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CHARACTERIZATION OF SPACING SHIFTS
WITH POSITIVE TOPOLOGICAL ENTROPY

D. AHMADI and M. DABBAGHIAN

Abstract. Suppose P ⊆ N and let (ΣP , σP ) be the spacing shift defined by P . We show that if the

topological entropy h(σP ) of a spacing shift is equal zero, then (ΣP , σP ) is proximal. Also h(σP ) = 0
if and only if P = N \ E where E is an intersective set. Moreover, we show that h(σP ) > 0 implies
that P is a ∆∗-set; and by giving a class of examples, we show that this is not a sufficient condition.
Using these results we solve question 5 given in [J. Banks et al., Dynamics of Spacing Shifts, Discrete
Contin. Dyn. Syst., to appear].

1. Introduction and Definitions

In this paper we give a characterization of spacing shifts with positive topological entropy by the
combinatorial property of the set P ⊆ N which defines a spacing shift. A detailed study of spacing
shifts can be found in [1], so here we only consider the basic definitions and notions needed for our
task.

A topological dynamical system (TDS) is a pair (X, T ) such that X is a compact metric space
with metric d and T is a continuous surjective self map. The orbit closure of a point x in (X, T )
is the set O(x) = {Tn(x) : n ∈ N}. A system (X, T ) is transitive if it has a point x such that
O(x) = X. Also a point x is recurrent if for every neighborhood U of x there exists n 6= 0 such
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that Tn(x) ∈ U . We let N(x, U) = {n ∈ N : Tn(x) ∈ U} and N(U, V ) = {n ∈ N : Tn(U)∩V 6= ∅}
where U and V are non-empty open sets.

Let x1, x2 ∈ X. One says that (x1, x2) ∈ X ×X is a proximal pair if

lim inf
n→∞

d(Tn(x), Tn(y)) = 0;

and a TDS is called proximal if all (x1, x2) ∈ X ×X are proximal pairs.
A setD ⊂ N is called ∆-set if there exists an increasing sequence of natural numbers S = (sn)n∈N

such that the difference set ∆(S) = {si − sj : i > j} ⊂ D. Denote by ∆ the set of all ∆-sets.
Let A = {an}n∈N be an increasing sequence of natural numbers. Then s = ai1 + ai2 + . . . +

ain , ij < ij+1 is called a partial finite sum of A. The finite sums set of A denoted by FS(A) is
the set of all partial finite sums. A set F ⊂ N is called IP -set if it contains the finite sums set of
an increasing sequence of natural numbers. Let IP be the set of all IP -sets. A subset of natural
numbers is called an (IP − IP )-set if it contains ∆(F ) where F ∈ IP. Any IP -set is a ∆-set; for
set S = {a1, a1 + a2, a1 + a2 + a3, . . .}, and trivially any (IP − IP )-set is an IP -set.

A collection F of non-empty subsets of N is called a family if it is hereditary upward: if F ∈ F
and F ⊂ F ′, then F ′ ∈ F . The dual family F∗ is defined to be the family of all subsets of N that
meet all sets in F . That is

F∗ = {G ⊂ N : G ∩ F 6= ∅, ∀F ∈ F}.
Hence IP∗ and ∆∗ are the dual families of IP and ∆, respectively.

The notions for a subset of natural numbers such as ∆ or IP are structural notions. For instance,
an IP -set is more structured than a ∆-set. Other structures are also defined [7] and [3]. There are
also notions for largeness which are defined by means of densities on subsets of natural numbers.
See [7], [2] for a rather complete treatment for both of these notions. Let A ⊆ N. Then

d(A) = lim sup
n→∞

|A ∩ {1, . . . , n}|
n
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is called the upper density of A. Also the lower density is defined as

d(A) = lim inf
n→∞

|A ∩ {1, . . . , n}|
n

.

When d(A) = d(A), then this common value is called the density of A and is denoted by d(A).
The upper Banach density of A is denoted by d∗(A) and is defined as

d∗(A) = lim sup
Ni−Mi→∞

|A ∩ {Mi, Mi + 1, . . . , Ni}|
Ni −Mi + 1

.

