

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC

E. BALLICO

ABSTRACT. Here we study (in positive characteristic) integral curves $X \subset \mathbb{P}^r$ with secant degree one, i.e., for which a general $P \in \operatorname{Sec}^{k-1}(X)$ is in a unique k-secant (k-1)-dimensional linear subspace.

1. Introduction

Let \mathbb{K} be an algebraically closed base field. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate closed subvariety. For each $x \in \{0, \dots, r\}$, let G(x, r) denote the Grassmannian of all x-dimensional linear subspaces of \mathbb{P}^r . For each integer $k \geq 1$ let $\sigma_k(X)$ denote the closure in \mathbb{P}^r of the union of all $A \in G(k-1,r)$ spanned by k points of X (the variety $\sigma_k(X)$ is sometimes called the (k-1)-secant variety of X and written $\operatorname{Sec}^{k-1}(X)$, but we prefer to call it the k-secant variety of X). The integral variety $\sigma_k(X)$ may be obtained in the following way. Assume that X is non-degenerate. For any closed subscheme $E \subseteq \mathbb{P}^r$ let $\langle E \rangle$ denote its linear span. Let $V(X, k) \subseteq G(k-1, r)$ denote the closure in G(k-1,r) of the set of all $A \in G(k-1,r)$ spanned by k-points of X. Set

$$S[X, k] := \{ (P, A) \in \mathbb{P}^r \times G(k-1, r) \colon P \in A, A \in V(X, k) \}.$$

Received May 22, 2011; revised November 3, 2011.

2010 Mathematics Subject Classification. Primary 14N05; 14H50.

Key words and phrases. Join; secant variety; rational normal curve.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Go back

Full Screen

Close

Let $p_1 \colon \mathbb{P}^r \times G(k-1,r) \to \mathbb{P}^r$ denote the projection onto the first factor. We have $\sigma_k(X) = p_1(S[X,k])$. Set $m_{X,k} := p_{1|S[X,k]}$. If $\sigma_k(X)$ has the expected dimension $k \cdot (\dim(X) + 1) - 1$ (i.e., if $m_{X,k}$ is generically finite), then we write $i_k(X)$ for the inseparable degree of $m_{X,k}$ and $s_k(X)$ for its separable degree. For any $P \in X_{\text{reg}}$, let $T_PX \subset \mathbb{P}^r$ denote the tangent space to X at P. If $k \geq 2$, we say that X is k-unconstrained if

$$\dim(\langle T_{P_1}X \cup \cdots \cup T_{P_k}X \rangle) = \dim(\sigma_k(X))$$

for a general $(P_1, \ldots, P_k) \in X^k$. Terracini's lemma says that

$$\dim(\langle T_{P_1}X \cup \cdots \cup T_{P_k}X \rangle) \leq \dim(\sigma_k(X)))$$

and that in characteristic zero equality always holds ([1, §1] or [3, §2]). The case k=2 of this notion was introduced in [3]. A non-degenerate curve $Y \subset \mathbb{P}^r$ is 2-unconstrained if and only if either r=2 or Y is not strange [3, Example (e1) at page 333]. From now on we assume $\dim(X)=1$. We first prove the following result.

Theorem 1. Fix integers $r \geq 2k \geq 4$. Let $X \subset \mathbb{P}^r$ be an integral, non-degenerate and k-unconstrained curve. Then $s_k(X) = 1$.

