγ

≥ f̃(v − u) ∀v ∈ V,

(3.7)
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where Θ is a solution to the implicit scalar equation
(αmeas(Ω) + βmeas(Γ2))Θ

= µ(Θ)
∫

Ω

|ε(u)|p dx+ ω1υ1(Θ)
∫

Γ2

ψ1(u)dγ + ω2υ2(Θ)
∫

Γ2

ψ2(u)dγ.
(3.8)

4. Existence Results

In this section we establish two existence theorems to the Problems 2 and 3.

Theorem 4.1. The Problem 2 has a solution (u, θ) satisfying

u ∈ V,(4.1)

θ ∈W 1,q(Ω).(4.2)

Theorem 4.2. There exists (u,Θ) ∈ V ×R+, a solution to the nonlocal Problem 3, which can
be obtained as a limit of solutions (uk, θk) of Problem 2 in V ×W 1,q(Ω) as k −→∞.

The proof of Theorem 4.1 is based on the application of the Kakutani-Glicksberg fixed point
theorem for multivalued mappings using two auxiliary existence results. The first one results from
the classical theory for inequalities with a monotone operator. The second one results from the
elliptic equations theory and L1-Data theory. Finally, compactness arguments are used to conclude
the proofs. For reader’s convenience, let us recall the fixed point theorem (see [14]).

Theorem 4.3 (Kakutani-Glicksberg). Let X be a locally convex Hausdorff topological vector
space and K be a nonempty, convex, and compact subset of X. If L : K −→ P (K) is an upper
semicontinuous mapping and L(z) 6= ∅ is a convex and closed subset in K for every z ∈ K, then
there exists at least one fixed point, z ∈ L(z).

The first auxiliary existence result is given by the next proposition.
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Proposition 4.4. For every λ ∈ W 1,1(Ω), there exists a unique solution u = u(λ) ∈ V to the
problem ∫

Ω

(µ(λ) |ε(u)|p−2
ε(u)) · (ε(v)− ε(u))dx+ φ(λ,v)− φ(λ,u)

≥ f̃(v − u) ∀v ∈ V,
(4.3)

and it satisfies the estimate

‖u‖V ≤ c

‖f‖V ′ + ‖g‖
W
− 1
p
,p′

(Γ)n

µ1


1
p−1

.(4.4)

Proof of Proposition 4.4. Introducing the following functional

J : Lp(Ω)n×ns ⊂ Sn −→ R, σ 7−→ J(σ) =
∫

Ω

µ

p
|σ|p dx.

The functional is convex, lower semi-continuous on Lp(Ω)n×ns and Gâteaux differentiable. Its
Gâteaux derivate at any point σ is

(DJ(σ), η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns
=
∫

Ω

µ |σ|p−2
σ · ηdx ∀η ∈ Lp(Ω)n×ns .

Consequently, DJ is hemi-continuous and monotone. Moreover, DJ is strictly monotone and
bounded, and we have

(DJ(σ)−DJ(η), σ − η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns

≥
∫

Ω

µ(|σ| − |η|)(|σ|p−1 − |η|p−1)dx.
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Then if σ 6= η, we find (DJ(σ) − DJ(η), σ − η)Lp′ (Ω)n×ns ×Lp(Ω)n×ns
> 0. It means that DJ is

strictly monotone. On the other hand, for every σ ∈ Lp(Ω)n×ns ,∫
Ω

∣∣∣µ |σ|p−2
σ
∣∣∣p′ dx ≤ µp′2 ∫

Ω

|σ|p dx,

which proves that DJ is bounded on Lp
′
(Ω)n×ns .

Now, we consider the following differential operator{
A : V −→ V ′, u 7−→ Au
(Au,v)V ′×V = (DJ(ε(u)), ε(v))Lp′ (Ω)n×ns ×Lp(Ω)n×ns

∀v ∈V.(4.5)

We deduce that A is hemi-continuous, strictly monotone and bounded on V.
Therefore, for every u ∈ V , we have

(Au,u)V ′×V
‖u‖V

≥ µ1

∫
Ω
|ε(u)|p dx
‖u‖V

.

Applying the generalized Korn inequality, we find

(Au,u)V ′×V
‖u‖V

≥ µ1 ‖u‖p−1
V .

It follows that the operator A is coercive on V.
Furthermore, the function ψi (i = 1, 2) is measurable, positive, convex and continuous on V .

