

APPROXIMATION FOR PERIODIC FUNCTIONS VIA STATISTICAL A-SUMMABILITY

S. KARAKUŞ AND K. DEMIRCI

ABSTRACT. In this paper, using the concept of statistical A-summability which is stronger than the A-statistical convergence, we prove a Korovkin type approximation theorem for sequences of positive linear operator defined on $C^*(\mathbb{R})$ which is the space of all 2π -periodic and continuous functions on \mathbb{R} , the set of all real numbers. We also compute the rates of statistical A-summability of sequence of positive linear operators.

1. Introduction

The idea of statistical convergence was introduced by Fast [5], which is closely related to the concept of natural density or asymptotic density of subsets of the set of natural numbers \mathbb{N} . Let K be a subset of \mathbb{N} . The natural density of K is the nonnegative real number given by $\delta(K) := \lim_{n\to\infty} \frac{1}{n} |\{k \leq n : k \in K\}|$ provided that the limit exists, where |B| denotes the cardinality of the set B (see [14] for details). Then, a sequence $x = \{x_k\}$ is called statistically convergent to a number L if for every $\varepsilon > 0$,

$$\delta(\{k: |x_k - L| \ge \varepsilon\}) = 0.$$

Key words and phrases. Statistical convergence; statistical A-summability; positive linear operator; Korovkin type approximation theorem; Fejér operators.

Go back

Full Screen

Close

Received March 28, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 40G15, 41A25, 41A36, 47B38.

This is denoted by $st - \lim_{k \to \infty} x_k = L$ (see [5], [7]). It is easy to see that every convergent sequence is statistically convergent, but not conversely.

If $x = \{x_k\}$ is a number sequence and $A = \{a_{jk}\}$ is an infinite matrix, then Ax is the sequence whose j-th term is given by

$$A_j(x) := \sum_{k=1}^{\infty} a_{jk} x_k$$

provided that the series converges for each $j \in \mathbb{N}$. Thus we say that x is A-summable to L if

$$\lim_{j \to \infty} A_j(x) = L.$$

We say that A is regular if $\lim_{i\to\infty} A_i(x) = L$ whenever $\lim_{k\to\infty} x_k = L$. The well-known necessary and sufficient conditions [1] (Silverman-Toeplitz) for A to be regular are:

R1)
$$||A|| = \sup_{j \to \infty} \sum_{k=1}^{\infty} |a_{jk}| < \infty,$$

R2) $\lim_{j \to \infty} a_{jk} = 0$ for each $k \in \mathbb{N}$,

R3)
$$\lim_{j \to \infty} \sum_{k=1}^{\infty} a_{jk} = 1.$$

Freedman and Sember [6] introduced the following extension of statistical convergence. Let $A = \{a_{jk}\}\$ be a nonnegative regular matrix. The A-density of K is defined by

$$\delta_{A}\left(K\right):=\lim_{j\to\infty}\sum_{k=1}^{\infty}a_{jk}\chi_{K}\left(k\right)$$

Go back

Full Screen

Close

provided that the limit exists, where χ_K is the characteristic function of K. Then the sequence $x = \{x_k\}$ is said to be A-statistically convergent to the number L if for every $\varepsilon > 0$,

$$\delta_A\left(\left\{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\right\}\right) = 0$$

or equivalently

$$\lim_{j \to \infty} \sum_{k: |x_k - L| \ge \varepsilon} a_{jk} = 0.$$

We denote this limit by $st_A - \lim_{k \to \infty} x_k = L$ (see [6], [8], [9]). The case in which $A = C_1$, the Cesàro matrix of order one, reduces to the statistical convergence, and also if A = I, the identity matrix, then it coincides with the ordinary convergence.

Recently, the idea of statistical (C,1)-summability was introduced in [11] and of statistical (H,1)-summability in [12] by Moricz, and of statistical (\overline{N},p) -summability by Moricz and Orhan [13]. Then these statistical summability methods were generalized by defining the statistical A-summability in [4].

Now we recall statistical A-summability for a nonnegative regular matrix A.

