

> | >>

Go back

Full Screen

Close

Quit

REMARKS ON ŠEDA THEOREM

B. VYNNYTS'KYI AND O. SHAVALA

ABSTRACT. We found sufficient conditions on a sequences (λ_n) and (b_n) when the equation $f'' + a_0 f = 0$ has an entire solution f such that $f(\lambda_n) = b_n$.

In [10] V. Šeda proved that for any sequence (λ_n) of distinct complex numbers with no finite limit points there exists an entire function A_0 such that the equation

(1)
$$f'' + A_0 f = 0$$

has an entire solution f with zeros only at points λ_n . On the other hand ([3, p. 201], [7, p. 300–301]), for every sequence (λ_n) of distinct complex numbers with no finite limit points and for every sequence (b_n) of complex numbers there exists an entire function f such that

(2)
$$f(\lambda_n) = b_n$$

This result was extended to the case of functions holomorphic in open subsets of the complex plane \mathbb{C} by C. Berenstein and B. Taylor [2]. In particular, we generalize the above-mentioned results from [10] and [3].

2010 Mathematics Subject Classification. Primary 34M05, 34M10, 30E10.

Key words and phrases. Linear differential equation, entire solutions, interpolation problem, growth order.

Received March 31, 2011.

Theorem 1. For any sequence (λ_n) of distinct complex numbers in the domain $D \subset \mathbb{C}$ with no limit points in D and every sequence (b_n) of complex numbers there exists a holomorphic in D function A_0 such that the equation (1) has a holomorphic solution f satisfying (2).

Šeda result was developed in papers [1, 4, 5, 8, 9]. For meromorphic function A_0 it was extended in [11]. Bank [1] obtained a necessary condition for a sequence with a finite exponent of convergence to be the zero-sequence of a solution of the equation (1). In [1] there is also proved the following proposition.

Theorem A ([1, p. 3]). Let K > 1 be a real number and let (λ_n) be any sequence of non-zero complex points satisfying $|\lambda_{n+1}| \ge K |\lambda_n|$ for $n \in \mathbb{N}$. Then there exists an entire transcendental function A(z) of order zero such that the equation (1) possesses a solution whose zero-sequence is (λ_n) .

In [8] Sauer obtain a more general sufficient condition.

Theorem B ([8, p. 1144]). Let (λ_n) be a sequence with finite exponent of convergence, p be its genus and

$$\mu_k := \prod_{m \neq k} \left(1 - \frac{\lambda_k}{\lambda_m} \right)^{-1} e_p \left(\frac{\lambda_k}{\lambda_m} \right)^{-1},$$

Image: style="text-align: center;">Image: style="text-align: center;"/>Image: style="text-align:

Quit

where $e_p(z)$ denotes the Weierstrass convergence factor. If there exists a real number b > 0 and a positive integer k_0 such that

$$|\mu_k| \le \exp\left(|\lambda_k|^b\right)$$

for all $k \ge k_0$, then (λ_n) is the zero-sequence of a solution of an equation (1) with entire transcendental function $A_0(z)$ of finite order.

In [4] J. Heittokangas and I. Laine improved the above results and, in particular, proved the following statement.

Theorem C ([4, p. 300]). Let (λ_n) be an infinite sequence of non-zero complex points having a finite exponent of convergence λ , a finite genus p and no finite limit points. Let L be the canonical product associated with (λ_n) ,

$$\inf_{k}\left\{\left|\lambda_{k}\right|e^{\left|\lambda_{k}\right|^{q}}\left|L'\left(\lambda_{k}\right)\right|\right\}>0$$

for some $q \ge 0$ and arbitrary $\varepsilon > 0$. Then (λ_n) is the zero-sequence of a solution of an equation (1) with entire transcendental function A_0 such that

 $\rho_{A_0} \le \max\{\lambda + \varepsilon; q\}.$

From estimates in [4] it is possible to get the following result.

Corollary 1. Let $\rho \in (0; +\infty)$, L be the canonical product associated with the sequence (λ_n) of distinct complex numbers and the conditions

(3)
$$\lambda := \lim_{j \to \infty} \frac{\log j}{\log |\lambda_j|} \le \rho,$$

(4) $\overline{\lim_{j \to \infty} \frac{\log^+ \log^+ |1/L'(\lambda_j)|}{\log |\lambda_j|} \le \rho$

be satisfied. Then there exists an entire function A_0 of order $\rho_{A_0} \leq \rho$ such that the equation (1) has an entire solution f for which (λ_n) is the zero-sequence.

This corollary also follows from the following theorem. The Theorem 2 is our second main result.

