ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM

A. DUBICKAS and A. NOVIKAS

Abstract

Let $E(4)$ be the set of positive integers expressible by the form $4 M-d$, where M is a multiple of the product $a b$ and d is a divisor of the sum $a+b$ of two positive integers a, b. We show that the set $E(4)$ does not contain perfect squares and three exceptional positive integers $288,336,4545$ and verify that $E(4)$ contains all other positive integers up to $2 \cdot 10^{9}$. We conjecture that there are no other exceptional integers. This would imply the Erdős-Straus conjecture asserting that each number of the form $4 / n$, where $n \geq 2$ is a positive integer, is the sum of three unit fractions $1 / x+1 / y+1 / z$. We also discuss similar problems for sets $E(t)$, where $t \geq 3$, consisting of positive integers expressible by the form $t M-d$. The set $E(5)$ is related to a conjecture of Sierpiński, whereas the set $E(t)$, where t is any integer greater than or equal to 4 , is related to the most general in this context conjecture of Schinzel.

1. Introduction

Let t be a fixed positive integer. In this paper we consider the set of positive integers

$$
E(t):=\{n: n=t M-d\},
$$

where M is a positive multiple of the product and d is a positive divisor of the sum of two positive integers, namely,

$$
a b \mid M \quad \text { and } \quad d \mid(a+b)
$$

Received November 10, 2011; revised June 21, 2012.
2010 Mathematics Subject Classification. Primary 11D68, 11D09, 11 Y50.
for some $a, b \in \mathbb{N}$. Evidently,

$$
E\left(t^{\prime}\right) \subseteq E(t) \quad \text { whenever } \quad t \mid t^{\prime}
$$

It is easy to see that

$$
\begin{equation*}
E(1)=E(2)=\mathbb{N} \tag{1}
\end{equation*}
$$

Indeed, suppose first that $t=1$. Then, for each $n \in \mathbb{N}$ selecting $a=2 n+1, b=1, M=a b=2 n+1$ and $d=(a+b) / 2=n+1$, we find that

$$
n=2 n+1-(n+1)=M-d,
$$

giving $E(1)=\mathbb{N}$. In case $t=2$, for each $n \in \mathbb{N}$ we may choose $a=n+1, b=1, M=a b=n+1$ and $d=a+b=n+2$. Then $2 M-d=2(n+1)-(n+2)=n$, so that $E(2)=\mathbb{N}$.

Apart form (1) the situation with $t \geq 3$ is not clear. In this context, the sets $E(4)$ and $E(5)$ are of special interest because an integer n belongs to the set $E(t)$ if and only if

$$
n=t M-d=t u a b-(a+b) / v
$$

with some $a, b, u, v \in \mathbb{N}$. Therefore, $n \in E(t)$ yields the representation

$$
\frac{t}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

with positive integers

$$
x:=u a b, \quad y:=u v n a, \quad z:=u v n b .
$$

Thus if $n \in E(t)$, then the fraction t / n is expressible by the sum of three unit fractions. In particular, if every prime number p belongs to the set $E(4)$, then the Erdős-Straus conjecture (asserting that for each integer $n \geq 2$, the fraction $4 / n$ is expressible by the sum $1 / x+1 / y+1 / z$ with $x, y, z \in \mathbb{N}$) is true, whereas if every prime number p belongs to $E(5)$, then the corresponding conjecture of Sierpiński (asserting that for each $n \geq 4$, the fraction $5 / n$ is expressible by the sum $1 / x+1 / y+1 / z)$ is true [10]. In this context, the most general Schinzel's conjecture asserts that

4 4 4 \mid | \mid
Go back

Full Screen

Close
the fraction t / n for each $n \geq n(t)$ is expressible by the sum $1 / x+1 / y+1 / z$. This clearly holds for $t \leq 3$, but is open for each fixed $t \geq 4$. Conjecture 5 given in Section 3 implies that there is an integer $C(t)$ such that each prime number $p>C(t)$ belongs to $E(t)$. This would imply Schinzel's conjecture as well.