For each integer i such that $2 \le 2i \le r$ we define the integer $e_i(X)$ in the following way. Fix a general $(P_1, \ldots, P_i) \in X^i$. Thus $P_j \in X_{\text{reg}}$ for all j. Set $V := \langle T_{P_1}X \cup \cdots \cup T_{P_i}X \rangle$. Notice that $(V \cap X)_{\text{red}} \supseteq \{P_1, \ldots, P_i\}$ and the scheme $V \cap X$ is zero-dimensional. Varying (P_1, \ldots, P_i) in X^i we see that each P_j appears with the same multiplicity in the zero-dimensional scheme $V \cap X$. We call $e_i(X)$ this multiplicity. In characteristic zero we always have $e_i(X) = 2$. The integer $e_1(X)$ is the intersection multiplicity of X with its general tangent line at its contact point. Hence if $\operatorname{char}(\mathbb{K})$ is odd the curve X is reflexive if and only if $e_1(X) = 2$ ([4, 3.5]). In the general case we have $e_1(X) \ge 2$ and $e_i(X) \le e_{i+1}(X)$. For any $P \in X_{\text{reg}}$ and any integer $t \in \{1, \ldots, r\}$, let $O(X, P, t) \in G(t, r)$ denote the t-dimensional osculating plane of X at P. Thus $O(X, P, 1) = T_P X$. Fix integers $i \ge 1$,

Go back

Full Screen

Close

and $j_h \geq 0$, $1 \leq h \leq i$. We only need the case $2i + \sum_{h=1}^{i} j_h \leq r$. Fix a general $(P_1, \dots, P_i) \in X^i$ and set $V := \langle \bigcup_{h=1}^{i} O(X, P_h, 1 + j_h) \rangle$. For any $h \in \{1, \dots, i\}$, let $E(X; i; j_1, \dots j_i; h)$ be the multiplicity of P_h in the scheme $V \cap X$. We will only use the case $j_1 = 1$ and $j_h = 0$ for all $h \neq 1$. If either char(\mathbb{K}) = 0 or char(\mathbb{K}) > deg(X), then $E(X; i; j_1, \dots j_i; h) = 2 + j_h$ (Lemma 9). Here we prove the following result.

Theorem 2. Let $X \subset \mathbb{P}^{2k-1}$, $k \geq 2$, be an integral, non-degenerate and k-unconstrained curve. Set $j_1 := 1$ and $j_h := 0$ for all $h \in \{2, \ldots, k-1\}$.

- (a) If $s_k(X) = 1$ and $E(X; k-1; j_1, ..., j_{k-1}; 1) = e_{k-1}(X) + 1$, then X is smooth and rational and $\deg(X) = (k-1)e_{k-1}(X) + 1$.
- (b) X is a rational normal curve if and only if $s_k(X) = 1$, $e_{k-1}(X) = 2$ and $E(X; k-1; j_1, \ldots, j_{k-1}; 1) = 3$.

We do not know if in the statement of Theorem 2 we may drop the conditions " $e_{k-1}(X) = 2$ " and " $E(X; k-1; j_1, \ldots, j_{k-1}; 1) = 3$ ". We are able to prove that we may drop the first one in the case k = 2, i.e., we prove the following result.

Proposition 1. Let $X \subset \mathbb{P}^3$ be an integral and non-degenerate curve. The following conditions are equivalent:

- (a) X is not strange, $s_2(X) = 1$ and $E(X; 1; 1; 1) = e_1(X) + 1$;
- (b) $i_2(X) = s_2(X) = 1$ and $E(X; 1; 1; 1) = e_1(X) + 1$;
- (c) X is a rational normal curve.

The picture is very easy if $\operatorname{char}(\mathbb{K}) > \operatorname{deg}(X)$. As a byproduct of Theorem 2 we give the following result.

Theorem 3. Let $X \subset \mathbb{P}^{2k-1}$ be an integral and non-degenerate curve. Assume $char(\mathbb{K}) > deg(X)$. X is a rational normal curve if and only if $s_k(X) = 1$.

Go back

Full Screen

Close

2. The proofs

Remark 1. Assume X of arbitrary dimension and that

$$\dim(\sigma_k(X)) = k(\dim(X) + 1) - 1.$$

As in [3] (the case k=2) X is k-unconstrained if and only if $i_k(X)=1$.

