REMARKS ON ŠEDA THEOREM

B. VYNNYTS'KYI and O. SHAVALA

Abstract. We found sufficient conditions on a sequences $\left(\lambda_{n}\right)$ and $\left(b_{n}\right)$ when the equation $f^{\prime \prime}+a_{0} f=0$ has an entire solution f such that $f\left(\lambda_{n}\right)=b_{n}$.

In [10] V. Šeda proved that for any sequence $\left(\lambda_{n}\right)$ of distinct complex numbers with no finite limit points there exists an entire function A_{0} such that the equation

$$
\begin{equation*}
f^{\prime \prime}+A_{0} f=0 \tag{1}
\end{equation*}
$$

has an entire solution f with zeros only at points λ_{n}. On the other hand ([3, p. 201], [7, p. 300$301]$), for every sequence (λ_{n}) of distinct complex numbers with no finite limit points and for every sequence $\left(b_{n}\right)$ of complex numbers there exists an entire function f such that

$$
\begin{equation*}
f\left(\lambda_{n}\right)=b_{n} . \tag{2}
\end{equation*}
$$

This result was extended to the case of functions holomorphic in open subsets of the complex plane \mathbb{C} by C. Berenstein and B. Taylor [2]. In particular, we generalize the above-mentioned results from [10] and [3].

Full Screen

[^0]Theorem 1. For any sequence $\left(\lambda_{n}\right)$ of distinct complex numbers in the domain $D \subset \mathbb{C}$ with no limit points in D and every sequence (b_{n}) of complex numbers there exists a holomorphic in D function A_{0} such that the equation (1) has a holomorphic solution f satisfying (2).

Šeda result was developed in papers $[1,4,5,8,9]$. For meromorphic function A_{0} it was extended in [11]. Bank [1] obtained a necessary condition for a sequence with a finite exponent of convergence to be the zero-sequence of a solution of the equation (1). In [1] there is also proved the following proposition.

Theorem A ([1, p.3]). Let $K>1$ be a real number and let $\left(\lambda_{n}\right)$ be any sequence of non-zero complex points satisfying $\left|\lambda_{n+1}\right| \geq K\left|\lambda_{n}\right|$ for $n \in \mathbb{N}$. Then there exists an entire transcendental function $A(z)$ of order zero such that the equation (1) possesses a solution whose zero-sequence is $\left(\lambda_{n}\right)$.

In [8] Sauer obtain a more general sufficient condition.
Theorem B ([8, p. 1144]). Let $\left(\lambda_{n}\right)$ be a sequence with finite exponent of convergence, p be its genus and

$$
\mu_{k}:=\prod_{m \neq k}\left(1-\frac{\lambda_{k}}{\lambda_{m}}\right)^{-1} e_{p}\left(\frac{\lambda_{k}}{\lambda_{m}}\right)^{-1}
$$

where $e_{p}(z)$ denotes the Weierstrass convergence factor. If there exists a real number $b>0$ and a positive integer k_{0} such that

$$
\left|\mu_{k}\right| \leq \exp \left(\left|\lambda_{k}\right|^{b}\right)
$$

Full Screen
for all $k \geq k_{0}$, then $\left(\lambda_{n}\right)$ is the zero-sequence of a solution of an equation (1) with entire transcendental function $A_{0}(z)$ of finite order.

In [4] J. Heittokangas and I. Laine improved the above results and, in particular, proved the following statement.

Go back

Full Screen
Theorem C ([4, p.300]). Let $\left(\lambda_{n}\right)$ be an infinite sequence of non-zero complex points having a finite exponent of convergence λ, a finite genus p and no finite limit points. Let L be the canonical product associated with $\left(\lambda_{n}\right)$,

$$
\inf _{k}\left\{\left|\lambda_{k}\right| e^{\left|\lambda_{k}\right|^{q}}\left|L^{\prime}\left(\lambda_{k}\right)\right|\right\}>0
$$

for some $q \geq 0$ and arbitrary $\varepsilon>0$. Then $\left(\lambda_{n}\right)$ is the zero-sequence of a solution of an equation (1) with entire transcendental function A_{0} such that

$$
\rho_{A_{0}} \leq \max \{\lambda+\varepsilon ; q\} .
$$

From estimates in [4] it is possible to get the following result.
Corollary 1. Let $\rho \in(0 ;+\infty)$, L be the canonical product associated with the sequence $\left(\lambda_{n}\right)$ of distinct complex numbers and the conditions

$$
\begin{array}{r}
\lambda:=\varlimsup_{j \rightarrow \infty} \frac{\log j}{\log \left|\lambda_{j}\right|} \leq \rho, \\
\varlimsup_{j \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left|1 / L^{\prime}\left(\lambda_{j}\right)\right|}{\log \left|\lambda_{j}\right|} \leq \rho \tag{4}
\end{array}
$$

be satisfied. Then there exists an entire function A_{0} of order $\rho_{A_{0}} \leq \rho$ such that the equation (1) has an entire solution f for which $\left(\lambda_{n}\right)$ is the zero-sequence.

This corollary also follows from the following theorem. The Theorem 2 is our second main result.