Yamamoto [12], [13] and Mordell [8] observed that it is sufficient to prove the Erdős-Straus conjecture for those prime numbers p which modulo 840 are $1,121,169,289,361$ or 529 . Vaughan [11] showed that the Erdős-Straus conjecture is true for almost all positive integers n. See also the list of references in D11 for the literature concerning the conjectures of Erdős-Straus, Sierpiński and Schinzel on Egyptian fractions. More references on the Erdős-Straus (including recent ones) can be found in a paper of Elsholtz and Tao [4] on the average number of solutions of the equation $4 / p=1 / x+1 / y+1 / z$ with prime numbers p. At the computational side the calculations of Swett http://math.uindy.edu/swett/esc.htm show that the Erdős-Straus conjecture holds for integers n up to 10^{14}.

In this note we observe that the following holds
Theorem 1. The set $E(4)$ does not contain perfect squares and the numbers 288, 336, 4545.
Suppose $k^{2} \in E(4)$, i.e., there exist $u, v, a, b, k \in \mathbb{N}$ such that

$$
\begin{equation*}
v\left(4 u a b-k^{2}\right)=a+b . \tag{2}
\end{equation*}
$$

To show that $k^{2} \notin E(4)$, we shall use the following fact
Lemma 2. The equation (2) has no solutions in positive integers u, v, a, b, k.
Lemma 2 implies that $-d$ is a quadratic nonresidue modulo $4 a b$ if $d \mid(a+b)$. Indeed, if the number $-d$ were a quadratic residue modulo $4 a b$, then by selecting the positive integer $v:=(a+b) / d$, we would see that the equation $k^{2}=-d+4 u a b$ with $u \in \mathbb{N}$ has a solution $k \in \mathbb{N}$, which is impossible in view of Lemma 2. Note that the set of divisors of $a+b$, when $a<b$ both run through the set $\{1,2, \ldots, n\}$, contains the set $\{1,2, \ldots, 2 n-1\}$. Thus, by Lemma 2 , it holds

44 4 | \mid |

Go back

Full Screen
Lemma 2 was apparently first proved by Yamamoto [13]. See also [9, Lemma 2] and [4, Proposition 1.6]. Here is a short proof.

Close
Since $a=v d-b$, equality (2) yields

$$
k^{2}=4 u(v d-b) b-d=(4 b u v-1) d-4 b^{2} u
$$

So if (2) has a solution in positive integers, then the Jacobi symbol $\left(\frac{-4 b^{2} u}{4 b u v-1}\right)=\left(\frac{k^{2}}{4 b u v-1}\right)$ must be equal to 1 . Indeed, since $-4 b^{2} u$ and $4 b u v-1$ are relatively prime, we have $\left(\frac{-4 b^{2} u}{4 b u v-1}\right) \neq 0$, and so $\left(\frac{k^{2}}{4 b u v-1}\right)=1$. We will show, however, that the Jacobi symbol $\left(\frac{-4 b^{2} u}{4 b u v-1}\right)$ is equal to -1 . Indeed, write $u \in \mathbb{N}$ in the form $u=2^{r} u_{0}$, where $r \geq 0$ is an integer and $u_{0} \geq 1$ is an odd integer. Using $\left(\frac{-1}{4 b u v-1}\right)=-1$ and also $\left(\frac{2}{4 b u v-1}\right)=1$ in case u is even, i.e., $r \geq 1$, we find that

$$
\left(\frac{-4 b^{2} u}{4 b u v-1}\right)=\left(\frac{-2^{r+2} b^{2} u_{0}}{4 b u v-1}\right)=-\left(\frac{2^{r} u_{0}}{4 b u v-1}\right)=-\left(\frac{u_{0}}{4 b u v-1}\right) .
$$

Further, by the quadratic reciprocity law, in view of $u_{0} \mid u$ we conclude that

$$
-\left(\frac{u_{0}}{4 b u v-1}\right)=-(-1)^{\left(u_{0}-1\right) / 2}\left(\frac{4 b u v-1}{u_{0}}\right)=-(-1)^{\left(u_{0}-1\right) / 2}\left(\frac{-1}{u_{0}}\right)=-1 .
$$

Lemma 2 implies that $k^{2} \notin E(4)$. To complete the proof of Theorem 1 we need to show that $288,336,4545 \notin E(4)$.