When there is k ∈ N such that all the intervals contained in N \A have length less than k, then
A is called syndetic. The length of the largest of such intervals will be called the gap of A. Clearly,
d(A) > 0 for any syndetic set A. The dual of syndetic sets are thick sets; a set is thick if and only
if d∗(A) = 1. We say A is thickly syndetic if for every N the positions where consecutive elements
of length N begin form a syndetic set.

Note that ∆∗-sets are highly structured and are syndetic [3]. Another kind of large and struc-
tured subsets of N are Bohr sets. We say that a subset A ⊂ N is a Bohr set if there exist m ∈ N,
α ∈ T = {z ∈ C : |z| = 1} and open set U ⊂ Tm such that the set

{n ∈ N : nα ∈ U}

is contained in A. In particular, every kN is a Bohr set.
Let (Σ, σ) denote the one-sided full shift over {0, 1}. We are dealing with one-sided shifts, but

all results hold mutatis mutandis, in the two-sided case.

Definition 1.1. For any set P ⊂ N, define a spacing shift to be the set

ΣP = {s ∈ Σ : si = sj = 1 ⇒ |i− j| ∈ P ∪ {0}}.

By σP we denote the shift map restricted to ΣP .
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With any y ∈ ΣP we associate a set Ay = {i : yi = 1}. Therefore, any notion of largeness and
structure for Ay gives analogous notion for points in the shift. That is we set

d(y) := d(Ay) = lim
n→∞

∑n
1 yi
n

= lim
n→∞

|Ay ∩ {1, . . . , n}|
n

.

Similarly, d(y), d(y) and d∗(y) can be defined.
By Definition 1.1, it is clear that Ay −Ay ⊂ P .
Let (Σ, σ) be a shift space on a set of finite alphabet A. A word of length n in x = x1x2 . . . ∈ Σ

is an element of An of the form xixi+1 . . . xi+n−1 for some i ∈ N. The topological entropy of Σ
denoted by h(σ) is defined as

h(σ) = lim
n→∞

1
n

log |Ln(Σ)|(1.1)

where Ln(X) is the set of all words of length n and |I| denotes the cardinality of I.

2. Zero entropy gives proximality

The following questions arise in [1, Question 5].
1. Is there P such that N \ P does not contain IP -set but ΣP is proximal?
2. Is there P such that N \ P does not contain IP -set but h(σP ) > 0?
3. Are proximality and zero entropy essentially different in the context of spacing shifts?

We give positive answer to the first question but negative to the second. In fact for the second
question we will show that if N \ P contains ∆-set (and hence IP -set), then the entropy is zero.
For the last question, we will show that zero entropy in spacing shifts implies proximality.

For any x, y ∈ ΣP , let

Fxy(t) = lim inf
n→∞

1
n
|{0 ≤ m ≤ n− 1 : d(σm(x), σm(y)) < t}|.
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Remark 2.1. In [1] the authors show that if there are x, y ∈ ΣP , t > 0 such that Fxy(t) < 1,
then h(σP ) > 0. If such x, y and t exist, then there exists y′ ∈ ΣP such that d(y′) > 0. To
see it, let t = 2−l, then there exists an increasing sequence {qi}∞i=1 and ε > 0 such that either
|{0 ≤ j ≤ qi : xj 6= 0}| > qiε

l+1 , or |{0 ≤ j ≤ ti : yj 6= 0}| > qiε
l+1 . Hence d(x) or d(y) is positive.

In [1, Lemma 3.5], it was proved that if N \ P contains an IP -set, then d(y) = 0 for y ∈ ΣP .
We give a stronger result with a simpler proof.

Theorem 2.2. If N \ P contains a ∆-set, then d∗(y) = 0 for all y ∈ ΣP .

Proof. If y ∈ ΣP , then Ay − Ay ⊂ P . But if there is y such that d∗(y) > 0 then Ay − Ay is a
∆∗-set [5] and N \ P cannot have a ∆-set. �

The following result is a reformulation of two results in [1].