Lemma 1. Fix integers c > 0, $s > y \ge 2$ and $r \ge s(c+1)-1$. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate c-dimensional subvariety such that $\dim(\sigma_s(X)) = s(c+1)-1$. If X is s-unconstrained, then X is y-unconstrained.

Proof. Since dim $(\sigma_s(X)) = s(c+1) - 1$ and X is s-unconstrained, we have

$$\dim(\langle T_{P_1}X \cup \cdots \cup T_{P_s}X \rangle = s(c+1) - 1$$

for a general $(P_1, \ldots, P_s) \in X^s$. Hence $\dim(\langle T_{P_1}X \cup \cdots \cup T_{P_y}(X) \rangle = y(c+1) - 1$. Hence X is y-unconstrained.

We recall the following very useful result ([1, §1]).

Lemma 2. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Then X is non-defective, i.e., $\dim(\sigma_a(X)) = \min\{r, 2a-1\}$ for all integers $a \geq 2$.

From Lemmas 1 and 2 we get the following result.

Lemma 3. Fix integers $s > y \ge 2$ and $r \ge 2s-1$. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. If X is s-unconstrained, then X is y-unconstrained and not strange.

We recall that a finite set $S \subset \mathbb{P}^x$ is said to be in linearly general position if $\dim(\langle S' \rangle) = \min\{x, \sharp(S') - 1\}$ for every $S' \subseteq S$. The general hyperplane section of a non-degenerate curve $X \subset \mathbb{P}^r$ is in linearly general position if X is not strange ([6, Lemma 1.1]). Hence Lemma 3 implies the following result.

Go back

Full Screen

Close

Go back

Full Screen

Close

Quit

Lemma 4. Fix integers r, s such that $r \geq 2s - 1 \geq 3$. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Assume that X is s-unconstrained. Then X is not strange and a general hyperplane section of X is in linearly general position.

Proof of Theorem 1. We extend the proof of the case k=2 given in [3, §4]. By Lemma 4 a general (k-1)-dimensional k-secant plane of X meets X at exactly k points. Fix a general $(P_1,\ldots,P_k)\in X^k$ and set $V:=\langle T_{P_1}X\cup\cdots\cup T_{P_k}\rangle$. Since X is k-unconstrained, we have $\dim(V)=$ 2k-1. Since 2k-1 < r and X is non-degenerate, the set $S := (V \cap X)_{red}$ is finite. Fix a general $P \in \langle \{P_1, \dots, P_k\} \rangle$. Assume $s_k(X) \geq 2$. Since a general hyperplane section of X is in linearly general position (Lemma 4), the integer $s_k(X)$ is the number of different k-ples of points of X such that a general point of $\sigma_k(X)$ is in their linear span. Since P may be considered as a general point of $\sigma_k(X)$ and $s_k(X) \geq 2$, there is $(Q_1, \ldots, Q_k) \in X^k$ such that $P \in \langle \{Q_1, \ldots, Q_k\} \rangle$ and $\{P_1,\ldots,P_k\}\neq\{Q_1,\ldots,Q_k\}$. For general P we may also assume that (Q_1,\ldots,Q_k) is general in X^k . Hence each P_i and each Q_i is a smooth point of X. Terracini's lemma gives $\langle T_{P_i} X \cup \cdots \cup X_{P_i} \rangle$ $T_{P_h}X \subseteq T_P\sigma_k(X)$ and $\langle T_{O_1}X \cup \cdots \cup T_{O_h}X \rangle \subseteq T_P\sigma_k(X)$. Since X is k-unconstrained and both (P_1,\ldots,P_k) and (Q_1,\ldots,Q_k) are general in X^k , we have $\langle T_{P_1}X\cup\cdots\cup T_{P_k}\rangle=T_P\sigma_k(X)$ and $\langle T_{O_1}X \cup \cdots \cup T_{O_k}X \rangle = T_P\sigma_k(X)$. Hence $\{Q_1,\ldots,Q_k\} \subseteq S$. Since S is finite, the union of the linear spans of all $S' \subseteq S$ with $\sharp(S') = k$ is a finite number of linear subspaces of dimension at most k-1 and $\langle S' \rangle = \langle \{P_1, \dots, P_k\} \rangle$ if and only if $S' = \{P_1, \dots, P_k\}$, because $\langle \{P_1, \dots, P_k\} \rangle \cap$ $X = \{P_1, \ldots, P_k\}$. Hence $\dim(\langle S' \rangle \cap \langle \{P_1, \ldots, P_k\} \rangle) \leq k - 2$ for all $S' \neq \{P_1, \ldots, P_k\}$. Varying $P \in \langle \{P_1, \dots, P_k\} \rangle \cong \mathbb{P}^{k-1}$, we get a contradiction.

