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A NOTE ON THE INSTABILITY OF EVOLUTION PROCESSES

S. RĂMNEANŢU

Abstract. In this paper we obtain a Perron type characterization for the expansiveness of an evolution
process in Banach spaces.

1. Introduction

The notion of exponential dichotomy was introduced by O. Perron [24] and it has an important
role in the theory of dynamical systems as we can see in the literature.

The study of dichotomy for differential equations with bounded coefficients in infinite dimen-
sional spaces was introduced by Daleckij and Krein [6], Massera and Schäffer [12] followed by the
paper of W. A. Coppel [5] who approaches the finite dimensional case using proper methods for
the case of Banach spaces. Recent results for the case of unbounded operators were obtained by
Levitan and Zhikov [11], Neerven [22], Latushkin and Chicone [3].

Important results in this topic are the papers [1], [2], [4], [7] – [10], [13] – [18], [20], [21], [23],
[25] – [28]. Following this line it must be mentioned the joint paper of N. van Minh, Räbiger
and Schnaubelt [19] which offers a new characterization of the stability, instability and dichotomy
of a dynamical system described by an evolution process using the so called evolution semigroup
associated to the process Φ(t, t0) which has the advantage that its generator verifies the Spectral
Mapping Theorem. In case of “admissibility”, the generator gives the restriction that the input
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space is equal to the output space and the associated evolution semigroup is a C0-semigroup as in
[3, Paragraph 3.3, p.73]. This paper establishes characterizations for the instability of an evolution
family with the Perron method without using the associated evolution semigroup.

The paper gives a new proof for the result from the paper of V. Minh, Räbiger and Schnaubelt
[19] for the instability, and even expansiveness of the evolutionary processes with a direct method
using the test-functions and input-output spaces, the pair (C, C) where C = {f : R+ → X, f contin-
uous and bounded on R+} and X is a Banach space.

2. Preliminaries

Let X be a real or complex Banach space, B(X) the Banach algebra of all bounded linear operators
on X and C = {f : R+ → X, f continuous and bounded on R+}.

Definition 2.1. A family of bounded linear operators on X, Φ = {Φ(t, s)}t≥s≥0 is called an
evolutionary process if

1) Φ(t, t) = I for every t ≥ 0;
2) Φ(t, s)Φ(s, t0) = Φ(t, t0) for all t ≥ s ≥ t0 ≥ 0;
3) Φ(·, s)x is continuous on [s,∞) for all s ≥ 0, x ∈ X;

Φ(t, ·)x is continuous on [0, t] for all t ≥ 0, x ∈ X;
4) there exist M , ω > 0 such that

‖Φ(t, s)‖ ≤ M eω(t−s) for all t ≥ s ≥ 0.

Definition 2.2. The evolution process Φ is said to be exponentially instable if and only if there
exist N , ν > 0 such that

‖Φ(t, t0)x‖ ≥ N eν(t−t0) ‖x‖
for all t ≥ t0 ≥ 0 and all x ∈ X.
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Definition 2.3. The evolution process Φ is said to be exponentially expansive if Φ is exponen-
tially instable and Φ(t, t0) is invertible for all t ≥ t0 ≥ 0.

Definition 2.4. The evolution process Φ satisfies the Perron condition for instability if and
only if for every f ∈ C, there exists an unique x ∈ X such that

xf (t) = Φ(t, 0)x+

t∫
0

Φ(t, τ)f(τ)dτ,

xf ∈ C.

Lemma 2.1. If the process Φ satisfies the Perron condition for instability, then for every f ∈ C,
there exists an unique u ∈ C such that

u(t) = Φ(t, t0)u(t0) +

t∫
t0

Φ(t, τ)f(τ)dτ
for all t ≥ t0 ≥ 0.

Proof. Let f ∈ C with u = xf . We have

xf (t) = Φ(t, 0)x+
∫ t

0

Φ(t, τ)f(τ)dτ

= Φ(t, t0)Φ(t0, 0)x+

t0∫
0

Φ(t, t0)Φ(t0, τ)f(τ)dτ +

t∫
t0

Φ(t, τ)f(τ)dτ

= Φ(t, t0)xf (t0) +

t∫
t0

Φ(t, τ)f(τ)dτ

for all t ≥ t0 ≥ 0.
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Hence u(t) = xf (t) which is equivalent to

u(t) = Φ(t, t0)u(t0) +

t∫
t0

Φ(t, τ)f(τ)dτ

for all t ≥ t0 ≥ 0 and u ∈ C.
We suppose that there exists v ∈ C with

v(t) = Φ(t, t0)v(t0) +

t∫
t0

Φ(t, τ)f(τ)dτ

for all t ≥ t0 ≥ 0.
Denoting by w = u− v we have that

w(t) = Φ(t, t0)w(t0) +

t∫
t0

Φ(t, τ)0dτ

for all t ≥ t0 ≥ 0. Then we obtain

w(t) = Φ(t, 0)w(0) +

t∫
0

Φ(t, τ)0dτ.