Theorem 2.3. If for all y ∈ ΣP , d(y) = 0, then

1. h(σP ) = 0,
2. σP is proximal.

Proof. (1) and (2) are proved in [1, Theorem 3.6] and [1, Theorem 3.11] respectively for the
case when N \ P contains an IP -set. The proof of these theorems are based on the fact that if
N \P contains an IP -set then d(y) = 0, for any y ∈ ΣP . Then this last result will lead to the both
conclusions. �

Again the proof of the next Theorem is a minor alteration of the proof of [1, Theorem 3.18].

Theorem 2.4. There exists y ∈ ΣP with d∗(y) > 0 if and only if h(σP ) > 0.
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Proof. First suppose there exists a point y ∈ ΣP such that d∗(y) > 0, so there exist two
increasing sequences {Mi}∞i=1, {Ni}∞i=1 and γ > 0 such that

|{Mi ≤ j ≤ Ni : yj = 1}| ≥ (Ni −Mi)γ.

Then by definition of topological entropy for shift spaces (1.1), we have

h(σP ) ≥ lim
Ni−Mi→∞

1
Ni −Mi

log(2(Ni−Mi)γ) > 0.

Conversely, if for any y ∈ ΣP , d∗(y) = 0, then d(y) = 0 and the proof follows from Theorem 2.3. �

An immediate consequence of the above theorem is that if P is not in ∆∗, then h(σP ) = 0. In
particular, this sorts out the second question.

By Theorem 2.3, if h(σP ) > 0, then there is a point y ∈ ΣP such that d(y) > 0. Combining this
with the results of the above Theorem, we have the following.

Corollary 2.5. There is a point y ∈ ΣP with d(y) > 0 if and only if for some y′ ∈ ΣP we have
d∗(y′) > 0.

The following gives an answer to the third question. Moreover, this result and the fact that
when P misses an IP -set, then it is not ∆∗ and so has zero entropy, are an answer for the first
question as well.

Theorem 2.6. If h(σP ) = 0, then ΣP is proximal.

Proof. Suppose h(σP ) = 0. Then by Theorem 2.4, for any y ∈ ΣP , we have d∗(y) = 0 which
implies that d({i : yi = 0}) = 1. Hence for any two points x, y ∈ ΣP , d({i : xi = 0} ∩ {i : yi =
0}) = 1 and this in turn implies that ΣP is proximal. �
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3. A necessary condition for transitivity

The question how to characterize such set P that define transitive spacing shifts remains open [1,
Question 1]. Nevertheless, we offer here some remarks. A necessarity is the following.

Theorem 3.1. Suppose ΣP is transitive. Then P is an (IP − IP )-set.

Proof. For any TDS such as (X, T ), the return times of a recurrence point x to any non-
empty open set U , that is, N(x, U) = {n ∈ N : Tn(x) ∈ U} is an IP -set [6, Theorem 2.17].
Now let y be a transitive point. Then y is a recurrence point and N(y, [1]) is an IP -set. But
N(y, [1]) = {yi : yi = 1} = Ay and so Ay −Ay ⊂ P and as a result P is an (IP − IP )-set. �

An application of the above theorem is that any thick subset of natural numbers is an (IP−IP )-
set. This is because (ΣP , σP ) is weakly mixing if and only if P is thick (see [8, Theorem 2.2]), and
it is well known that any weakly mixing TDS is transitive.

It is not hard to see that for any infinite subset A of N, the spacing shift (ΣP , σP ) where
P = FS(A)−FS(A) is a transitive system. On the other hand, let k ≥ 3, p2 > p1 and p2−p1 6= kn
for any n ∈ N. Now if P = kN∪{p1, p2}, then ΣP is not transitive, since for open sets U = [10p1−11]
and V = [10p2−11], the set N(U, V ) is empty, however P is clearly an (IP − IP )-set.