Lemma 5. Let $X \subset \mathbb{P}^r$, $r \geq 2k-1 \geq 5$, be an integral, non-degenerate and k-unconstrained curve. Fix an integer s such that $1 \leq s \leq k-2$. Fix a general $(A_1, \ldots, A_s) \in X^s$ and set $W := \langle T_{A_1}X \cup \cdots \cup T_{A_s}X \rangle$. Then $\dim(W) = 2s-1$. Let $\ell_W : \mathbb{P}^r \setminus W \to \mathbb{P}^{r-2s}$ denote the linear projection from W. Let $Y \subset \mathbb{P}^{r-2s}$ denote the closure of $\ell_W(Y \setminus Y \cap W)$. Then Y is (k-s)-unconstrained and it is not strage.

Proof. Fix a general $A_{s+1}, \ldots, A_k \in X^{k-s}$. Notice that $(\ell_W(A_{s+1}), \ldots, \ell_W(A_k))$ is general in Y^{k-s} and

$$\ell_W(\langle W \cup T_{A_{s+1}}X \cup \cdots \cup T_{A_k}X \rangle \setminus W) = \langle T_{\ell_W(A_{s+1})}Y \cup \cdots \cup T_{\ell_W(A_k)}Y \rangle.$$

Hence the latter space has dimension 2k-2s-1. Hence Y is (k-s)-unconstrained. Since $k-s \geq 2$, Y is not strange.

Lemma 6. Fix integers c > 0, $k \ge 2$ and $r \ge (c+1)k-1$. Let $X \subset \mathbb{P}^r$ be a k-unconstrained c-dimensional variety such that $\dim(\sigma_k(X)) = (c+1)k-1$. Fix an integer $s \in \{1, \ldots, k-1\}$ and a general $(P_1, \ldots, P_s) \in X^s$. Set $V := \langle T_{P_1} X \cup \cdots \cup T_{P_s} X \rangle$. Then $\dim(V) = (c+1)s-1$ and the restriction to X of the linear projection $\ell_V : \mathbb{P}^r \setminus V \to \mathbb{P}^{r-(c+1)s}$ is a generically finite separable morphism.

Proof. Since $s+1 \le k$ and $\dim(\sigma_k(X)) = (c+1)k-1$, we have $\dim(\sigma_s(X)) = (c+1)s-1$. Lemma 1 gives that X is s-unconstrained. Since X is (s+1)-unconstrained and $\dim(\sigma_{s+1}(X)) = (c+1)(s+1)-1$, we have

$$\dim(\langle V \cup T_P X \rangle) = \dim(V) + \dim(T_P X) + 1$$

for a general $P \in X$, i.e., $V \cap T_P X = \emptyset$ for a general $P \in X$. Thus $\ell_V | (X \setminus V)$ has differential with rank c, i.e., it is separable and generically finite.

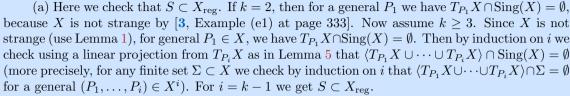
Proof of Theorem 2. If X is a rational normal curve, then it is k-unconstrained, $s_k(X) = 1$ ([2, First 4 lines of page 128]) and $i_k(X) = 1$ (Remark 1).