Definition 1.1. Let $A = \{a_{jk}\}$ be a nonnegative regular matrix and $x = \{x_k\}$ be a sequence. We say that x is statistically A-summable to L if for every $\varepsilon > 0$,

$$\delta(\{j \in \mathbb{N} : |A_j(x) - L| \ge \varepsilon\}) = 0,$$

i.e.,

$$\lim_{n \to \infty} \frac{1}{n} |\{j \le n : |A_j(x) - L| \ge \varepsilon\}| = 0.$$

Thus $x = \{x_k\}$ is statistically A-summable to L if and only if Ax is statistically convergent to L. In this case we write $(A)_{st} - \lim_{k \to \infty} x_k = L$ or, $st - \lim_{j \to \infty} A_j(x) = L$.

Go back

Full Screen

Close

Using the Definition 1.1, we see that if a sequence is bounded and A-statistically convergent to L, then it is A-summable to L, and hence statistically A-summable to L. However, its converse is not always true. Such examples were given in [4].

In this paper, using the concept of statistical A-summability where $A = \{a_{jk}\}$ is a nonnegative regular matrix, we give a generalization of the classical Korovkin approximation theorem by means of sequences of positive linear operators defined on the space of all real valued continuous and 2π periodic functions on \mathbb{R} . We also compute the rates of statistical A-summability of sequence of positive linear operators.

2. A KOROVKIN TYPE THEOREM

We denote $C^*(\mathbb{R})$, the space of all real valued continuous and 2π periodic functions on \mathbb{R} . We recall that if a function f in \mathbb{R} has period 2π , then for all $x \in \mathbb{R}$,

$$f(x) = f(x + 2\pi k)$$

holds for $k = 0, \pm 1, \pm 2, \ldots$ This space is equipped with he supremum norm

$$||f||_{C^*(\mathbb{R})} = \sup_{x \in \mathbb{R}} |f(x)|, \qquad (f \in C^*(\mathbb{R})).$$

Let L be a linear operator from $C^*(\mathbb{R})$ into $C^*(\mathbb{R})$. Then, as usual, we say that L is a positive linear operator provided that $f \geq 0$ implies $L(f) \geq 0$. Also, we denote the value of L(f) at a point $x \in \mathbb{R}$ by L(f(u); x) or, briefly, L(f; x).

Throughout the paper, we also use the following test functions

$$f_0(x) = 1$$
, $f_1(x) = \cos x$ $f_2(x) = \sin x$.

We also have to recall the classical Korovkin theorem [10].

Go back

Full Screen

Full Screen

Close

Theorem A. Let $\{L_k\}$ be a sequence of positive linear operators acting from $C^*(\mathbb{R})$ into itself. Then, for all $f \in C^*(\mathbb{R})$,

$$\lim_{k\to\infty} ||L_k(f) - f||_{C^*(\mathbb{R})} = 0$$

if and only if

$$\lim_{k \to \infty} ||L_k(f_i) - f_i||_{C^*(\mathbb{R})} = 0, \qquad (i = 0, 1, 2).$$

Recently, the statistical analog of Theorem A was studied by Duman [3]. It will be read as follows.

Theorem B. Let $A = \{a_{jk}\}$ be a nonnegative regular matrix and let $\{L_k\}$ be a sequence of positive linear operators acting from $C^*(\mathbb{R})$ into itself. Then for all $f \in C^*(\mathbb{R})$,

$$st_A - \lim_{k \to \infty} ||L_k(f) - f||_{C^*(\mathbb{R})} = 0$$

if and only if

$$st_A - \lim_{k \to \infty} ||L_k(f_i) - f_i||_{C^*(\mathbb{R})} = 0, \quad (i = 0, 1, 2).$$

Now we study the approximation properties of sequence of positive linear operators on the space $C^*(\mathbb{R})$ via statistical A-summability where $A = \{a_{jk}\}$ is a nonnegative regular matrix.