The case $n=288$ can be easily checked 'by hand'. Observe that $288=4 M-d$ implies that $d=4 s$ and $M=(288+4 s) / 4=72+s$. Furthermore, from

$$
72+s=M \geq a b \geq a+b-1 \geq d-1=4 s-1
$$

we find that $1 \leq s \leq 24$. So for each $s=1,2, \ldots, 24$, it remains to check that there are no positive integers a, b for which $4 s \mid(a+b)$ and $a b \mid(72+s)$.

Note first that for $s \geq 11$ we must have $a+b=4 s$ and $a b=72+s$. Indeed, if $a+b>4 s$, then $a+b \geq 8 s$ and so

$$
72+s=M \geq a b \geq a+b-1 \geq 8 s-1
$$

44 4 | \bullet |
Go back

Full Screen

Close
which is impossible, because $s \geq 11$. If $a b<72+s$, then $2 a b \leq 72+s$, so that

$$
72+s \geq 2 a b \geq 2(a+b-1) \geq 2(d-1)=2(4 s-1)=8 s-2
$$

which is a contradiction again. However, from $a+b=4 s$ and $a b=72+s$ it follows that

$$
(4 s)^{2}-4(72+s)=4\left(4 s^{2}-s-72\right)
$$

is a perfect square. So $4 s^{2}-s-72$ must be a perfect square. It remains to check the values of s between 11 and 24 which modulo 4 are 0 or 3 , namely, $s=11,12,15,16,19,20,23,24$. For none of these values, $4 s^{2}-s-72$ is a perfect square.

The values of s between 1 and 10 can also be excluded, because there are no a, b with $a b \mid(72+s)$ for which $4 s$ divides $a+b$; see the Table 1 below.

To complete the proof of the theorem, observe that if $n=t M-d$, then

$$
n \geq t a b-a-b \geq t a^{2}-2 a
$$

in case $a \leq b$. Hence $(a t-1)^{2} \leq n t+1$ and $b \leq(a+n) /(t a-1)$. Therefore, all values from 1 to 10000 which do not belong to $E(4)$ can be found with Maple as follows:

```
for n from 1 to 10000 do s := true;
    for a from 1 by 1 while (s and (at-1) 2}\leqtn+1) d
        B := (a+n)/(ta-1);
        for b from a by 1 while (s and b\leqB) do
            if }a+b(\operatorname{mod}tab-n(\operatorname{mod}tab))=0\mathrm{ then }s:= false endif
        endfor;
    endfor;
    if s then }k:=k+1
        print(n);
    endif;
endfor;
print(k):
```

For every particular value of n from 1 to 10000 , we check all the pairs (a, b) which satisfy the above inequalities for the existence of an appropriate value of d, i.e., for the divisibility of $a+b$ by some positive integer of the form $d=t u a b-n$. However, $d \leq a+b \leq t a b$ which means that there is only one possible such integer d. Take a unique integer in the interval [1,tab] which equals $-n$ modulo $t a b$. It can be expressed as $t a b-n(\bmod t a b)$, as in the pseudocode describing our algorithm above. To obtain a code for Maple, one only needs to change both 'endfor' and 'endif' to 'end'.

s	1	2	3	4	5	6	7	8	9	10
$4 s$	4	8	12	16	20	24	28	32	36	40
$72+s$	73	$2 \cdot 37$	$3 \cdot 5^{2}$	$2^{2} \cdot 19$	$7 \cdot 11$	$2 \cdot 3 \cdot 13$	79	$2^{4} \cdot 5$	3^{4}	$2 \cdot 41$

Table 1.

As a result (in less than three seconds), we got that only 100 perfect squares and three exceptional numbers $288,336,4545$ less than 10000 do not lie in $E(4)$. This completes the proof of Theorem 1.

The calculation to the bound 10^{6} with Maple took us almost 40 minutes, so all the calculations of the next section to the bound $2 \cdot 10^{9}$ have been performed with $\mathrm{C}++$.