Now assume $s_k(X)=1$. In step (c) we will use the assumption $E(X;k-1;1,0,\ldots,0;1)=e_{k-1}(X)+1$. We need to adapt a part of the characteristic zero proof given in [2] to the positive characteristic case. We will follow [2] as much as possible. Fix a general $(P_1,\ldots,P_{k-1})\in X^{k-1}$ and set $V:=\langle T_{P_1}X\cup\cdots\cup T_{P_{k-1}}X\rangle$. Since X is k-unconstrained, we have $\dim(V)=2k-3$. Since X is non-degenerate, the set $S:=(V\cap X)_{\mathrm{red}}$ is finite.

Go back

Full Screen

Close



(b) Obviously $\{P_1, \ldots, P_{k-1}\} \subseteq S$. Here we check that $S = \{P_1, \ldots, P_{k-1}\}$. Assume for the moment the existence of $Q \in S \setminus \{P_1, \ldots, P_{k-1}\}$. Since X is not strange, it is not very strange, i.e., a general hyperplane section of X is in linearly general position ([6, Lemma 1.1]). Since (P_1, \ldots, P_{k-1}) is general in X^{k-1} , we get $\langle \{P_1, \ldots, P_{k-1}\} \rangle \cap X = \{P_1, \ldots, P_{k-1}\}$. Thus $\dim(\langle \{P_1, \ldots, P_{k-1}, Q\} \rangle) = k-1$. Fix a general $z \in \langle \{P_1, \ldots, P_{k-1}, Q\} \rangle$. We have

$$\mathbb{P}^{2k-1} = T_z \sigma_k(X) \supseteq \langle T_{P_1} X \cup \dots \cup T_{P_{k-1}} X \cup T_Q X \rangle$$

(Terracini's lemma ([3, §2] or [1, Proposition 1.9]). The additive map giving Terracini's lemma for joins in the proof of [1, Proposition 1.9], shows that the map $m_{X,k}$ has non-invertible differential over the point z. Since \mathbb{P}^{2k-1} is smooth and $m_{X,k}$ is separable, we get that $m_{X,k}$ is not finite of degree 1 near z. Since $s_k(X) = 1$, $m_{X,k}$ contracts a curve over z. Since z lies in infinitely many (k-1)-dimensional k-secant subspaces, we get that $\dim(\sigma_k(X)) \leq 2k-2$, contradicting Lemma 2. The contradiction proves $S = \{P_1, \ldots, P_{k-1}\}$.

(c) Step (b) means that $\{P_1,\ldots,P_{k-1}\}$ is the reduction of the scheme-theoretically intersection $X\cap V$. Let Z_i denote the connected component of the scheme $X\cap V$ supported by P_i . Set $e:=\deg(Z_1)$. Since $T_{P_1}X\subseteq V$, we have $e\geq 2$. Varying (P_1,\ldots,P_{k-1}) in X^{k-1} we get $\deg(Z_i)=e$ for all i. The definition of the integer $e_{k-1}(X)$ gives $e=e_{k-1}(X)$. Set $\phi:=\ell_V|(X\setminus V\cap X)$. Since $X\cap V\subset X_{\text{reg}}$, ϕ is dominant and X_{reg} is a smooth curve, ϕ induces a finite morphism $\psi\colon X\to \mathbb{P}^1$. Bezout's theorem gives $\deg(X)=(k-1)e+\deg(\psi)$. Lemma 6 gives that ψ is separable. Hence

Go back

Full Screen

Close

 $\deg(\psi)$ is the separable degree of ψ . Assume $\deg(\psi) \geq 2$. Since \mathbb{P}^1 is algebraically simply connected, there is $Q \in X$ at which ψ ramifies.