Theorem 2.1. Let $A = \{a_{jk}\}$ be a nonnegative regular matrix and let $\{L_k\}$ be a sequence of positive linear operators acting from $C^*(\mathbb{R})$ into itself. Then, for all $f \in C^*(\mathbb{R})$,

(2.1)
$$st - \lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} = 0$$

Go back

Full Screen

Close

if and only if

(2.2)
$$st - \lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_i) - (f_i) \right\|_{C^*(\mathbb{R})} = 0 (i = 0, 1, 2).$$

Proof. Since each f_i (i=0,1,2) belongs to $C^*(\mathbb{R})$, the implication (2.1) \Rightarrow (2.2) is clear. Now, to prove the implication (2.2) \Longrightarrow (2.1), assume that (2.2) holds. Let $f \in C^*(\mathbb{R})$ and let I be a closed subinterval of length 2π of \mathbb{R} . Fix $x \in I$. By the continuity of f at x, for given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(t) - f(x)| < \varepsilon$$

for all t satisfying $|t-x| < \delta$. On the other hand, by the boundedness of f, we have

$$|f(t) - f(x)| \le 2||f||_{C^*(\mathbb{R})}$$

for all $t \in \mathbb{R}$. Now consider the subintervals $(x - \delta, 2\pi + x - \delta]$ of length 2π . From [3] we can see that

$$(2.3) |f(t) - f(x)| < \varepsilon + \frac{2||f||_{C^*(\mathbb{R})}}{\sin^2 \frac{\delta}{2}} \psi(t)$$

holds for all $t \in \mathbb{R}$, where $\psi(t) := \sin^2\left(\frac{t-x}{2}\right)$.

Go back

Full Screen

Close

By using (2.3) and the positivity and monotonicity of L_k we have

$$\left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f;x) - f(x) \right|$$

$$\leq \sum_{k=1}^{\infty} a_{jk} L_{k}(|f(t) - f(x)|;x) + |f(x)| \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|$$

$$\leq \sum_{k=1}^{\infty} a_{jk} L_{k} \left(\varepsilon + \frac{2 \|f\|_{C^{*}(\mathbb{R})}}{\sin^{2} \frac{\delta}{2}} \psi(t);x \right) + |f(x)| \left| \sum_{k=1}^{\infty} a_{jk} L_{k} (f_{0};x) - f_{0}(x) \right|$$

$$\leq \varepsilon + \varepsilon \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right| + \|f\|_{C^{*}(\mathbb{R})} \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|$$

$$+ \frac{2 \|f\|_{C^{*}(\mathbb{R})}}{\sin^{2} \frac{\delta}{2}} \sum_{k=1}^{\infty} a_{jk} L_{k} (\psi(t);x).$$

After some simple calculations, we also get

$$\psi(t) = \frac{1}{2} \left(1 - \cos t \cos x - \sin t \sin x \right).$$

So we can get

(2.4)
$$\sum_{k=1}^{\infty} a_{jk} L_k(\psi(t); x) \leq \frac{1}{2} \left\{ \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_0; x) - f_0(x) \right| + \left| \cos x \right| \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_1; x) - f_1(x) \right| + \left| \sin x \right| \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_2; x) - f_2(x) \right| \right\}.$$

Go back

Full Screen

Close

Then, using (2.4), we obtain

$$\left| \sum_{k=1}^{\infty} a_{jk} L_k(f; x) - f(x) \right|$$

$$\leq \varepsilon + \left(\varepsilon + \|f\|_{C^*(\mathbb{R})} + \frac{\|f\|_{C^*(\mathbb{R})}}{\sin^2 \frac{\delta}{2}} \right) \left\{ \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_0; x) - f_0(x) \right| + \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_1; x) - f_1(x) \right| + \left| \sum_{k=1}^{\infty} a_{jk} L_k(f_2; x) - f_2(x) \right| \right\}.$$

Then, we obtain

(2.5)
$$\left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \le \varepsilon + U \left\{ \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})} + \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_1) - f_1 \right\|_{C^*(\mathbb{R})} + \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_2) - f_2 \right\|_{C^*(\mathbb{R})} \right\}$$

where
$$U := \varepsilon + ||f||_{C^*(\mathbb{R})} + \frac{||f||_{C^*(\mathbb{R})}}{\sin^2 \frac{\delta}{2}}.$$