Theorem 2. Let $\rho \in(0 ;+\infty),\left(b_{n}\right)$ be an arbitrary sequence of complex numbers and L be the canonical product associated with the sequence $\left(\lambda_{n}\right)$ of distinct complex numbers. If the conditions

$$
\begin{equation*}
\varlimsup_{j \rightarrow \infty} \frac{\log ^{+} \log ^{+} \log ^{+}\left|b_{j}\right|}{\log \left|\lambda_{j}\right|} \leq \rho \tag{5}
\end{equation*}
$$

hold, then there exists an entire function A_{0} of order $\rho_{A_{0}} \leq \rho$ such that the equation (1) has an entire solution f satisfying (2).

To prove Theorem 1 we need the following lemma.
Lemma 1 ([2, p.118]). Let $\left(a_{j, 1}\right)$ and $\left(a_{j, 2}\right)$ be sequences of complex numbers, $\left(\lambda_{j}\right)$ be a sequence of distinct complex numbers in domain $D \subset \mathbb{C}$ with no limit points in D. Then there exists a holomorphic in D function g such that

$$
\begin{equation*}
g\left(\lambda_{j}\right)=a_{j, 1}, \quad g^{\prime}\left(\lambda_{j}\right)=a_{j, 2} \tag{6}
\end{equation*}
$$

for all $j \in \mathbb{N}$.
Proof of Theorem 1. Let

$$
\left\{n_{k}: k \in \mathbb{N}\right\}=\left\{n \in \mathbb{N}: b_{n}=0\right\} \quad \text { and } \quad\left\{m_{k}: k \in \mathbb{N}\right\}=\mathbb{N} \backslash\left\{n_{k}: k \in \mathbb{N}\right\}
$$

Then $\left\{\lambda_{n_{k}}\right\} \cup\left\{\lambda_{m_{k}}\right\}=\left\{\lambda_{n}\right\}$. Let $\log u=\log |u|+\mathrm{i} \varphi, \varphi=\arg u \in[-\pi ; \pi)$, and Q be a holomorphic function in D with simple zeros at the points $\lambda_{n_{k}}$ and $Q\left(\lambda_{m_{k}}\right) \neq 0$ for all k. Denote

$$
a_{j, 1}=\left\{\begin{array}{ll}
\log \frac{b_{j}}{Q\left(\lambda_{j}\right)}, & j \in\left\{m_{k}\right\}, \\
0, & j \notin\left\{m_{k}\right\},
\end{array} \quad a_{j, 2}= \begin{cases}0, & j \notin\left\{n_{k}\right\}, \\
-\frac{Q^{\prime \prime}\left(\lambda_{j}\right)}{2 Q^{\prime}\left(\lambda_{j}\right)}, & j \in\left\{n_{k}\right\} .\end{cases}\right.
$$

By Lemma 1 it follows that there exists a holomorphic function g in D such that (6) is valid. Hence the function

$$
A_{0}=-\frac{Q^{\prime \prime}+2 Q^{\prime} g^{\prime}}{Q}-g^{\prime \prime}-g^{\prime 2}
$$

is holomorphic in D and the function $f=Q e^{g}$ is a solution of the equation (1) and satisfies the condition (2).

To prove Theorem 2 we need the following statement.
Lemma $2([6, p .146-147])$. Let $\rho \in(0 ;+\infty)$ and $\left(\lambda_{n}\right)$ be a sequence of distinct complex numbers. For any sequences $\left(a_{j, 1}\right)$ and ($a_{j, 2}$) of complex numbers such that

$$
\begin{equation*}
\varlimsup_{j \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left|a_{j, s}\right|}{\log \left|\lambda_{j}\right|} \leq \rho, \quad s \in\{1 ; 2\}, \tag{7}
\end{equation*}
$$

there exists at least one entire function g of order $\rho_{g} \leq \rho$ satisfying (6) if and only if the condition (3) and

$$
\begin{equation*}
\varlimsup_{j \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left|\gamma_{j, s}\right|}{\log \left|\lambda_{j}\right|} \leq \rho, \quad s \in\{1 ; 2\}, \tag{8}
\end{equation*}
$$

hold, where $F=L^{2}$,

$$
\begin{gathered}
\gamma_{j, 1}=\left.\left(\frac{\left(z-\lambda_{j}\right)^{2}}{F(z)}\right)\right|_{z=\lambda_{j}}, \quad \gamma_{j, 2}=\left.\left(\frac{\left(z-\lambda_{j}\right)^{2}}{F(z)}\right)^{\prime}\right|_{z=\lambda_{j}} \\
L(z)=\prod_{j=1}^{\infty}\left(1-z / \lambda_{j}\right) \exp \left(\sum_{i}^{p} \frac{1}{i}\left(\frac{z}{\lambda_{j}}\right)^{i}\right)
\end{gathered}
$$