Theorem 2. Let $\rho \in (0; +\infty)$, (b_n) be an arbitrary sequence of complex numbers and L be the canonical product associated with the sequence (λ_n) of distinct complex numbers. If the conditions

(3), (4) and

5)
$$\overline{\lim_{j \to \infty} \frac{\log^+ \log^+ \log^+ |b_j|}{\log |\lambda_j|}} \le \rho$$

hold, then there exists an entire function A_0 of order $\rho_{A_0} \leq \rho$ such that the equation (1) has an entire solution f satisfying (2).

To prove Theorem 1 we need the following lemma.

Lemma 1 ([2, p. 118]). Let $(a_{j,1})$ and $(a_{j,2})$ be sequences of complex numbers, (λ_j) be a sequence of distinct complex numbers in domain $D \subset \mathbb{C}$ with no limit points in D. Then there exists a holomorphic in D function g such that

(6)
$$g(\lambda_j) = a_{j,1}, \qquad g'(\lambda_j) = a_{j,j}$$

for all $j \in \mathbb{N}$.

Proof of Theorem 1. Let

$$\{n_k : k \in \mathbb{N}\} = \{n \in \mathbb{N} : b_n = 0\} \quad \text{and} \quad \{m_k : k \in \mathbb{N}\} = \mathbb{N} \setminus \{n_k : k \in \mathbb{N}\}.$$

Then $\{\lambda_{n_k}\} \cup \{\lambda_{m_k}\} = \{\lambda_n\}$. Let $\log u = \log |u| + i \varphi$, $\varphi = \arg u \in [-\pi; \pi)$, and Q be a holomorphic function in D with simple zeros at the points λ_{n_k} and $Q(\lambda_{m_k}) \neq 0$ for all k. Denote

$$a_{j,1} = \begin{cases} \log \frac{b_j}{Q(\lambda_j)}, & j \in \{m_k\}, \\ 0, & j \notin \{m_k\}, \end{cases} \qquad a_{j,2} = \begin{cases} 0, & j \notin \{n_k\}, \\ -\frac{Q''(\lambda_j)}{2Q'(\lambda_j)}, & j \in \{n_k\}. \end{cases}$$

Close

Quit

By Lemma 1 it follows that there exists a holomorphic function g in D such that (6) is valid. Hence the function

$$A_0 = -\frac{Q'' + 2Q'g'}{Q} - g'' - g'^2$$

is holomorphic in D and the function $f = Qe^g$ is a solution of the equation (1) and satisfies the condition (2).

To prove Theorem 2 we need the following statement.

Lemma 2 ([6, p. 146–147]). Let $\rho \in (0; +\infty)$ and (λ_n) be a sequence of distinct complex numbers. For any sequences $(a_{j,1})$ and $(a_{j,2})$ of complex numbers such that

(7)
$$\overline{\lim_{j \to \infty} \frac{\log^+ \log^+ |a_{j,s}|}{\log |\lambda_j|}} \le \rho, \qquad s \in \{1; 2\},$$

there exists at least one entire function g of order $\rho_g \leq \rho$ satisfying (6) if and only if the condition (3) and

(8)
$$\overline{\lim_{j \to \infty} \frac{\log^+ \log^+ |\gamma_{j,s}|}{\log |\lambda_j|}} \le \rho, \qquad s \in \{1; 2\},$$

hold, where $F = L^2$,

$$\gamma_{j,1} = \left(\frac{(z-\lambda_j)^2}{F(z)}\right)\Big|_{z=\lambda_j}, \qquad \gamma_{j,2} = \left(\frac{(z-\lambda_j)^2}{F(z)}\right)'\Big|_{z=\lambda_j},$$
$$L(z) = \prod_{j=1}^{\infty} (1-z/\lambda_j) \exp\left(\sum_i^p \frac{1}{i} \left(\frac{z}{\lambda_j}\right)^i\right)$$

and p is the smallest integer for which the series

$$\sum_{j} \frac{1}{\left|\lambda_{j}\right|^{p+1}}$$

converges.

Proof of Theorem 2. Let $\{n_k : k \in \mathbb{N}\} = \{n \in \mathbb{N} : b_n = 0\}$ and $\{m_k : k \in \mathbb{N}\} = \mathbb{N} \setminus \{n_k : k \in \mathbb{N}\}$. Then $\{\lambda_{n_k}\} \cup \{\lambda_{m_k}\} = \{\lambda_n\}$. Denote

$$Q(z) = \prod_{j=1,j\in\{n_k\}}^{\infty} (1 - z/\lambda_j) \exp\left(\sum_{i=1}^{p} \frac{1}{i} \left(\frac{z}{\lambda_j}\right)^i\right),$$
$$G(z) = \prod_{j=1,j\in\{m_k\}}^{\infty} (1 - z/\lambda_j) \exp\left(\sum_{i=1}^{p} \frac{1}{i} \left(\frac{z}{\lambda_j}\right)^i\right)$$

and

$$a_{j,1} = \begin{cases} \log \frac{b_j}{Q(\lambda_j)}, & j \in \{m_k\}, \\ 0, & j \notin \{m_k\}, \end{cases} \qquad a_{j,2} = \begin{cases} 0, & j \notin \{n_k\}, \\ -\frac{Q''(\lambda_j)}{2Q'(\lambda_j)}, & j \in \{n_k\}. \end{cases}$$