First assume $Q \in X_{\text{reg}}$. Since $E(X; k-1; 1, 0, \dots, 0; 1) = e_{k-1}(X) + 1$, ψ is not ramified at P_1 . Moving P_1, \dots, P_{k-1} we get $Q \notin \{P_1, \dots, P_{k-1}\}$. The definition of ϕ gives $\dim(V \cup T_QX) \leq \dim(V) + 1$. Hence the additive map giving Terracini's lemma for joins in the proof of [1, Proposition 1.9], shows that the map $m_{X,k}$ has non-invertible differential over the general point $z \in \langle \{P_1, \dots, P_{k-1}, Q\} \rangle$. As in step (b) we get a contradiction.

Now assume $Q \in \operatorname{Sing}(X)$. Let $u \colon C \to X$ denote the normalization map. Since we assumed $\deg(\psi) \geq 2$, we have $\deg(\psi \circ u) \geq 2$. Since \mathbb{P}^1 is algebraically simply connected, there is $Q' \in C$ such that $\psi \circ u$ is ramified at Q'. We repeat the construction of joins and secant variety starting from the non-embedded curve C and get a contradiction using Q' instead of Q. Thus $\deg(\psi) = 1$, i.e.

$$\deg(X) = (k-1)e_{k-1}(X) + 1,$$

and X is rational.

X is a rational normal curve if and only if $\deg(X)=2k-1$, i.e., if and only if e=2. Take any $P\in \mathrm{Sing}(X)$ (if any). Set $H:=\langle\{P\}\cup V\rangle$. Since X is singular at P, we have $\deg(H\cap X)\geq 2+(k-1)e>\deg(X)$, that is contradiction. Thus X is smooth.

Proof of Proposition 1. We have $i_2(X) = 1$ if and only if X is 2-unconstrained ([3] or Remark 1). Obviously X is 2-unconstrained. Hence it is sufficient to prove that if X is 2-unconstrained, $s_2(X) = 1$, and $E(X; 1; 1; 1) = e_1(X) + 1$, then X is a rational normal curve. Theorem 2 says that X is smooth and rational and $\deg(X) = e_1(X) + 1$. Thus it is sufficient to prove $e_1(X) = 2$. Assume $e_1(X) \geq 3$. Since $\deg(X) = e_1(X) + 1$, Bezout's theorem says that any two different tangent lines are disjoint. Let $TX \subset \mathbb{P}^3$ denote the tangent developable of X. Fix a general $P \in \mathbb{P}^3$ and let $\ell_P \colon \mathbb{P}^3 \setminus \{P\} \to \mathbb{P}^2$ be the linear projection from P. Set $\ell := \ell_P | X$. Since $P \notin TX$, ℓ is unramified. Since X is smooth, $s_2(X) = 1$ and P is general, the map ℓ is birational onto its image

Go back

Full Screen

Close

and the curve $\ell(X)$ has a unique singular point (the point $\ell(P_1) = \ell(P_2)$ with $P \in \langle \{P_1, P_2\} \rangle$ and $(P_1, P_2) \in X^2$). We have $p_a(\ell(X)) = e_1(X)(e_1(X) - 1)/2 \ge 2$. Since $P \notin TX$, we have $P \notin T_{P_i}X$, i = 1, 2. Since $T_{P_1}X \cap T_{P_2}(X) = \emptyset$, the line $T_{P_2}X$ is not contained in the plane $\langle \{P\} \cup T_{P_1}X \rangle$. Thus $\ell_P(T_{P_1}X) \ne \ell_P(T_{P_2}X)$. Thus $\ell(P_1)$ is an ordinary double point of $\ell(X)$. Hence $\ell(X)$ has geometric genus $p_a(X) - 1 > 0$, thath is contradiction.

Lemma 7. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Assume $char(\mathbb{K}) > \deg(X)$. Then $e_i(X) = 2$ for all positive integers i such that $2i \leq r$.

