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CONGRUENCES OF STRONGLY MORITA EQUIVALENT POSEMIGROUPS

T. TÄRGLA and V. LAAN

Abstract. We prove that congruence lattices of strongly Morita equivalent posemigroups with com-

mon joint weak local units are isomorphic. Moreover, the quotient posemigroups by the congruences

that correspond to each other under this isomorphism are also strongly Morita equivalent.

1. Introduction

Morita theories have been studied for many different structures: for rings with or without identity,
monoids, categories, etc. Our work belongs to the Morita theory of semigroups without identity,
the study of which was initiated by Talwar ([7], [8]). Recently Tart (see [9]) initiated a research of
Morita equivalent partially ordered semigroups (shortly posemigroups). One ingredient in Morita
theories is the study of Morita invariants, these are the properties shared by all Morita equivalent
structures. For example, a classical result about rings (see [1, Proposition 21.11]) states that
Morita equivalent rings with identity have isomorphic ideal lattices. In [10] Tart considers Morita
invariants of posemigroups. In [6], Morita invariants for unordered semigroups were considered, in
particular it was proven that if two semigroups with certain kind of local units are strongly Morita
equivalent then their congruence lattices are isomorphic. In this article we prove the analogue of
that result for the ordered case.
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Let S be a posemigroup. A left S-poset is a poset A together with a mapping (action) S×A→
A, (s, a) 7→ sa such that (i) (ss′)a = s(s′a), (ii) s ≤ s′ implies sa ≤ s′a, (iii) a ≤ a′ implies sa ≤ sa′
for all s, s′ ∈ S and a, a′ ∈ A. Right T -posets are defined similarly. A left S-poset and right
T -poset A is called an (S, T )-biposet (and denoted by SAT ) if (sa)t = s(at) for all s ∈ S, a ∈ A
and t ∈ T . A biposet morphism has to preserve both actions and the order. A biposet SAT is said
to be unitary if SA = A and AT = A.

The tensor product A⊗T B of a right T -poset A and a left T -poset B is the quotient poset (A×
B)/ ∼, where (a, b) ∼ (a′, b′) if (a, b) � (a′, b′) and (a′, b′) � (a, b),
and (a, b) � (a′, b′) iff there exist t1, . . . , tn, w1, . . . , wn ∈ T 1, a1, . . . , an ∈ A and b2, . . . , bn ∈ B
such that

a ≤ a1t1
a1w1 ≤ a2t2 t1b ≤ w1b2
a2w2 ≤ a3t3 t2b2 ≤ w2b3

· · · · · ·
anwn ≤ a′ tnbn ≤ wnb

′

(1)

where xu = x for every element x ∈ {a1, . . . , an} and uy = y for every element y ∈ {b, b′} ∪
{b2, . . . , bn} if u ∈ T 1 is the externally adjoined identity. For (a, b) ∈ A×B, the equivalence class
[(a, b)]∼ is denoted by a⊗ b. The order relation on A⊗T B is defined by setting

a⊗ b ≤ a′ ⊗ b′ ⇐⇒ (a, b) � (a′, b′)

for a⊗ b, a′ ⊗ b′ ∈ A⊗T B.
If A is an (S, T )-biposet, then A⊗T B is a left S-poset, where the action is defined by s(a⊗b) =

(sa)⊗ b. Similarly, if B is a (T, S)-biposet, then A⊗T B is a right S-poset.
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Definition 1 ([8], [9]). A unitary Morita context is a six-tuple
(S, T, SPT , TQS , θ, φ), where S and T are posemigroups, SPT and TQS are unitary biposets and

θ : S(P ⊗T Q)S → SSS , φ : T (Q⊗S P )T → TTT

are biposet morphisms such that for every p, p′ ∈ P and q, q′ ∈ Q,

θ(p⊗ q)p′ = pφ(q ⊗ p′), qθ(p⊗ q′) = φ(q ⊗ p)q′.(2)

Definition 2 ([8], [9]). Posemigroups S and T are called strongly Morita equivalent if there
exists a unitary Morita context (S, T, SPT , TQS , θ, φ) such that the mappings θ and φ are surjective.