Since L(z) = Q(z)G(z), L'(z) = Q'(z)G(z) + Q(z)G'(z), we see that $1/Q(\lambda_{m_k}) = G'(\lambda_{m_k})/L'(\lambda_{m_k})$ and $1/Q'(\lambda_{n_k}) = G(\lambda_{n_k})/L'(\lambda_{n_k})$. Using (3)–(5), we get that the sequences $(a_{j,1})$ and $(a_{j,2})$ satisfy the condition (7). Since

$$F(z) = \sum_{j=0}^{m} \frac{F^{(j)}(\lambda_j)}{j!} (z - \lambda_j)^j + o(z - \lambda_j)^m, z \to \lambda_j$$

Quit

for each $m \in \mathbb{Z}_+$, we have

$$\gamma_{j,1} = \frac{2}{F''(\lambda_j)}, \qquad \gamma_{j,2} = -\frac{2}{3} \frac{F'''(\lambda_j)}{(F''(\lambda_j))^2}.$$

Since

$$F''(\lambda_j) = 2(L'(\lambda_j))^2, \qquad F'''(\lambda_j) = -2L''(\lambda_j)/L'(\lambda_j),$$

then

$$\gamma_{j,1} = \frac{1}{(L'(\lambda_j))^2}, \qquad \gamma_{j,2} = \frac{L''(\lambda_j)}{3(L'(\lambda_j))^5}.$$

Taking into account (3) and (4), we obtain (8). From Lemma2 it follows that there exists an entire function g such that the condition (6) holds. Moreover $\rho_g \leq \rho$. Then $f = Qe^g$ is a solution of the equation (1), where

$$A_0 = -\frac{Q'' + 2Q'g'}{Q} - g'' - {g''}^2$$

By standard metods we obtain $\rho_{A_0} \leq \rho$.

A question of sharpness of the condition (7) remains open.

- 1. Bank S., A note on the zero-sequences of solutions of linear differential equations, Results in Mathematics 13 (1988), 1–11.
 - Berenstein C. and Taylor B., A New Look at Interpolation Theory for Entire Functions of One Variable, Advanced in Mathematics 33 (1979), 109–143.
 - 3. Gel'fond A. O., *Calculus of finite Differences*, Nauka, Moscow, 1967. (in Russian); English translation: Hindustan Publishing, Delhi, 1971.
 - 4. Heittokangas J. and Laine I., Solutions of f'' + A(z)f = 0 with prescribed sequences of zeros, Acta Math. Univ. Comenianae 74 (2005), 287–307.

Quit

Go back

Full Screen

Close

- 5. Heittokangas J., Solutions of f'' + A(z)f = 0 in the unit disk having Blaschke sequences as the zeros, Computational Methods and Function Theory 5 (2005), 49–63.
- Lapin G. P., Interpolation in the class of entire functions of finite order, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1959), 146–153. (in Russian)
- Saks S., Zygmund A., Analytic functions, Nakladem Polskiego towarzystwa matematycznego, Warszawa-Wroclaw, 1952.
- **8.** Sauer A., A note on the zero-sequences of solutions of f'' + Af = 0, Proc. Amer. Math. Soc. **125** (1997), 1143–1147.
- **9.** Sheparovych I., On the zeros of solution of equation f'' + A(z)f = 0, International Conference Analysis and Topology, May 26 June 7, 2008, Abstracts, Lviv, p.107–108. (in Ukrainian)
- **10.** Šeda V., On some properties of solutions of the differential equation y'' = Q(z)y, where $Q(z) \neq 0$ is an entire function, Acta F.R.N. Univ. Comen. Mathem. **4** (1959), 223–253. (in Slovak)
- Vinnitskii B. V. and Shavala E. V., On the Sequences of Zeros of Holomorphic Solutions of Linear Second-Order Differential Equations, Differential Equations 44 (2008), 1361–1366.

B. Vynnyts'kyi, Ivan Franko Drohobych State Pedagogical University, 24, I. Franko str., Drohobych, 82100, Ukraine, *e-mail*: Vynnytskyi@ukr.net

O. Shavala, Ivan Franko Drohobych State Pedagogical University, 24, I. Franko str., Drohobych, 82100, Ukraine, *e-mail*: Shavala@ukr.net