It follows that φ is positive, proper, convex and lower semi-continuous on V . Consequently, the
existence and uniqueness of the solution result from the classical theorems (see [9]) on variational
inequalities with monotone operators and convex functionals.
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To prove the estimate (4.4) we proceed as follows, by choosing v = 0 as test function in (4.3)
and using (2.12), we obtain∫

Ω

µ(λ) |ε(u)|p dx ≤ ‖f‖V ′ ‖u‖V + ‖g‖
W
− 1
p
,p′

(Γ)n
‖u‖

W
1− 1

p
,p

(Γ)n
.

Hence, Korn’s inequality combined with the Sobolev trace inequality allow us to conclude that
(4.4) holds true. �

The second auxiliary existence result is given by the next proposition.

Proposition 4.5. Let u = u(λ) be the solution of problem (4.3) given by Proposition 4.4. Then
there exists θ = θ(u, λ) ∈W 1,q(Ω), 1 < q <

n

n− 1
, a solution to the problem

k

∫
Ω

∇θ · ∇τdx+ α

∫
Ω

θτdx+ β

∫
Γ2

θτdγ

=
∫

Ω

µ(λ) |ε(u)|p τdx+
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ

∀τ ∈W 1,q′(Ω),

(4.6)

and it satisfies the estimate

‖θ‖Lq(Ω) + β ‖θ‖Lq(Γ) +
√
k ‖∇θ‖Lq(Ω)n

≤ F(υ0, µ1, c, ‖f‖V ′ , ‖g‖W− 1
p
,p′

(Γ)n
),

(4.7)

where F is a positive function.
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Proof of Proposition 4.5. Technically, it is difficult to obtain a solution of such a problem. To
end this we introduce the following approximate problem

k

∫
Ω

∇θm · ∇τdx+ α

∫
Ω

θmτdx+ β

∫
Γ2

θmτdγ

=
∫

Ω

Fmτdx+
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ

∀τ ∈ H1(Ω),

(4.8)

where m ∈ N and

Fm =
mµ(λ) |ε(u)|p

m+ µ(λ) |ε(u)|p
∈ L∞(Ω).(4.9)

By the Hölder inequality, it hods∣∣∣∣∫
Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ
∣∣∣∣

≤ υ0(‖ψ1(u)‖L2(Γ2) + ‖ψ2(u)‖L2(Γ2)) ‖τ‖L2(Γ2) .

By virtue of (2.12), using the Sobolev trace inequality and the estimate (4.4), we find∣∣∣∣∫
Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ
∣∣∣∣ ≤ c ‖τ‖H1(Ω) .

Consequently, from the Lax-Milgram theorem, there exists a unique solution θm ∈ H1(Ω) to
the problem (4.8).
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Now, we test the approximate equation (4.8) with the function

τ = sign(θm)
[
1− 1

(1 + |θm|)ξ

]
∈ H1(Ω) ∩ L∞(Ω), ξ > 0.(4.10)

By using integration by parts (see for instance [10]), we find

ξk

∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx+ βC(ξ)

∫
Γ2

|θm|dγ ≤M,(4.11)

where M = M

(
υ0, µ1,c, ‖f‖V ′ , ‖g‖W− 1

p
,p′

(Ω)n

)
is a positive function.

Particularly ∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx ≤ M

ξk
.(4.12)

The function γ is denoted

γ(r) =

r∫
0

dt

(1 + |t|) ξ+1
2

.

Then

∇γ(θm) =
∇θm

(1 + |θm|)
ξ+1
2

.

We deduce from (4.12) that ∇γ(θm) is bounded in L2(Ω), hence γ(θm) is bounded in H1(Ω).
Sobolev’s imbedding asserts that H1(Ω) ⊂ L

2n
n−2 (Ω).
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Keeping in mind that γ(r) ∼ r
1−ξ
2 as r −→ +∞. Then |θm|

1−ξ
2 is bounded in L

2n
n−2 (Ω).

Consequently

|θm|
n(1−ξ)
n−2 is bounded in L1(Ω).(4.13)

Moreover, by Hölder’s inequality, we get∫
Ω

|∇θm|q dx ≤

(∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx

) q
2 (∫

Ω

(1 + |θm|)
(ξ+1)q
2−q dx

) 2−q
2

.