Hence

0 = Φ(t, 0)0 +

t∫
0

Φ(t, τ)0dτ

for t ≥ 0.
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It results that w(0) = 0 and so w(t) = 0 for all t ≥ 0, which is equivalent to u(t) − v(t) = 0.
This means that u(t) = v(t) for all t ≥ 0.

So, for every f ∈ C, there exists an unique u ∈ C such that

u(t) = Φ(t, t0)u(t0) +

t∫
t0

Φ(t, τ)f(τ)dτ

for all t ≥ t0 ≥ 0. �

Lemma 2.2. If the process Φ satisfies the Perron condition for instability and x 6= 0, it results
that Φ(t, 0)x 6= 0 for all t ≥ 0.

Proof. We suppose that there exists t0 > 0 with Φ(t0, 0)x = 0. Then
Φ(t, t0)Φ(t0, 0)x = 0 for all t ≥ t0 ≥ 0, which is equivalent to Φ(t, 0)x = 0 for all t ≥ t0, and
in this way we obtain that Φ(·, 0)x ∈ C. Then

Φ(t, 0)x = Φ(t, 0)x+

t∫
0

Φ(t, τ)0dτ

and

0 = Φ(t, 0)0 +

t∫
0

Φ(t, τ)0dτ

for all t ≥ 0, which is equivalent to x = 0. This contradicts the hypothesis, so Φ(t, 0)x 6= 0 for all
t ≥ 0. �
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Theorem 2.1. If the process Φ satisfies the Perron condition for instability, then there exists
k > 0 such that

‖|xf |‖ ≤ k‖|f‖|
for all f ∈ C.

Proof. We define U : C → C, Uf = xf . As fn → f in C and Ufn → g in C, we show that Uf = g.
Since

Ufn(t) = xfn(t) = Φ(t, 0)xn +

t∫
0

Φ(t, τ)fn(τ)dτ

with xn = xfn
(0) for n→∞, it results that

g(t) = Φ(t, 0)g(0) +

t∫
0

Φ(t, τ)f(τ)dτ

and so g(t) = xf (t) = Uf(t). Thus U is bounded. From the Closed Graph Theorem it results that
there exists k > 0 such that

‖|xf‖| ≤ k‖|f‖|
for all f ∈ C. �

Theorem 2.2. The process Φ satisfies the Perron condition for instability if and only if Φ is
exponentially expansive.

Proof. Necessity. Let x 6= 0, δ > 0 and χ : R+ → R with

χ(t) =

 1 if t ∈ [0, δ],
1 + δ − t if t ∈ (δ, δ + 1],

0 if t > δ + 1.
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It results that χ ∈ C and ‖|χ‖| = 1.
Let now f : R+ → X,

f(t) = χ(t)
Φ(t, 0)x
‖Φ(t, 0)x‖

.

It results that f ∈ C and ‖|f‖| = 1.
We consider

y(t) = −
∞∫
t

χ(τ)
dτ

‖Φ(τ, 0)x‖
Φ(t, 0)x

= Φ(t, 0)(−
∞∫
0

χ(τ)
dτ

‖Φ(τ, 0)x‖
x) +

t∫
0

Φ(t, τ)f(τ)dτ = 0

for all t > δ + 1.
It results that y ∈ C and y = xf . Then

‖y(t)‖ ≤ ‖|y‖| ≤ k ‖|f‖| = k.

We have that
∞∫
t

χ(τ)
dτ

‖Φ(τ, 0)x‖
‖Φ(t, 0)x‖ ≤ k

for all t ≥ 0.
If t ∈ [0, δ], we have that δ∫

t

dτ
‖Φ(τ, 0)x‖

‖Φ(t, 0)x‖ ≤ k
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for all δ > 0. For δ →∞ we obtain that
∞∫
t

dτ
‖Φ(τ, 0)x‖

dτ ≤ k

‖Φ(t, 0)x‖
(1)

for all t ≥ 0.
We denote by

ψ(t) =

∞∫
t

dτ
‖Φ(τ, 0)x‖

dτ

and from (1) it follows that
ψ(t) ≤ −kψ̇(t).

Hence
ψ(t) e

1
k (t−t0) ≤ ψ(t0) ≤ k

‖Φ(t0, 0)x‖
,

which is equivalent to
∞∫
t

dτ
‖Φ(τ, 0)x‖

e
1
k (t−t0) ≤ k

‖Φ(t0, 0)x‖

for all t ≥ t0 ≥ 0. It follows that
t+1∫
t

dτ
‖Φ(τ, 0)x‖

e
1
k (t−t0) ≤ k

‖Φ(t0, 0)x‖
(2)

for all t ≥ t0 ≥ 0.
However

‖Φ(τ, 0)x‖ = ‖Φ(τ, t)Φ(t, 0)x‖ ≤ M eω ‖Φ(t, 0)x‖,
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thus

1
M eω ‖Φ(t, 0)x‖

≤
t+1∫
t

dτ
‖Φ(τ, 0)x‖

.