Go back

Full Screen

Close

Now, for a given r > 0, choose $\varepsilon > 0$ such that $\varepsilon < r$. By (2.5), it is easy to see that

$$\frac{1}{n} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \ge r \right\} \right| \\
\le \frac{1}{n} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})} \ge \frac{r - \varepsilon}{3U} \right\} \right| \\
+ \frac{1}{n} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_1) - f_1 \right\|_{C^*(\mathbb{R})} \ge \frac{r - \varepsilon}{3U} \right\} \right| \\
+ \frac{1}{n} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_2) - f_2 \right\|_{C^*(\mathbb{R})} \ge \frac{r - \varepsilon}{3U} \right\} \right|.$$

Then using the hypothesis (2.2), we get

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \ge r \right\} \right| = 0$$

for every r > 0 and the proof is compete.

Go back

Full Screen

Close

3. Rate of Convergence

In this section, using statistical A-summability we study the rate of convergence of positive linear operators defined $C^*(\mathbb{R})$ into itself with the help of the modulus of continuity.

Demirci and Karakuş [2] introduced the rates of statistical A-summability of sequence as follows.

Definition 3.1 ([2]). Let $A = \{a_{jk}\}$ be a nonnegative regular matrix. A sequence $x = \{x_k\}$ is statistical A-summable to a number L with the rate of $\beta \in (0,1)$ if for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{|\{j\le n: |A_j(x)-L|\ge \varepsilon\}|}{n^{1-\beta}}=0.$$

In this case, it is denoted by

$$x_k - L = o\left(n^{-\beta}\right) \quad ((A)_{st}).$$

Using this definition, we obtain the following auxiliary result.

Lemma 3.2 ([2]). Let $A = \{a_{jk}\}$ be a nonnegative regular matrix. Let $x = \{x_k\}$ and $y = \{y_k\}$ be bounded sequences. Assume that $x_k - L_1 = o\left(n^{-\beta_1}\right)$ ($(A)_{st}$) and $y_k - L_2 = o\left(n^{-\beta_2}\right)$ ($(A)_{st}$). Let $\beta := \min\{\beta_1, \beta_2\}$. Then we have:

(i)
$$(x_k - L_1) \mp (y_k - L_2) = o(n^{-\beta})$$
 $((A)_{st})$

(ii)
$$\lambda(x_k - L_1) = o(n^{-\beta_1})$$
 ((A)_{st}) for any real number λ .

Now we remind the concept of modulus of continuity. For $f \in C^*(\mathbb{R})$, the modulus of continuity of f, denoted by $\omega(f; \delta_1)$, is defined by

$$\omega(f; \delta_1) := \sup_{|t-x| \le \delta_1} |f(t) - f(x)| \quad (\delta_1 > 0).$$

It is also well know that, for any $\lambda > 0$ and for all $f \in C^*(\mathbb{R})$

(3.1)
$$\omega\left(f;\lambda\delta_{1}\right)\leq\left(1+\left[\lambda\right]\right)\omega\left(f;\delta_{1}\right)$$

Go back

Full Screen

Close

where $[\lambda]$ is defined to be the greatest integer less than or equal to λ . Then we have the following result.

Theorem 3.1. Let $A = \{a_{jk}\}$ be a nonnegative regular matrix and let $\{L_k\}$ be a sequence of positive linear operators acting from $C^*(\mathbb{R})$ into itself. Assume that the following conditions holds:

- (i) $||L_k(f_0) f_0||_{C^*(\mathbb{R})} = o(n^{-\beta_1})$ ((A)_{st}) on \mathbb{R} ,
- (ii) $\omega(f; \gamma_j) = o\left(n^{-\beta_2}\right)$ ((A)_{st}) on \mathbb{R} where $\gamma_j := \sqrt{\|\sum_{k=1}^{\infty} a_{jk} L_k\left(\varphi\right)\|_{C^*(\mathbb{R})}}$ with $\varphi(t) = \sin^2\left(\frac{t-x}{2}\right)$.

