

Go back

Full Screen

Close

Quit

A NOTE ON MUTIPLICATION OPERATORS ON KÖTHE-BOCHNER SPACES

S. S. KHURANA

ABSTRACT. Let $(\Omega, \mathcal{A}, \mu)$ is a finite measure space, E an order continuous Banach function space over μ , X a Banach space and E(X) the Köthe-Bochner space. A new simple proof is given of the result that a continuous linear operator $T: E(X) \to E(X)$ is a multiplication operator (by a function in L^{∞}) iff $T(g\langle f, x^* \rangle x) = g\langle T(f), x^* \rangle x$ for every $g \in L^{\infty}$, $f \in E(X), x \in X, x^* \in X^*$.

1. INTRODUCTION AND NOTATION

In this paper all vector spaces are taken over the real field R. $(\Omega, \mathcal{A}, \mu)$ is a finite measure space and $L^{\infty}(\mu) = L^{\infty}$, $L^{1}(\mu) = L^{1}$ have their usual meanings. E is an ideal in the vector lattice L^{1} , $E \supset L^{\infty}$, and has the norm $\|.\|_{E}$ so that $(E, \|.\|_{E})$ is a Banach lattice and is called Köthe function space relative to the measure μ ([3]). The order in E is the natural order of functions in L^{1} . Also the inclusions $L^{\infty} \subset E \subset L^{1}$ are continuous. $(X, \|.\|_{X})$ is another Banach space such that the Banach space $(E(X), \|.\|_{E(X)})$ is the associated Köthe-Bochner function space relative to E. Thus E(X) consists of all strongly measurable functions $f: \Omega \to X$ for which the real functions $\omega \to \|f(\omega)\|$ belongs to E and $\|f\|_{E(X)} = \|\|f(.)\|_{X}\|_{E}$ ([3]). For measure theory we refer to [1]. If Y is a Banach space, Y^{*} will denote its dual and for a $y \in Y$, $y^{*} \in Y^{*}$, $\langle y, y^{*} \rangle$ will also be used for $y^{*}(y)$.

2010 Mathematics Subject Classification. Primary 47B38, 46B42; Secondary 28A25. Key words and phrases. Multiplication operator; Köthe function spaces; Köthe-Bochner function spaces.

Received Septembr 29, 2011.

In ([2]) a result is proved about the mutiplication operators in Köthe-Bochner spaces. The proof is quite sophisticated and, besides several lemmas, makes use of Markushevich bases. In this note we give a simple elementary proof.

2. MAIN THEOREM

Now we come to the main theorem

Theorem 1. Suppose E an order continuous Köthe function space over μ , X a Banach space and E(X) the associated Köthe-Bochner space. Let $T: E(X) \to E(X)$ be a continuous linear operator. The following statements are equivalent:

(i) There is a $g_0 \in L^{\infty}$ such that $T(f) = g_0 f$ for all $f \in E(X)$. (ii) $T(g\langle f, x^* \rangle x) = g\langle T(f), x^* \rangle x$ for every $g \in L^{\infty}$, $f \in E(X)$, $x \in X$, and $x^* \in X^*$.

Proof. (i) \implies (ii): Obvious.

(ii) \Longrightarrow (i): For an $h \in E$, $x \in X$, $g \in L^{\infty}$, we have $T((gh\langle x, x^* \rangle)x) = gh\langle T(x), x^* \rangle x$; take any $x^* \in X^*$ with $\langle x, x^* \rangle = 1$. We get T(ghx) = ghpx for some $p \in E$ (note since $|\langle T(x)(.), x^* \rangle| \leq ||T(x)(.)||$, we have $\langle T(x)(.), x^* \rangle \in E$) and so $ghpx \in E(X)$. p may depend on x. Suppose $T(x_1) = p_1x_1$ and $T(x_2) = p_2x_2$. We claim $p_1 = p_2$. If x_1, x_2 are linearly dependent, there is nothing to prove; otherwise $x_1, x_1 - x_2$ are linearly independent. Take an $x^* \in X^*$ such that $\langle x_1, x^* \rangle = 1, \langle x_1 - x_2, x^* \rangle = 0$. This means $0 = T(\langle x_1 - x_2, x^* \rangle z) = \langle T(x_1 - x_2), x^* \rangle z = \langle p_1x_1 - p_2x_2, x^* \rangle z = (p_1 - p_2)z$, for all $z \in E$. From this it follows that $p_1 = p_2$.

Now we want to prove that p is bounded. Suppose this is not true. Select a strictly increasing sequence $\{c_n\}$ of positive real numbers such that (i) $c_n \rangle n^3$, (ii) $\mu(Q_n) \rangle 0$ where $Q_n = |p|^{-1}(c_n, c_{n+1})$. For each n, choose positive α_n so that, for the functions $f_n = \alpha_n \chi_{Q_n}$, $||f_n||_E = 1$. Fix $a \ y \in X$ with $||y||_X = 1$. The function $f = \sum_{n=1}^{\infty} \frac{1}{n^2} f_n$ is in E and $f \ge \frac{1}{n^2} f_n$. This gives $f|p| \ge \frac{1}{n^2} f_n |p| \ge \frac{1}{n^2} f_n n^3$

and so $||f|p|||_E \ge n$ for all n. Now $||T(fy)||_{E(X)} = ||fpy||_{E(X)} = ||f|p|||_E \ge n$ for all n, which is a contradiction. So $p \in L^{\infty}$. We put $g_0 = p$. Thus $T(gx) = gg_0x$, for all $x \in X$, $g \in L^{\infty}$ and so $T(h) = g_0h$ for all simple functions $h \in E(X)$. Since E is order continuous, simple functions are dense, and so the result follows. \Box

- 1. Diestel J. and Uhl J. J., Vector Measures, Amer. Math. Soc. Surveys vol. 15 Amer. Math. Soc., 1977.
- Calabuig J. M., Rodriguez J. and Sanchez-Perez, E. A., Multiplication operators in Köthe-Bochner spaces. J. Math. Anal. Appls. 373 (2011), 316–321.
- 3. Lin, P. K., Köthe-Bochner function spaces. Birkhauser Boston Inc., MA, 2004.

S. S. Khurana, Departemt of Mathematics, University of Iowa, Iowa City, Iowa 52242, U.S.A., *e-mail*: khurana@math.uiowa.edu