Hence, from (4.12), we find∫
Ω

|∇θm|q dx ≤
(
M

kξ

) q
2
(∫

Ω

(1 + |θm|)
(ξ+1)q
2−q dx

) 2−q
2

.(4.14)

Let us choose the couple (ξ, q) such that
n(1− ξ)
n− 2

=
(ξ + 1)q

2− q
. It means that q =

n(1− ξ)
n− ξ − 1

.

Then if 0 < ξ <
1

n− 1
, we find the condition 1 < q <

n

n− 1
.

Consequently, by using (4.13) and (4.14), the following estimate holds

θm is bounded in W 1,q(Ω).(4.15)

Combining with the estimate (4.11), we can extract a subsequence (θm)m satisfying

θm −→ θ in W 1,q(Ω) weakly,(4.16)

θm −→ θ in L2(Γ) weakly.(4.17)

Rellich-Kondrachof’s theorem affirms the compactness of the imbedding
W 1,q(Ω) −→ L1(Ω). It then follows that we can extract a subsequence of θm, still denoted by
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θm, such that

θm −→ θ in L1(Ω) strongly,(4.18)

We recall that by the Sobolev theorem the trace of θm belongs to W 1− 1
p ,q(Γ). Via the compactness

of the imbedding W 1− 1
p ,q(Γ) −→ L1(Γ) (see [1]), after a new extraction, still denoted by θm we

can obtain,

θm −→ θ in L1(Γ) strongly.(4.19)

We conclude that the problem (4.6) admits a solution θ = θ(u, λ) ∈W 1,q(Ω).
Using (4.11), (4.13) and (4.14), the estimate (4.7) follows immediately. �

Proof of Theorem 4.1. In order to apply the Kakutani-Glicksberg fixed point theorem, let us
consider the closed convex ball

K =
{
λ ∈W 1,q(Ω) : ‖λ‖W 1,q(Ω) ≤ R1

}
,(4.20)

where R1 ≥
(
M

kξ

) q
2

. The ball K is compact when the topological vector space is provided by the

weak topology. Let us built the operator L : K −→ P (K) as follows

λ 7−→ L(λ) = {θ} ⊂ K.

For all λ ∈ K, equation (4.6) is linear with respect to the solution θ, and the solution u is unique
in the space V . Consequently, the set L(λ) is convex. To conclude the proof it remains to verify
the closeness in K ×K of the graph set

G(L) = {(λ, θ) ∈ K ×K : θ ∈ L(λ)} .
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To do so, we consider a sequence λn ∈ K such that λn −→ λ in W 1,q(Ω) weakly and θn ∈ L(λn).
Let us remember that θn is the solution to the following variational equation

k

∫
Ω

∇θn · ∇τdx+ α

∫
Ω

θnτdx+ β

∫
Γ2

θnτdγ

=
∫

Ω

µ(λn) |ε(un)|p τdx+
∫

Γ2

(ω1υ1(λn)ψ1(un) + ω2υ2(λn)ψ2(un))τdγ

∀τ ∈W 1,p′(Ω),

(4.21)

where un is the unique solution of the following variational inequality∫
Ω

(µ(λn) |ε(un)|p−2
ε(un)) · (ε(v)− ε(un))dx+ φ(λn,v)− φ(λn,un)

≥ f̃(v − un) ∀v ∈ V.
(4.22)

Then, from Propositions 4.4 and 4.5, we have

‖un‖V ≤ R2 and ‖θn‖W 1,q(Ω) ≤ R1,

where R2 ≥ c

‖f‖V ′ + ‖g‖
W
− 1
p
,p′

(Γ)n

µ1

 1
p−1

. Thus, we can extract subsequences um and θm such

that

um −→ u in V weakly,(4.23)

θm −→ θ in W 1,q(Ω) weakly.(4.24)
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It follows from Rellich-Kondrachov’s theorem and Sobolev’s trace theorem that we can extract
subsequences of (λm,um, θm), still denoted by (λm,um, θm), such that

λm −→ λ in L1(Ω) strongly,(4.25)

um −→ u in L1(Ω)n strongly,(4.26)

θm −→ θ in L1(Ω) strongly,(4.27)

um −→ u in L1(Γ)n strongly,(4.28)

θm −→ θ in L1(Γ) strongly.(4.29)

We prove now that ε(um) −→ ε(u) a.e. in Ω. To do so, we proceed as follows. Introducing the
positive function

hm(x) = {µ(λm(x)) |ε(um(x))|p−2
ε(um(x))

− µ(λm(x)) |ε(u(x))|p−2
ε(u(x))} · (ε(um(x))− ε(u(x))).