Then we have for all $f \in C^*(\mathbb{R})$,

$$||L_k(f) - f||_{C^*(\mathbb{R})} = o(n^{-\beta}) \quad ((A)_{st}) \quad on \quad \mathbb{R}$$

where $\beta := \min\{\beta_1, \beta_2\}.$

Go back

Full Screen

Close

Proof. Let $f \in C^*(\mathbb{R})$ and $x \in \mathbb{R}$ be fixed. Using (3.1) and the positivity and monotonicity of L_k , we get for any $\delta_1 > 0$ and $j \in \mathbb{R}$,

$$\left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f;x) - f(x) \right|$$

$$\leq \sum_{k=1}^{\infty} a_{jk} L_{k}(|f(t) - f(x)|;x) + |f(x)| \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|$$

$$\leq \sum_{k=1}^{\infty} a_{jk} L_{k} \left(\left(1 + \frac{(t-x)^{2}}{\delta_{1}^{2}} \right); x \right) \omega(f;\delta_{1}) + ||f||_{C^{*}(\mathbb{R})} \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|$$

$$\leq \sum_{k=1}^{\infty} a_{jk} L_{k} \left(\left(1 + \frac{\pi^{2}}{\delta_{1}^{2}} \sin^{2} \left(\frac{t-x}{2} \right) \right); x \right) \omega(f;\delta_{1}) + ||f||_{C^{*}(\mathbb{R})} \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|$$

$$\leq \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right| \omega(f;\delta_{1}) + \omega(f;\delta_{1})$$

$$+ \frac{\pi^{2}}{\delta_{1}^{2}} \omega(f;\delta_{1}) \sum_{k=1}^{\infty} a_{jk} L_{k} \left(\sin^{2} \left(\frac{t-x}{2} \right); x \right)$$

$$+ ||f||_{C^{*}(\mathbb{R})} \left| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0};x) - f_{0}(x) \right|.$$

Go back

Full Screen

Close

Hence, we get

$$\left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \le \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})} \omega(f; \gamma_j) + (1 + \pi^2) \omega(f; \gamma_j) + \|f\|_{C^*(\mathbb{R})} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})}$$

where $\delta_1 := \gamma_j := \sqrt{\|\sum_{k=1}^{\infty} a_{jk} L_k(\varphi)\|_{C^*(\mathbb{R})}}$. Then, we obtain

(3.2)
$$\left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \le K \left\{ \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})} \omega(f; \gamma_j) + \omega(f; \gamma_j) + \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*(\mathbb{R})} \right\}$$

where $K = \max \{ \|f\|_{C^*(\mathbb{R})}, 1 + \pi^2 \}.$

Go back

Full Screen

Close

Hence, for given $\varepsilon > 0$, from (3.2) and Lemma 3.2, it follows

$$\frac{1}{n^{1-\beta}} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_{k}(f) - f \right\|_{C^{*}(\mathbb{R})} \ge \varepsilon \right\} \right| \\
\le \frac{1}{n^{1-\beta_{1}}} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0}) - f_{0} \right\|_{C^{*}(\mathbb{R})} \ge \sqrt{\frac{\varepsilon}{3K}} \right\} \right| \\
+ \frac{1}{n^{1-\beta_{2}}} \left| \left\{ j \le n : \omega(f; \gamma_{j}) \ge \sqrt{\frac{\varepsilon}{3K}} \right\} \right| \\
+ \frac{1}{n^{1-\beta_{2}}} \left| \left\{ j \le n : \omega(f; \gamma_{j}) \ge \frac{\varepsilon}{3K} \right\} \right| \\
+ \frac{1}{n^{1-\beta_{1}}} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_{k}(f_{0}) - f_{0} \right\|_{C^{*}(\mathbb{R})} \ge \frac{\varepsilon}{3K} \right\} \right| \\$$

where $\beta := \min \{\beta_1, \beta_2\}$. Letting $n \to \infty$ in (3.3), from (i) and (ii), we conclude that

$$\lim_{n \to \infty} \frac{1}{n^{1-\beta}} \left\| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - f \right\|_{C^*(\mathbb{R})} \ge \varepsilon \right\} \right\| = 0,$$

which means

$$||L_k(f) - f||_{C^*(\mathbb{R})} = o(n^{-\beta}) ((A)_{st})$$
 on \mathbb{R} .