By now we understand that this is the structure in P and not density which gives interesting
dynamics to our spacing shifts systems. For instance, if P is not a ∆-set, then for all y ∈ ΣP ,∑∞
i=1 yi <∞. This gives a very simple dynamics to ΣP . In fact, the orbit of any point is a finite

set, as any point is mapped eventually onto the fixed point 0∞. So one may choose P to have high
density and yet (ΣP , σP ) with simple dynamics. As an example, for any ε > 0, let 1

k < ε and set
P = N \ kN. Then d(P ) ≥ 1− ε, and P is not a ∆-set since kN is a ∆∗-set.
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4. Combinatorial characterization for zero entropy

In section 2, we showed that P must be at least ∆∗-set, that is a highly structured and large set to
have positive entropy. Here we show that even if P is a ∆∗-set, it is not guaranteed that h(σP ) > 0.

One calls E ⊂ N a density intersective set if for any A ⊂ N with positive upper Banach density,
we have E ∩ (A−A) 6= ∅. For instance, any IP -set is a density intersective set. In fact, if R ⊂ N
is an IP -set and p(·) is a polynomial such that p(N) ⊂ N, then E = {p(n) : n ∈ R} is a density
intersective set [4].

Theorem 4.1. The topological entropy of a spacing shift (ΣP , σP ) is equal to zero if and only
if P = N \ E where E is a density intersective set.

Proof. Suppose h(σP ) = 0. If E = N \P is not density intersective, then there must be a set A
with positive upper Banach density such that A−A ⊆ P . Choose y ∈ Π∞i=0{0, 1} such that yi = 1
if and only if i ∈ A. Then y ∈ ΣP and A = Ay. But this is absurd by Theorem 2.4.

For the other side, if E is density intersective, then P does not contain any A − A where A is
as above. Therefore, for all y ∈ ΣP , d∗(y) = 0 which implies h(σP ) = 0. �

It is an easy exercise to show that {n2 : n ∈ N} does not contain any ∆-set. So P = N \E is a
∆∗-set and by the above theorem, h(σP ) = 0.

4.1. Positive entropy with no non-zero periodic points

Any spacing shift has 0∞ as its periodic point. But a spacing shift has a non-zero periodic point of
period k if and only if P contains kN [1, Lemma 2.6]. This implies there is a point y with d(y) ≥ 1

k
and so by Theorem 2.4, we have positive entropy.

Theorem 4.2. There is P such that ΣP has positive entropy with no non-zero periodic points.

Proof. A theorem of Kř́ıž [9] states that there is a set A with positive upper Banach density
whose difference set contains no Bohr set. So let y = {yi}i∈N be defined by yi = 1 if and only if
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i ∈ A. Set P = A − A. Then y ∈ ΣP , Ay = A and d(y) = d(A) > 0. Therefore, h(σP ) > 0 and
since P does not contain any Bohr set, it does not contain any kN and the proof is complete. �

Note that more can be said on the dynamical properties of the spacing shift produced with the
set P given by Kř́iz̆. For instance, D. Kwietniak [10] used that and gave an example of a proximal
spacing shift with positive entropy.
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2. Beiglböck M., Bergelson V., Hindman N. and Strauss D., Multiplicative Structures in Additive Large Sets,
Journal of Combinatorial Theory (Ser. A) 113 (2006), 1291–1242.

3. Bergelson V., Minimal Idempotents and Ergodic Ramsey Theory, Topics in Dynamics and Ergodic Theory 8-39,
London Math. Soc. Lecture Notes Series 310, Cambridge Univ. Press, Cambridge, 2003.

4. Bergelson V., Furstenberg H. and McCutcheon R., IP-Sets and Polynomial Recurrence, Ergod. Th. & Dynam.
Sys., 16 (1996), 963–974.

5. Bergelson V., Hindman N. and McCutcheon R., Notions of Size and Combinatorial Properties of Quotient Sets

in Semigroups, Topology Proceedings 23 (1998), 23–60.
6. Furstenberg H., Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures,

Princeton University Press, Prinston, N. J., (1981).
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