Let ρ be a reflexive binary relation on a poset A. For a, a′ ∈ A we write a ≤
ρ
a′ if there exist

a1, . . . , an ∈ A such that
a ≤ a1 ρ a2 ≤ a3 ρ . . . ρ an ≤ a′.

We note that the relation ≤
ρ

is reflexive and transitive.

Definition 3 ([3]). A congruence on a posemigroup S is an equivalence relation ρ on S such
that

1. sρs′ implies sxρs′x and xsρxs′ for every s, s′, x ∈ S;
2. s ≤

ρ
s′ and s′ ≤

ρ
s implies sρs′ (the closed chains condition).

The multiplication of the quotient posemigroup S/ρ is defined as usual and the order is given by

[s]ρ ≤ [s′]ρ ⇐⇒ s ≤
ρ
s′.

Similarly, a biposet congruence is an equivalence relation that is compatible with both actions
and satisfies the closed chains condition. We shall need biposet congruences induced by a binary
relation. Our construction will be an analogue of the one given in [2]. Let SAT be an (S, T )-biposet
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and let H ⊆ A× A. Define a relation α(H) on A by aα(H) a′ if and only if a = a′ or there exist
a natural number n and (xi, x′i) ∈ H, ui ∈ S1, vi ∈ T 1, i = 1, . . . , n, such that

a = u1x1v1 u2x
′
2v2 = u3x3v3 . . . unx

′
nvn = a′

u1x
′
1v1 = u2x2v2 un−1x

′
n−1vn−1 = unxnvn

.

Note that the relation α(H) is reflexive, transitive and compatible with both actions. Therefore,
the relation ν(H) defined on A by

a ν(H) a′ ⇐⇒ a ≤
α(H)

a′ and a′ ≤
α(H)

a

is an (S, T )-biposet congruence. The relation ν(H) is called the (S, T )-biposet congruence on SAT
induced by H. We consider the quotient set A/ν(H) as an (S, T )-biposet with respect to the order
given by

[a]ν(H) ≤ [a′]ν(H) ⇐⇒ a ≤
α(H)

a′

and naturally defined actions.

Definition 4 ([6]). A posemigroup S is said to have common joint weak local units if

(∀s, s′ ∈ S)(∃u, v ∈ S)(s = usv ∧ s′ = us′v).

As examples of semigroups with common joint weak local units we mention monoids, lower
semilattices where every pair of elements has an upper bound (in particular lattices) and multi-
plicative semigroups of s-unital rings (in particular of rings with local units). Also, an ordinal sum
of any set of semigroups with common joint weak local units is again a semigroup with common
joint weak local units and a direct product of two semigroups with common joint weak local units
is a semigroup with common joint weak local units.
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2. The result

Theorem 1. If S and T are strongly Morita equivalent posemigroups with common joint weak
local units, then there exists an isomorphism Π : Con(S) → Con(T ) of their congruence lattices.
Moreover, if ρ ∈ Con(S), then the posemigroups S/ρ and T/Π(ρ) are strongly Morita equivalent.

Proof. Define the mappings Π: Con(S)→ Con(T ) and Ω: Con(T )→ Con(S) as follows:

xΠ(ρ)y ⇐⇒ x ≤
Πρ

y and y ≤
Πρ

x,

xΩ(τ)y ⇐⇒ x ≤
Ωτ

y and y ≤
Ωτ

x,

where ρ ∈ Con(S), τ ∈ Con(T ) and

Πρ = {(φ(q ⊗ sp), φ(q ⊗ s′p)) | (s, s′) ∈ ρ, p ∈ P, q ∈ Q} ⊆ T × T,
Ωτ = {(θ(p⊗ tq), θ(p⊗ t′q)) | (t, t′) ∈ τ, p ∈ P, q ∈ Q} ⊆ S × S.