3. Some speculations concerning the sets $E(t)$

As we already observed in (1), the sets $\mathbb{N} \backslash E(1)$ and $\mathbb{N} \backslash E(2)$ are empty. By Lemma 2, the equation $v\left(4 u a b-k^{2}\right)=a+b$ has no solutions in positive integers u, v, a, b, k. In particular, if t is

4 $4 \mid$ \& \mid • \mid

Go back

Full Screen

Close
$a+b$ has no solutions in positive integers u, v, a, b, k. The latter is equivalent to the equation $v\left(t u a b-s k^{2}\right)=a+b$. Consequently, we obtain the following corollary

Corollary 4. The set $E(t)$, where $4 \mid t$, does not contain the numbers of the form $s k^{2}$, where $s \in \mathbb{N}$ satisfies $4 s \mid t$ and $k \in \mathbb{N}$.

In particular, this implies that the set $\mathbb{N} \backslash E(t)$ is infinite when $4 \mid t$. We conjecture that all other sets, namely, $\mathbb{N} \backslash E(t)$ with $t \in \mathbb{N}$ which is not a multiple of 4 are finite. More precisely, we get next conjecture

Conjecture 5. There exists an integer $C(t) \in \mathbb{N} \cup\{0\}$ such that the set $E(t)$ contains all integers greater than or equal to $C(t)+1$ if 4 does not divide t and all integers greater than or equal to $C(t)+1$ except for $s k^{2}$, where $4 s \mid t$ and $k \in \mathbb{N}$, if $4 \mid t$.

By (1), we have $C(1)=C(2)=0$. It is known that the total number of representations of t / n by the sum $1 / x+1 / y+1 / z$ does not exceed $c(\varepsilon)(n / t)^{2 / 3} n^{\varepsilon}$, where $\varepsilon>0$ (see [2]). We know that if $n \in E(t)$ then t / n is expressible by the sum of three unit fractions, so this bound also holds for the number of representations of n in the form $t M-d$. On the other hand, by the above mentioned result of Vaughan [11], almost all positive integers are expressible by the sum of three unit fractions. It is easy to see that for each fixed $t \geq 3$, almost all positive integers belong to the set $E(t)$.

In fact, one can easily show a much stronger statement that almost all positive integers can be written in the form $p a-1$ with some prime number $p \equiv-1(\bmod t)$ and some $a \in \mathbb{N}$. If $n \in \mathbb{N}$ can be written in this way, then

$$
n=p a-1=(p+1) a-a-1=t M-d \in E(t)
$$

with $b=1, d=a+1$ and $M=(p+1) a / t$. By the above, it suffices to show that the density of positive integers n that have no prime divisors of the form $p \equiv-1(\bmod t)$ is zero. This can be

* 4 4 $|\bullet|>$

Go back

Full Screen

Close
easily done using a standard sieve argument. Let $p_{1}<p_{2}<p_{3}<\ldots$ denote consecutive primes in the arithmetic progression $k t-1, k=1,2,3, \ldots$. By Dirichlet's theorem, the sum $\sum_{j=1}^{\infty} 1 / p_{j}$ diverges. Thus for each $\varepsilon>0$, we can pick $s \in \mathbb{N}$ for which $\prod_{j=1}^{s}\left(1-1 / p_{j}\right)<\varepsilon / 2$. Further, for each $N \geq P:=p_{1} p_{2} \ldots p_{s}$, select a unique $k \in \mathbb{N}$ for which $k P \leq N<(k+1) P$. The number of positive integers $n \leq N$ without prime divisors in the set $\left\{p_{1}, \ldots, p_{s}\right\}$ does not exceed the number of such positive integers in the interval $[1,(k+1) P]$. The latter, by the inclusion-exclusion principle, is equal to

$$
(k+1) P \prod_{j=1}^{s}\left(1-\frac{1}{p_{j}}\right) \leq \frac{(k+1) P \varepsilon}{2} \leq \frac{(1+1 / k) N \varepsilon}{2} \leq \frac{2 N \varepsilon}{2}=N \varepsilon .
$$