Proof. We have $e_1(X) = 2$, because in large characteristic the Hermite sequence of X at its general point is the classical one ([5, Theorem 15]). The case $i \geq 2$ is obtained by induction on i taking instead of X its image by the linear projection from $T_{P_i}X$, P_i general in X.

Lemma 8. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Assume $char(\mathbb{K}) > \deg(X)$. Then X is i-unconstrained for all integers $i \geq 2$.

Proof. Fix a linear subspace $V \subset \mathbb{P}^r$ such that $v := \dim(V) \leq r - 2$. Let $\ell_V : \mathbb{P}^r \setminus V \to \mathbb{P}^{r-v-1}$ denote the linear projection from V. Since $\operatorname{char}(\mathbb{K}) > \operatorname{deg}(X)$, the restriction of ℓ_V to X is separable. Hence $T_{P_i}X \cap V = \emptyset$ for a general $P_i \in X$. Take $V = \langle T_{P_1}X \cup \cdots \cup T_{P_{i-1}}X \rangle$ with (P_1, \ldots, P_{i-1}) general in X^{i-1} and use induction on i.

Lemma 9. Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Assume $\operatorname{char}(\mathbb{K}) > \operatorname{deg}(X)$. Then $E(X; i; j_1, \ldots, j_i; h) = 2 + j_h$ for all i, j_1, \ldots, j_i such that

$$2i + \sum_{x=1}^{i} j_x \le r$$

and for a general $(P_1, \ldots, P_i) \in X^i$, the linear span of the osculating spaces

$$O(X, P_x, 1 + j_x)$$
, $1 \le x \le i$,

Go back

Full Screen

Close

Go back

Full Screen

Close

Quit

has dimension $2i - 1 + \sum_{x=1}^{i} j_x$.

Proof. The case i=1 is true by [5, Theorem 15]. Hence we may assume $i\geq 2$. Fix an index $c\in\{1,\ldots,i\}\setminus\{h\}$. For a general $P_c\in X$, the point P_c appears with multiplicity exactly j_c+2 in the scheme $O(X,P_c,j_c+1)$ ([5, Theorem 15]). Since $\operatorname{char}(\mathbb{K})>\operatorname{deg}(X)$, the rational map ℓ obtained restricting to X the linear projection from $O(X,P_c,1+j_c)$ is separable. Call Y the closure in \mathbb{P}^{r-j_c-2} of $\ell(X\setminus O(X,P,1+j_c)\cap X)$. Take $P_x,x\neq c$, such that (P_1,\ldots,P_i) is general in X^c and write $Q_x:=\ell(P_x)$ for all $x\neq c$. Let V be the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq x\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq i, U$ the linear span of the osculating spaces $O(X,P_x,1+j_x), 1\leq i, U$ the linear span of the osc

Proof of Theorem 3. Apply Theorem 2 and Lemmas 7, 8 and 9.

Acknowledgment. We want to thank the referee for her/his useful observations.

- 1. Ådlandsvik B., Joins and higher secant varieties, Math. Scand. 61 (1987), 213–222.
- Catalano-Johnson M., The homogeneous ideal of higher secant varieties, J. Pure Appl. Algebra 158 (2001), 123–129.

- 3. Dale M., Terracini's lemma and the secant variety of a curve, Proc. London Math. Soc. 49(3) (1984), 329–339.
- 4. Hefez A. and Kleiman S. L., Notes on the duality of projective varieties. Geometry today (Rome, 1984), 143–183, Progr. Math., 60, Birkhäuser Boston, Boston, MA, 1985.

- Laksov D., Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. École Norm. Sup. 17 (1984), 565–579.
- 6. Rathmann J., The uniform position principle for curves in characteristic p, Math. Ann. 276(4) (1987), 565–579.

E. Ballico, Department of Mathematics, University of Trento, 38123 Povo (TN), Italy, e-mail: ballico@science.unitn.it