We first show that the relation Πρ is reflexive and compatible with multiplication.
Let t ∈ T be an arbitrary element and let t′, t′′ ∈ T be such that t = t′t′′. Since φ is surjective,

there exist p′, p′′ ∈ P and q′, q′′ ∈ Q such that t′ = φ(q′ ⊗ p′) and t′′ = φ(q′′ ⊗ p′′). Hence
t = φ(q′ ⊗ p′)φ(q′′ ⊗ p′′) = φ(q′ ⊗ p′φ(q′′ ⊗ p′′)) = φ(q′ ⊗ θ(p′ ⊗ q′′)p′′). Because ρ is reflexive,
(θ(p′ ⊗ q′′), θ(p′ ⊗ q′′)) ∈ ρ and therefore (t, t) = (φ(q′ ⊗ θ(p′ ⊗ q′′)p′′), φ(q′ ⊗ θ(p′ ⊗ q′′)p′′)) ∈ Πρ.
Thus Πρ is reflexive.

Let now (φ(q ⊗ sp), φ(q ⊗ s′p)) ∈ Πρ, where (s, s′) ∈ ρ, and let t = φ(qt ⊗ pt) ∈ T . Then

(φ(q ⊗ sp)t, φ(q ⊗ s′p)t) = (φ(q ⊗ spφ(qt ⊗ pt)), φ(q ⊗ s′pφ(qt ⊗ pt)))
= (φ(q ⊗ sθ(p⊗ qt)pt), φ(q ⊗ s′θ(p⊗ qt)pt)) ∈ Πρ,
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because (sθ(p⊗ qt), s′θ(p⊗ qt)) ∈ ρ. Similarly we can prove compatibility with multiplication from
the left.

Analogously one can show that Ωτ is reflexive and compatible with multiplication.
Now we show that the relations Π(ρ) and Ω(τ) are posemigroup congruences. Symmetricity and

transitivity are clear from the definition. Reflexivity and compatibility with multiplication follow
from the fact that the relations Πρ,Ωτ and ≤ are reflexive and compatible with multiplication.
Let us check the closed chains condition. First we note that

t ≤
Π(ρ)

t′ ⇔ ∃t1, . . . , tn ∈ T : t ≤ t1Π(ρ)t2 ≤ t3Π(ρ) . . .Π(ρ)tn ≤ t′

⇒ t ≤ t1 ≤
Πρ

t2 ≤ t3 ≤
Πρ

. . . ≤
Πρ

tn ≤ t′

⇒ t ≤
Πρ

t′.

Analogously t′ ≤
Π(ρ)

t implies t′ ≤
Πρ

t and consequently, if t ≤
Π(ρ)

t′ ≤
Π(ρ)

t, then tΠ(ρ)t′. Similarly it

can be proven that s ≤
Ω(τ)

s′ ≤
Ω(τ)

s implies sΩ(τ)s′. Thus we have seen that Π(ρ) and Ω(τ) are

congruences.
Obviously Π and Ω preserve order. So it remains to prove that Π and Ω are inverses of each

other. To prove that ρ ⊆ (ΩΠ)(ρ), it suffices to show that ρ ⊆ ΩΠ(ρ). Let (s, s′) ∈ ρ and let u, v ∈ S
be such that usv = s and us′v = s′. If u = θ(pu ⊗ qu) and v = θ(pv ⊗ qv), pu, pv ∈ P, qu, qv ∈ Q,
then (φ(qu ⊗ spv), φ(qu ⊗ s′pv)) ∈ Πρ ⊆ Π(ρ). Hence