This implies the claim.
Coming back to Conjecture 5, by calculation with $\mathrm{C}++$, in the range $\left[1,2 \cdot 10^{9}\right]$ we found only three exceptional integers $6,36,3600$ which do not belong to the set $E(3)$. So we conjecture that

$$
E(3)=\mathbb{N} \backslash\{6,36,3600\} \quad \text { and } \quad C(3)=3600 .
$$

For $t=4$, we have

$$
288,336,4545, \mathbb{N}^{2} \in \mathbb{N} \backslash E(4),
$$

and we conjecture that $C(4)=4545$.
There are much more integers which do not lie in $E(5)$. In the range $\left[1,2 \cdot 10^{9}\right]$ there are 48 such integers:

$$
\begin{aligned}
& 1,2,5,6,10,12,20,21,30,32,45,46,50,60,92,102,105,126,141,182 \text {, } \\
& 192,210,282,320,330,366,406,600,650,726,732,842,846,920,992,1020 \text {, } \\
& 1446,1452,1905,1920,2100,2250,2262,3962,7320,9050,11520,40500 .
\end{aligned}
$$

We conjecture that this list is full, i.e., $C(5)=40500$. The list of integers in $\left[1,2 \cdot 10^{9}\right]$ which do not lie in $E(6)$ contains 108 numbers, the largest one being 684450 . We are more cautious to claim
that $C(6)=684450$ since this number is quite large compared to the computation bound $2 \cdot 10^{9}$. Here is a result of our calculations with $\mathrm{C}++$ for $3 \leq t \leq 9$.

t	computation bound	number of exceptions	largest exception
3	$2 \cdot 10^{9}$	3	3600
4	$2 \cdot 10^{9}$	3	4545
5	$2 \cdot 10^{9}$	48	40500
6	$2 \cdot 10^{9}$	108	684450
7	10^{9}	270	9673776
8	10^{9}	335	3701376
9	10^{9}	932	18481050

Table 2. .

In Table 2 for $t=4$, all squares k^{2} are excluded, whereas for $t=8$, all squares k^{2} and all numbers of the form $2 k^{2}$ are excluded (see Corollary 4 and Conjecture 5).

Acknowledgment. We thank the referee for some useful comments.

1. Bello-Hernández M., Benito M. and Fernández E., On Egyptian fractions, preprint at arXiv:1010.2035v1, 2010.
2. Browning T. D. and Elsholtz C., The number of representations of rationals as a sum of unit fractions, Illinois J. Math. (to appear).
3. Buell D. A. and Hudson R. H., On runs of consecutive quadratic residues and quadratic nonresidues, BIT 24 (1984), 243-247.
4. Elsholtz C. and Tao T., Counting the number of solutions to the Erdős-Straus equation on unit fractions, preprint at arXiv:1107.1010v3, 2011.
5. Graham S. W. and Ringrose C. J., Lower bounds for least quadratic non-residues. In: Analytic number theory, Proc. Conf. in Honor of Paul T. Bateman, Urbana, IL, USA, 1989, Prog Math. 85, 1990, 269-309.
6. Guy R., Unsolved problems in number theory, 3rd. ed, Springer, New-York, 2004.
7. Montgomery H. L., Topics in multiplicative number theory, Lecture Notes in Mathematics 227, Springer, New York 1971.
8. Mordell L.J., Diophantine equations, Academic Press, London, New-York, 1969.
9. Schinzel A., On sums of three unit fractions with polynomial denominators, Funct. Approx. Comment. Math. 28 (2000), 187-194.
10. Sierpiński W., Sur les décompositions de nombres rationale en fractions primaires, Mathesis 65 (1956), 16-32.
11. Vaughan R. C., On a problem of Erdös, Straus andSchinzel, Mathematika 65 (1970), 193-198.
12. Yamamoto K., On a conjecture of Erdős, Mem. Fac. Sci. Kyuchu Univ. Ser. A 18 (1964), 166-167.
13. Yamamoto K., On the Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, Mem. Fac. Sci.Kyuchu Univ. Ser. A 19 (1965), 37-47.
A. Dubickas, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225 Lithuania, e-mail: aivaras.novikas@mif.vu.lt
A. Novikas, Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225

Lithuania, e-mail: arturas.dubickas@mif.vu.lt