and p is the smallest integer for which the series

$$
\sum_{j} \frac{1}{\left|\lambda_{j}\right|^{p+1}}
$$

converges.
Proof of Theorem 2. Let $\left\{n_{k}: k \in \mathbb{N}\right\}=\left\{n \in \mathbb{N}: b_{n}=0\right\}$ and $\left\{m_{k}: k \in \mathbb{N}\right\}=\mathbb{N} \backslash\left\{n_{k}: k \in \mathbb{N}\right\}$. Then $\left\{\lambda_{n_{k}}\right\} \cup\left\{\lambda_{m_{k}}\right\}=\left\{\lambda_{n}\right\}$. Denote

$$
\begin{aligned}
& Q(z)=\prod_{j=1, j \in\left\{n_{k}\right\}}^{\infty}\left(1-z / \lambda_{j}\right) \exp \left(\sum_{i}^{p} \frac{1}{i}\left(\frac{z}{\lambda_{j}}\right)^{i}\right), \\
& G(z)=\prod_{j=1, j \in\left\{m_{k}\right\}}^{\infty}\left(1-z / \lambda_{j}\right) \exp \left(\sum_{i}^{p} \frac{1}{i}\left(\frac{z}{\lambda_{j}}\right)^{i}\right)
\end{aligned}
$$

and

$$
a_{j, 1}=\left\{\begin{array}{ll}
\log \frac{b_{j}}{Q\left(\lambda_{j}\right)}, & j \in\left\{m_{k}\right\}, \\
0, & j \notin\left\{m_{k}\right\},
\end{array} \quad a_{j, 2}= \begin{cases}0, & j \notin\left\{n_{k}\right\}, \\
-\frac{Q^{\prime \prime}\left(\lambda_{j}\right)}{2 Q^{\prime}\left(\lambda_{j}\right)}, & j \in\left\{n_{k}\right\} .\end{cases}\right.
$$

Since $L(z)=Q(z) G(z), L^{\prime}(z)=Q^{\prime}(z) G(z)+Q(z) G^{\prime}(z)$, we see that $1 / Q\left(\lambda_{m_{k}}\right)=G^{\prime}\left(\lambda_{m_{k}}\right) / L^{\prime}\left(\lambda_{m_{k}}\right)$ and $1 / Q^{\prime}\left(\lambda_{n_{k}}\right)=G\left(\lambda_{n_{k}}\right) / L^{\prime}\left(\lambda_{n_{k}}\right)$. Using (3)-(5), we get that the sequences ($a_{j, 1}$) and ($a_{j, 2}$) satisfy the condition (7). Since

$$
F(z)=\sum_{j=0}^{m} \frac{F^{(j)}\left(\lambda_{j}\right)}{j!}\left(z-\lambda_{j}\right)^{j}+o\left(z-\lambda_{j}\right)^{m}, z \rightarrow \lambda_{j}
$$

4

1. Bank S., A note on the zero-sequences of solutions of linear differential equations, Results in Mathematics 13 (1988), 1-11
2. Berenstein C. and Taylor B., A New Look at Interpolation Theory for Entire Functions of One Variable, Advanced in Mathematics 33 (1979), 109-143.
3. Gel'fond A. O., Calculus of finite Differences, Nauka, Moscow, 1967. (in Russian); English translation: Hindustan Publishing, Delhi, 1971.
4. Heittokangas J. and Laine I., Solutions of $f^{\prime \prime}+A(z) f=0$ with prescribed sequences of zeros, Acta Math. Univ. Comenianae 74 (2005), 287-307.

Go back

Full Screen

Close

Quit
5. Heittokangas J., Solutions of $f^{\prime \prime}+A(z) f=0$ in the unit disk having Blaschke sequences as the zeros, Computational Methods and Function Theory 5 (2005), 49-63.
6. Lapin G. P., Interpolation in the class of entire functions of finite order, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1959), 146-153. (in Russian)
7. Saks S., Zygmund A., Analytic functions, Nakladem Polskiego towarzystwa matematycznego, WarszawaWroclaw, 1952.
8. Sauer A., A note on the zero-sequences of solutions of $f^{\prime \prime}+A f=0$, Proc. Amer. Math. Soc. 125 (1997), 1143-1147.
9. Sheparovych I., On the zeros of solution of equation $f^{\prime \prime}+A(z) f=0$, International Conference Analysis and Topology, May 26 - June 7, 2008, Abstracts, Lviv, p.107-108. (in Ukrainian)
10. Šeda V., On some properties of solutions of the differential equation $y^{\prime \prime}=Q(z) y$, where $Q(z) \not \equiv 0$ is an entire function, Acta F.R.N. Univ. Comen. Mathem. 4 (1959), 223-253. (in Slovak)
11. Vinnitskii B. V. and Shavala E. V., On the Sequences of Zeros of Holomorphic Solutions of Linear Second-Order Differential Equations, Differential Equations 44 (2008), 1361-1366.
B. Vynnyts'kyi, Ivan Franko Drohobych State Pedagogical University, 24, I. Franko str., Drohobych, 82100, Ukraine, e-mail: Vynnytskyi@ukr.net
O. Shavala, Ivan Franko Drohobych State Pedagogical University, 24, I. Franko str., Drohobych, 82100, Ukraine, e-mail: Shavala@ukr.net

[^0]: Key words and phrases. Linear differential equation, entire solutions, interpolation problem, growth order.

