A NOTE ON MUTIPLICATION OPERATORS ON KÖTHE-BOCHNER SPACES

S. S. KHURANA

Abstract. Let $(\Omega, \mathcal{A}, \mu)$ is a finite measure space, E an order continuous Banach function space over μ, X a Banach space and $E(X)$ the Köthe-Bochner space. A new simple proof is given of the result that a continuous linear operator $T: E(X) \rightarrow E(X)$ is a multiplication operator (by a function in L^{∞}) iff $T\left(g\left\langle f, x^{*}\right\rangle x\right)=g\left\langle T(f), x^{*}\right\rangle x$ for every $g \in L^{\infty}, f \in E(X), x \in X, x^{*} \in X^{*}$.

1. Introduction and Notation

In this paper all vector spaces are taken over the real field $R .(\Omega, \mathcal{A}, \mu)$ is a finite measure space and $L^{\infty}(\mu)=L^{\infty}, L^{1}(\mu)=L^{1}$ have their usual meanings. E is an ideal in the vector lattice L^{1}, $E \supset L^{\infty}$, and has the norm $\|\cdot\|_{E}$ so that $\left(E,\|\cdot\|_{E}\right)$ is a Banach lattice and is called Köthe function space relative to the measure $\mu([3])$. The order in E is the natural order of functions in L^{1}. Also the inclusions $L^{\infty} \subset E \subset L^{1}$ are continuous. $\left(X,\|\cdot\|_{X}\right)$ is another Banach space such that the Banach space $\left(E(X),\|\cdot\|_{E(X)}\right)$ is the associated Köthe-Bochner function space relative to E. Thus $E(X)$ consists of all strongly measurable functions $f: \Omega \rightarrow X$ for which the real functions $\omega \rightarrow\|f(\omega)\|$ belongs to E and $\|f\|_{E(X)}=\| \| f(.)\left\|_{X}\right\|_{E}([3])$. For measure theory we refer to [1]. If Y is a Banach space, Y^{*} will denote its dual and for a $y \in Y, y^{*} \in Y^{*},\left\langle y, y^{*}\right\rangle$ will also be used for $y^{*}(y)$.

[^0]In ([2]) a result is proved about the mutiplication operators in Köthe-Bochner spaces. The proof is quite sophisticated and, besides several lemmas, makes use of Markushevich bases. In this note we give a simple elementary proof.

2. Main Theorem

Now we come to the main theorem
Theorem 1. Suppose E an order continuous Köthe function space over μ, X a Banach space and $E(X)$ the associated Köthe-Bochner space. Let $T: E(X) \rightarrow E(X)$ be a continuous linear operator. The following statements are equivalent:
(i) There is a $g_{0} \in L^{\infty}$ such that $T(f)=g_{0} f$ for all $f \in E(X)$.
(ii) $T\left(g\left\langle f, x^{*}\right\rangle x\right)=g\left\langle T(f), x^{*}\right\rangle x$ for every $g \in L^{\infty}, f \in E(X), x \in X$, and $x^{*} \in X^{*}$.

Proof. (i) \Longrightarrow (ii): Obvious.
(ii) \Longrightarrow (i): For an $h \in E, x \in X, g \in L^{\infty}$, we have $T\left(\left(g h\left\langle x, x^{*}\right\rangle\right) x\right)=g h\left\langle T(x), x^{*}\right\rangle x$; take any $x^{*} \in X^{*}$ with $\left\langle x, x^{*}\right\rangle=1$. We get $T(g h x)=g h p x$ for some $p \in E$ (note since $\left|\left\langle T(x)(),. x^{*}\right\rangle\right| \leq$ $\|T(x)()$.$\left.\| , we have \left\langle T(x)(),. x^{*}\right\rangle \in E\right)$ and so $g h p x \in E(X)$. p may depend on x. Suppose

Go back

Full Screen $T\left(x_{1}\right)=p_{1} x_{1}$ and $T\left(x_{2}\right)=p_{2} x_{2}$. We claim $p_{1}=p_{2}$. If x_{1}, x_{2} are linearly dependent, there is nothing to prove; otherwise $x_{1}, x_{1}-x_{2}$ are linearly independent. Take an $x^{*} \in X^{*}$ such that $\left\langle x_{1}, x^{*}\right\rangle=1,\left\langle x_{1}-x_{2}, x^{*}\right\rangle=0$. This means $0=T\left(\left\langle x_{1}-x_{2}, x^{*}\right\rangle z\right)=\left\langle T\left(x_{1}-x_{2}\right), x^{*}\right\rangle z=$ $\left\langle p_{1} x_{1}-p_{2} x_{2}, x^{*}\right\rangle z=\left(p_{1}-p_{2}\right) z$, for all $z \in E$. From this it follows that $p_{1}=p_{2}$.

Now we want to prove that p is bounded. Suppose this is not true. Select a strictly increasing sequence $\left\{c_{n}\right\}$ of positive real numbers such that (i) $\left.c_{n}\right\rangle n^{3}$, (ii) $\left.\mu\left(Q_{n}\right)\right\rangle 0$ where $Q_{n}=|p|^{-1}\left(c_{n}, c_{n+1}\right)$. For each n, choose positive α_{n} so that, for the functions $f_{n}=\alpha_{n} \chi_{Q_{n}},\left\|f_{n}\right\|_{E}=1$. Fix a $y \in X$ with $\|y\|_{X}=1$. The function $f=\sum_{n=1}^{\infty} \frac{1}{n^{2}} f_{n}$ is in E and $f \geq \frac{1}{n^{2}} f_{n}$. This gives $f|p| \geq \frac{1}{n^{2}} f_{n}|p| \geq \frac{1}{n^{2}} f_{n} n^{3}$
and so $\|f|p|\|_{E} \geq n$ for all n. Now $\|T(f y)\|_{E(X)}=\|f p y\|_{E(X)}=\|f|p|\|_{E} \geq n$ for all n, which is a contradiction. So $p \in L^{\infty}$. We put $g_{0}=p$. Thus $T(g x)=g g_{0} x$, for all $x \in X, g \in L^{\infty}$ and so $T(h)=g_{0} h$ for all simple functions $h \in E(X)$. Since E is order continuous, simple functions are dense, and so the result follows.

1. Diestel J. and Uhl J. J., Vector Measures, Amer. Math. Soc. Surveys vol. 15 Amer. Math. Soc., 1977.
2. Calabuig J. M., Rodriguez J. and Sanchez-Perez, E. A., Multiplication operators in Köthe-Bochner spaces. J. Math. Anal. Appls. 373 (2011), 316-321.
3. Lin, P. K., Köthe-Bochner function spaces. Birkhauser Boston Inc., MA, 2004.
S. S. Khurana, Departemt of Mathematics, Univerisity of Iowa, Iowa City, Iowa 52242, U. S. A.,
e-mail: khurana@math.uiowa.edu

[^0]: Received Septembr 29, 2011.
 2010 Mathematics Subject Classification. Primary 47B38, 46B42; Secondary 28A25.
 Key words and phrases. Multiplication operator; Köthe function spaces; Köthe-Bochner function spaces.