The proof is completed.

Go back

Full Screen

Close

Now we give the following classical rates of convergence of a sequence of positive linear operators defined on $C^*(\mathbb{R})$.

Corollary 1. Let $\{L_k\}$ be a sequence of positive linear operators acting from $C^*(\mathbb{R})$ into itself. Assume that the following conditions holds:

(i)
$$\lim_{k\to\infty} ||L_k(f_0) - f_0||_{C^*(\mathbb{R})} = 0,$$

(ii)
$$\lim_{k\to\infty} \omega(f;\delta_k) = 0$$
 on \mathbb{R} where $\delta_k := \sqrt{\|L_k(\varphi)\|_{C^*(\mathbb{R})}}$ with $\varphi(t) = \sin^2(\frac{t-x}{2})$.

Then for all $f \in C^*(\mathbb{R})$, we have

$$\lim_{k\to\infty} ||L_k(f) - f||_{C^*(\mathbb{R})} = 0.$$

4. An Application to Theorem 2.1 and Theorem 3.1

In this section, we display an example of a sequence of positive linear operators. First of all, we show that Theorem 2.1 holds, but Theorem A and Theorem B do not hold. Then, using the same sequence of positive linear operators, we show that Theorem 3.1 holds but, Corollary 1 does not hold.

Let A be Cesàro matrix, i.e.,

$$a_{jk} = \begin{cases} \frac{1}{j}, & 1 \le k \le j, \\ 0, & \text{otherwise,} \end{cases}$$

and let

(4.1)
$$\xi_k = \begin{cases} 1, & \text{if } k \text{ is odd,} \\ -1, & \text{if } k \text{ is even.} \end{cases}$$

Go back

Full Screen

Close

Then, we observe that, $A = \{a_{jk}\}$ is a nonnegative regular matrix and for the sequence $\xi := \{\xi_k\}$

$$st - \lim_{j \to \infty} A_j(\xi) = 0.$$

However, the sequence $\{\xi_k\}$ is not convergent in the usual sense and A-statistical convergent to 0. Then, consider the following Fejér operators

(4.2)
$$F_k(f;x) := \frac{1}{k\pi} \int_{-\pi}^{\pi} f(t) \frac{\sin^2\left(\frac{k}{2}(t-x)\right)}{2\sin^2\left[\frac{t-x}{2}\right]} dt$$

where $k \in \mathbb{N}$, $f \in C^*[-\pi, \pi]$. Then, we get (see [10])

$$F_k(f_0; x) = 1$$
, $F_k(f_1; x) = \frac{k-1}{k} \cos x$, $F_k(f_2; x) = \frac{k-1}{k} \sin x$.

Now, using (4.1) and (4.2), we introduce the following positive linear operators defined on the space $C^* [-\pi, \pi]$

(4.3)
$$L_k(f;x) = (1 + \xi_k)F_k(f;x).$$

(i) Now, we consider the positive linear operators defined by (4.3) on $C^*[-\pi, \pi]$. Since $st - \lim_{j\to\infty} A_j(\xi) = 0$, we conclude that

$$st - \lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_i) - (f_i) \right\|_{C^*[-\pi,\pi]} = 0, \quad (i = 0, 1, 2).$$

Go back

Full Screen

Close

Then, by Theorem 2.1, for all $f \in C^*[-\pi, \pi]$, we obtain

$$st - \lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f) - (f) \right\|_{C^*[-\pi,\pi]} = 0.$$

However, since $\{\xi_k\}$ does not converge in the usual sense and A-statistical converges to 0, we conclude that Theorem A and Theorem B do not work for the operators L_k in (4.3) while our Theorem 2.1 still works.