From (2) it follows that

1
M eω ‖Φ(t, 0)x‖

e
1
k (t−t0) ≤ k

‖Φ(t0, 0)x‖

for all t ≥ t0 ≥ 0, which means that

1
M eω k

e
1
k (t−t0) ‖Φ(t0, 0)x‖ ≤ ‖Φ(t, 0)x‖

for all t ≥ t0 ≥ 0 and all x ∈ X. So there exist N = 1
M eω k and ν = 1

k such that

‖Φ(t, 0)x‖ ≥ N eν(t−t0) ‖Φ(t0, 0)x‖

for all t ≥ t0 ≥ 0, and all x ∈ X.
We consider

χt01 (t) =


0 if 0 ≤ t < t0,
4(t− t0) if t0 < t ≤ t0 + 1

2 ,
2− 4(t− t0 − 1

2 ) if t0 + 1
2 < t ≤ t0 + 1,

0 if t > t0 + 1.

It results that
t0+1∫
t0

χt01 (τ)dτ = 1.
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We denote by

g(t) =
{

0 if 0 ≤ t < t0,
χt01 Φ(t, t0)z if t > t0.

So g(t) = χt01 Φ(t, t0)z for all z ∈ X. Therefore g ∈ C with

‖|g‖| ≤ 2M eω ‖z‖

and

z(t) = −
∞∫
t

χt01 (τ)dτΦ(t, t0)z

with z : [t0,∞)→ X. Then

z(t) = −
∞∫
s

χt01 (τ)dτΦ(t, s)Φ(s, t0)z +

t∫
s

χt01 (τ)dτΦ(t, s)Φ(s, t0)z

= Φ(t, s)z(s) +

t∫
s

Φ(t, τ)g(τ)dτ

for all t ≥ s ≥ 0.
But z(t) = 0 for all t ≥ t0 + 1 and g ∈ C. It results that there exists an unique xg ∈ C and

xg(t) = Φ(t, s)xg(s) +

t∫
s

Φ(t, τ)g(τ)dτ
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for all t ≥ s ≥ 0. Hence xg(t) = z(t) for all t ≥ t0. Therefore

xg(t0) = z(t0) = −
t0+1∫
t0

χt01 (z)dz = −z.

But

xg(t0) = Φ(t0, 0)xg(0) +

t0∫
0

Φ(t0, τ)g(τ) = Φ(t0, 0)xg(0).

So it results that Φ(t0, 0)(−xg(0)) = z. In this way we obtain that for all z ∈ X, there exists an
unique −xg(0) ∈ X with Φ(t0, 0)(−xg(0)) = z, so Φ(t0, 0)x = x for all t0 ≥ 0.

Let t ≥ t0 ≥ 0 and z ∈ X. Then there exists u ∈ X with Φ(t0, 0)u = z and

‖Φ(t, 0)u‖ ≥ N eν(t−t0) ‖Φ(t0, 0)u‖

which is equivalent to

‖Φ(t, t0)z‖ ≥ N eν(t−t0) ‖z‖

for all t ≥ t0 ≥ 0 and all z ∈ X. Thus Φ is exponentially instable.

Let w ∈ X. Then there exists u ∈ X with Φ(t, 0)u = w = Φ(t, t0)Φ(t0, 0)u. So for w ∈ X there
exists v = Φ(t0, 0)u ∈ X such that Φ(t, t0)v = w.

It results that Φ(t, t0) is surjective.
As Φ(t, t0) is injective from Definition 2.2, it follows that Φ(t, t0) is invertible, hence Φ is

exponentially expansive.
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Sufficiency. Let f ∈ C and

y(t) = −
∞∫
t

Φ−1(τ, t)f(τ)dτ.

Then

‖y(t)‖ ≤
∞∫
t

1
N

e−ν(τ−t) ‖f(τ)‖ dτ ≤ 1
N
‖|f‖|

for all t ≥ 0.
It results that y ∈ C and y(0) = −

∫∞
0

Φ−1(τ, 0)f(τ)dτ . So

Φ(t, 0)y(0) = −
t∫

0

Φ(t, 0)Φ−1(τ, 0)f(τ)dτ −
∞∫
t

Φ(t, 0)Φ−1(τ, 0)f(τ)dτ

= −
t∫

0

Φ(t, τ)f(τ)dτ −
∞∫
t

Φ(t, 0)(Φ(τ, t)Φ(t, 0))−1f(τ)dτ

= −
t∫

0

Φ(t, τ)f(τ)dτ −
∞∫
t

Φ−1(τ, t)f(τ)dτ.

It results that

Φ(t, 0)y(0) +

t∫
0

Φ(t, τ)f(τ)dτ = −
∞∫
t

Φ−1(τ, t)f(τ)dτ,
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which is equivalent to

y(t) = Φ(t, 0)y(0) +

t∫
0

Φ(t, τ)f(τ)dτ.(3)

But there exists z ∈ X with

y(t) = Φ(t, 0)z +

t∫
0

Φ(t, τ)f(τ)dτ(4)

By decreasing the relations (3) and (4), we obtain that

0 = Φ(t, 0)(y(0)− z),
hence

y(0) = z.

It results in this way that the evolution process Φ satisfies the Perron condition for instability
and the proof is complete. �
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