(4.30)

We get∫
Ω

hm(x)dx =
∫

Ω

µ (λm (x)) |ε (um (x))|p−2
ε (um (x)) · (ε (um (x))− ε (u (x))) dx

−
∫

Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x)))dx

≤ f̃(um − u) + φ(λm,u)− φ(λm,um)

−
∫

Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x)))dx.

(4.31)
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On the other hand, we have

φ(λm,um) =
∫

Γ2

(ω1υ1(λm(x))− ω1υ1(λ(x)))ψ1(um(x))dγ

+
∫

Γ2

(ω2υ2(λm(x))− ω2υ2(λ(x)))ψ2(um(x))dγ

+
∫

Γ2

ω2υ2(λ(x))ψ1(um(x))dγ +
∫

Γ2

ω1υ1(λ(x))ψ2(um(x))dγ.

Since λm −→ λ a.e. in Ω and on Γ, the function υi is continuous and due to the weak lower
semicontinuity of the continuous and convex function ψi (i = 1, 2), combined with the hypothesis
(2.12) and the convergence result (4.23), we deduce from the Lebesgue dominated convergence
theorem that

lim inf φ(λm,um) ≥ φ(λ,u),(4.32)

limφ(λm,u) = φ(λ,u).(4.33)

Moreover, since λm −→ λ a.e. in Ω and on Γ, the function µ is continuous and due to (4.23) and
the fact that |ε(u(x))|p−2

ε(u(x)) is bounded in Lp
′
(Ω)n×ns , we obtain by the Lebesgue dominated

convergence theorem that∫
Ω

µ(λm(x)) |ε(u(x))|p−2
ε(u(x))(ε(um(x))− ε(u(x)))dx −→ 0.(4.34)

Consequently, (4.31), (4.32), (4.33) and (4.34) give

lim ‖hm‖L1(Ω) = 0 and hm −→ 0 a.e.(4.35)
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Furthermore, hm(x) can be rewritten as follows

hm(x) = µ(λm(x)) |ε(um(x))|p − µ(λm(x)) |ε(um(x))|p−2
ε(um(x)) · ε(u(x))

− µ(λm(x)) |ε(u(x))|p−2
ε(u(x)) · (ε(um(x))− ε(u(x))).(4.36)

Then
µ(λm(x)) |ε(um(x))|p ≤ hm(x) + cµ(λm(x)) |ε(um(x))|p−1

+ cµ(λm(x)) |ε(um(x))|+ c.

It follows that (ε(um(x)))m is bounded in Rn×n. Then we can extract a subsequence, still denoted
by (ε(um(x)))m, that converges to ξ ∈ Rn×n. By passage to the limit in hm, we deduce that

(µ(λ) |ξ|p−2
ξ − µ(λ) |ε(u(x))|p−2

ε(u(x))) · (ξ − ε(u(x))) = 0,

which implies that ε(u(x)) = ξ. We conclude that

ε(um) −→ ε(u) a.e. in Ω.(4.37)

Thus, the sequence (µ(λm(x)) |ε(um(x))|p−2
ε(um(x)))m converges a.e. in Ω to

µ(λ(x)) |ε(u(x))|p−2
ε(u(x)). Moreover, this sequence is bounded in Lp

′
(Ω)n×ns , then the Lp − Lq

compactness theorem (see [11] or [13]) entrains the convergence in Lr(Ω)n×ns for all 1 < r < p′.
By choosing ϕ ∈ D(Ω)n as test function in inequality (4.22), we obtain∫

Ω

(µ(λ) |ε(u)|p−2
ε(u)) · ε(ϕ)dx+ φ(λ, ϕ)− f̃(ϕ− u)

≥
∫

Ω

µ(λm) |ε(um)|p dx+ φ(λm,um).
(4.38)

Using now (4.32), the fact that λm −→ λ a.e. in Ω, the continuity of µ and the weak lower
semicontinuity of the norm ‖.‖W 1,p(Ω)n . We conclude that u is a solution to the problem (4.3).
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Our final goal is to show that

um −→ u in V strongly.(4.39)

To do so, we proceed as follows. We introduce the function

χm(x) = µ(λm(x)) |ε(um(x))|p .(4.40)