(ii) Now, we consider the positive linear operators defined by (4.3) on C^* [$-\pi$, π]. We observe that

$$\left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*[-\pi,\pi]} = \left| \frac{1}{j} \sum_{k=1}^{j} (1 + \xi_k) - 1 \right| = \left| \frac{1}{j} \sum_{k=1}^{j} \xi_k \right|.$$

Since

$$\lim_{j \to \infty} \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*[-\pi, \pi]} = 0,$$

then we get

$$\lim_{n \to \infty} \frac{1}{n^{1-\beta_1}} \left| \left\{ j \le n : \left\| \sum_{k=1}^{\infty} a_{jk} L_k(f_0) - f_0 \right\|_{C^*[-\pi,\pi]} \ge \varepsilon \right\} \right| = 0,$$

which means that

Now, we compute the quantity $L_k(\varphi;x)$ where $\varphi(t) = \sin^2\left(\frac{t-x}{2}\right)$. After some calculations, we get

$$L_k\left(\varphi;x\right) = \frac{1+\xi_k}{2k}.$$

Go back

Full Screen

Close

Then, we obtain
$$\gamma_j := \sqrt{\|\sum_{k=1}^{\infty} a_{jk} L_k(\varphi)\|_{C^*[-\pi,\pi]}} = \sqrt{\left|\frac{1}{j} \sum_{k=1}^{j} \frac{1+\xi_k}{2k}\right|}$$
.

Since $\lim_{j\to\infty} \sqrt{\left|\frac{1}{j}\sum_{k=1}^j \frac{1+\xi_k}{2k}\right|} = 0$, we get $st - \lim_{j\to\infty} \sqrt{\left|\frac{1}{j}\sum_{k=1}^j \frac{1+\xi_k}{2k}\right|} = 0$. By the uniform continuity of f on $[-\pi, \pi]$, we write

(4.5)
$$\omega(f;\gamma_j) = o\left(n^{-\beta_2}\right) \quad ((A)_{st}).$$

From (4.4) and (4.5), the sequence of positive linear operators $\{L_k\}$ satisfies all hypotheses of Theorem 3.1. So, for all $f \in C^*[-\pi, \pi]$, we have

$$||L_k(f) - f||_{C^*[-\pi,\pi]} = o(n^{-\beta}) \quad ((A)_{st}).$$

However, since $\{\xi_k\}$ is not convergent, the conditions (i) and (ii) of Corollary 1 do not hold. So, the sequence $\{L_k\}$ given by (4.3) does not converge uniformly to the function $f \in C^* [-\pi, \pi]$.

- 1. Boos J., Classical and Modern Methods in Summability, Oxford University Press, New York, 2000.
- Demirci K. and Karakuş S., Statistical A-Summability of Positive Linear Operators, Mathematical and Computer Modelling 53 (2011), 189–195.
- 3. Duman O., Statistical approximation for periodic functions, Dem. Math. 36(4) (2003), 873–878.
- Edely O. H. H., Mursaleen M., On statistical A-summability, Mathematical and Computer Modelling 49 (2009), 672–680.
- 5. Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- 6. Freedman A. R. and Sember J. J., Densities and summability, Pacific J. Math. 95 (1981), 293-305.
- 7. Fridy J. A., On statistical convergence, Analysis 5 (1985), 301–313.
- 8. Fridy J. A. and Miller H. I., A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66.
- 9. Kolk E., Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77–83.
- 10. Korovkin P. P., Linear operators and approximation Theory, Hindustan Publ. Co., Delhi, 1960.

Go back

Full Screen

Close

- 11. Moricz F., Tauberian conditions under which statistical convergence follows from statistical summability (C, 1), J. Math. Anal. Appl. 275 (2002), 277–287.
- 12. _____, Theorems related to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences, Analysis 24 (2004), 127–145.
- 13. Moricz F. and Orhan C., Tauberian conditions under which statistical convergence follows from statistical summability by weighted means, Studia Sci. Math. Hung. 41(4) (2004), 391–403.
- 14. Niven I., Zuckerman H. S. and Montgomery H., An Introduction to the Theory of Numbers, 5th Edition, Wiley, New York, 1991.
- S. Karakuş, Sinop University, Faculty of Arts and Sciences, Department of Mathematics, 57000, Sinop, Turkey, e-mail: skarakus@sinop.edu.tr
- K. Demirci, Sinop University, Faculty of Arts and Sciences, Department of Mathematics, 57000, Sinop, Turkey, e-mail: kamild@sinop.edu.tr