From (4.37), we remark that χm −→ χ a.e. in Ω, where

χ(x) = µ(λ(x)) |ε(u(x))|p .(4.41)

Substituting it in the inequality (4.22), taking v = u as test function and using Lebesgue’s domi-
nated convergence theorem, the passage to limit, gives

lim
∫

Ω

χm(x)dx ≤
∫

Ω

χ(x)dx.(4.42)

On the other hand, we know from the weak lower semicontinuity of the norm ‖·‖W 1,p(Ω)n that

lim inf
∫

Ω

χm(x)dx ≥
∫

Ω

χ(x)dx.(4.43)

(4.42) and (4.43) combined with the Lebesgue dominated convergence theorem lead to

lim
∫

Ω

|ε(um(x))|p dx =
∫

Ω

|ε(u(x))|p dx.(4.44)

The use of (4.37) and (4.44) combined with Vitali’s theorem affirms that (|ε(um(x))|p)m is
L1-equi-integrable which asserts that (|ε(um(x))|)m is Lp-equi-integrable. Vitali’s theorem and
the convergence result (4.37) prove that

ε(um) −→ ε(u) in Lp(Ω)n×ns strongly.(4.45)
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Using Korn’s inequality, we obtain (4.39), which shows that∫
Ω

µ(λm) |ε(um)|p τdx −→
∫

Ω

µ(λ) |ε(u)|p τdx.(4.46)

Furthermore, the continuity of ψi (i = 1, 2) on V leads to ψi(um) −→ ψi(u). Then the use of the
continuity of υi (i = 1, 2) and the Lebesgue dominated convergence theorem gives∫

Γ2

(ω1υ1(λm)ψ1(um) + ω2υ2(λm)ψ2(um))τdγ

−→
∫

Γ2

(ω1υ1(λ)ψ1(u) + ω2υ2(λ)ψ2(u))τdγ.
(4.47)

Thus, we conclude that θ is the solution to the problem (4.21).
Hence, θn −→ θ ∈ L(λ) in W 1,q(Ω) weakly. By virtue of Kakutani-Glicksberg’s fixed point

theorem, the application admits a fixed point θ ∈ L(θ). Finally, (u, θ) solves the Problem 2. �

Remark 4.6. This proof permits also to verify the continuous dependence of the solution
u(λ) ∈ V of problem (4.3) and the solution θ(λ) ∈ W 1,q(Ω) of problem (4.6) with respect to the
arbitrary function λ ∈W 1,1(Ω).

Proof of Theorem 4.2. Let (uk, θk) be a solution to the Problem 2, corresponding to each k > 0
and let k −→ +∞. From the estimates (4.4), (4.7) and using Rellich-Kondrachov’s theorem, we
can extract a subsequence of (uk, θk), still denoted by (uk, θk), satisfying

uk −→ u in V weakly,

uk −→ u in L1(Ω)n strongly,

∇θk −→ 0 in L1(Ω)n strongly,

θk −→ Θ = constant in L1(Ω) strongly.
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We can proceed as in the proof of Theorem 4.1 to get a strong convergence of uk to u in V.
Then, we can pass to the limit k −→ +∞ in (3.6) and take τ = 1 to obtain the implicit scalar
equation (3.8). Now, taking the limit k −→ +∞ in (3.5), it follows that u solves the nonlocal
inequality (3.7).

Moreover, the scalar equation (3.8) asserts that Θ ≥ 0. �

5. Examples of Subdifferential Contact Condition

In this section we present some examples of contact and dry friction laws which lead to an inequality
of the form (2.7), (see, e.g., [3], [4], [5], [18], [22], [25] and [26]). We conclude by Theorem 4.1,
the boundary value problem for each of the following examples has a solution and by Theorem 4.2,
the nonlocal problem admits a solution.

Example 5.1 (Bilateral contact with thermal Tresca’s friction law). It is in the form of the
following boundary conditions: uν = 0, |στ | ≤ υ1(θ),

|στ | < υ1(θ) =⇒ uτ = 0, on Γ2.
|στ | = υ1(θ) =⇒ uτ = −λστ , λ ≥ 0.

(5.1)

Here λ represents the friction bound, i.e. the magnitude of the limiting friction at which slip
occurs. The contact is assumed to be bilateral, i.e. there is no loss of contact during the process.
We suppose that the function υ1 verifies the hypothesis (2.11).

It is straightforward to show that if {u, σ, θ} are regular functions satisfying (5.1), then

σν · (v − u) ≥ υ1(θ) |uτ | − υ1(θ) |vτ | ∀v ∈ V, ∀θ ∈W 1,q(Ω) a.e on Γ2.

So, (2.7) holds with the choice

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,
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where ψ1(x,y) = |yτ (x)|. We obtain

φ(θ,v) =
∫

Γ2

υ1(θ, x)ψ1(x,v)dγ ∀v ∈ V, ∀θ ∈W 1,q(Ω).

In addition, we have
‖ψ1(v)‖L2(Γ2) ≤ C ‖v‖L2(Γ2) ∀v ∈ V.

Then, ψ verifies the assertion (2.12) with the choice ω1 = 1.

Example 5.2 (Bilateral contact with thermal viscoelastic friction condition). We consider the
following boundary conditions

uν = 0, στ = −υ1(θ) |uτ |a−1 uτ on Γ2,(5.2)

where 0 < a ≤ 1 and υ1(θ) is the coefficient of friction. Here, the tangential shear is proportional
to the power a of the tangential speed. In addition, we suppose that the function υ1 verifies the
hypothesis (2.11). It is straightforward to show that if {u, σ,θ} are regular functions satisfying
(5.2), then (2.7) holds with

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,

where, ψ1(x,y) =
1

a+ 1
|yτ (x)|a+1. We deduce that

φ(θ,v) =
∫

Γ2

υ1(θ, x)ψ1(x,v)dγ ∀v ∈ V, ∀θ ∈W 1,q(Ω).

In addition, we have
‖ψ1(v)‖La(Γ2) ≤ C ‖v‖

a+1
L2(a+1)(Γ2) ∀v ∈ V.

Then, ψ1 verifies the assertion (2.12) with the choice ω1 = a+ 1.
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Example 5.3 (Viscoelastic contact with thermal Tresca’s friction law). We consider the contact
problem with the boundary conditions: σν = −υ2(θ) |uν |b−1

uν , |στ | ≤ υ1(θ),
|στ | < υ1(θ) =⇒ uτ = 0, on Γ2.
|στ | = υ1(θ) =⇒ uτ = −λστ , λ ≥ 0,

(5.3)

Here 0 < b ≤ 1, the normal contact stress depends on a power of the normal speed (this condition
may describe, for example, the motion of a fluid, a wheel on a granular material, the sand on the
beach). In addition, we suppose that the function υi (i = 1, 2) verify the hypothesis (2.11).

We can easily verifies that

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) + υ2(θ, x)ψ2(x,y), ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,
where

ψ1(x,y) = |yτ (x)| , ψ2(x,y) =
1

b+ 1
|yν(x)|b+1

,

ω1 = 1 and ω2 = b+ 1.

Example 5.4 (Viscoelastic contact with thermal friction). We consider the contact problem
with the boundary conditions:

στ = −υ1(θ) |uτ |a−1 uτ , σν = −υ2(θ) |uν |b−1
uν on Γ2,(5.4)

where 0 < a, b ≤ 1. Here, the fluid is moving on sand or a granular material and the normal
stress is proportional to a power of the normal speed while the tangential shear is proportional to
a power of the tangential speed. In addition, we suppose that the function υi, (i = 1, 2) verifies
the hypothesis (2.11).

We prove that

ϕ(θ, x,y) = υ1(θ, x)ψ1(x,y) + υ2(θ, x)ψ2(x,y), ∀x ∈ Γ2, ∀θ ∈ R, ∀y ∈ Rn,
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where

ψ1(x,y) =
1

a+ 1
|yτ (x)|a+1

, ψ2(x,y) =
1

b+ 1
|yν(x)|b+1

,

ω1 = a+ 1 and ω2 = b+ 1.

Remark 5.5. In these different examples, we can easily verify that

−σν · u = ω1υ1(θ, x)ψ1(x,y) + ω2υ2(θ, x)ψ2(x,y),

which permits to give reason to hypothesis (2.14).
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13. , Les Inéquations en Mécanique et en Physique. Dunod 1976.

14. Fan, Ky, Fixed Point and Min-max Theorems in Locally Convex Topological Linear Spaces. Proc Natl. Acad.
Sci. U S A. 38(2) (1952), 121–126.
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