(s, s′) = (usv, us′v) = (θ(pu ⊗ qusθ(pv ⊗ qv)), θ(pu ⊗ qus′θ(pv ⊗ qv)))
= (θ(pu ⊗ φ(qu ⊗ spv)qv), θ(pu ⊗ φ(qu ⊗ s′pv)qv)) ∈ ΩΠ(ρ).
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Conversely, to prove the inclusion (ΩΠ)(ρ) ⊆ ρ we first show that ΩΠ(ρ) ⊆ ρ. Suppose that
(θ(p⊗ tq), θ(p⊗ t′q)) ∈ ΩΠ(ρ) where (t, t′) ∈ Π(ρ). We shall prove that

(t, t′) ∈ Π(ρ) =⇒ θ(p⊗ tq) ρ θ(p⊗ t′q).(3)

The assumption means that t ≤
Πρ

t′ and t′ ≤
Πρ

t. The first fact means that there exist u1, . . . , un,

u′1, . . . , u
′
n ∈ T such that

t ≤ u1Πρu
′
1 ≤ u2Πρu

′
2 ≤ . . . ≤ unΠρu

′
n ≤ t′.

Hence, for every i ∈ {1, . . . , n}, there exist pi ∈ P , qi ∈ Q and (si, s′i) ∈ ρ such that ui = φ(qi⊗sipi)
and u′i = φ(qi ⊗ s′ipi). Using this, we have

θ(p⊗ tq) ≤ θ(p⊗ u1q) = θ(p⊗ φ(q1 ⊗ s1p1)q)
= θ(p⊗ q1s1θ(p1 ⊗ q)) = θ(p⊗ q1)s1θ(p1 ⊗ q)
ρ θ(p⊗ q1)s′1θ(p1 ⊗ q) = θ(p⊗ q1s

′
1θ(p1 ⊗ q))

= θ(p⊗ φ(q1 ⊗ s′1p1)q) = θ(p⊗ u′1q)
≤ θ(p⊗ u2q) ρ θ(p⊗ u′2q)
≤ . . . ≤ θ(p⊗ t′q),

i.e., θ(p⊗ tq) ≤
ρ
θ(p⊗ t′q). Similarly t′ ≤

Πρ

t implies θ(p⊗ t′q) ≤
ρ
θ(p⊗ tq). Since ρ is a congruence,

(θ(p⊗ tq), θ(p⊗ t′q)) ∈ ρ, and therefore ΩΠ(ρ) ⊆ ρ. If now (x, y) ∈ Ω(Π(ρ)), then x ≤
ΩΠ(ρ)

y ≤
ΩΠ(ρ)

x,

which implies x ≤
ρ
y ≤
ρ
x, and since ρ is a congruence, (x, y) ∈ ρ. Consequently, (ΩΠ)(ρ) ⊆ ρ and

we have proven the equality (ΩΠ)(ρ) = ρ.
The proof of the equality (ΠΩ)(τ) = τ is symmetric.
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Now let us show that if ρ ∈ Con(S), then S/ρ and T/Π(ρ) are strongly Morita equivalent. Let
ρ ∈ Con(S) and denote τ := Π(ρ) ∈ Con(T ). We need to construct a Morita context containing
S/ρ and T/τ . For this we define the sets

H := {(sp, s′p) | (s, s′) ∈ ρ, p ∈ P} ∪ {(pt, pt′) | (t, t′) ∈ τ, p ∈ P} ⊆ P × P,
K := {(qs, qs′) | (s, s′) ∈ ρ, q ∈ Q} ∪ {(tq, t′q) | (t, t′) ∈ τ, q ∈ Q} ⊆ Q×Q.

Furthermore, let µ = ν(H) and λ = ν(K) be the biposet congruences on SPT and TQS induced by
H and K, respectively. On the quotient sets P/µ and Q/λ we define the actions of the quotient
posemigroups S/ρ and T/τ as follows:

[s]ρ · [p]µ := [sp]µ, [p]µ · [t]τ := [pt]µ,
[q]λ · [s]ρ := [qs]λ, [t]τ · [q]λ := [tq]λ,

p ∈ P , q ∈ Q, s ∈ S, t ∈ T . Let sρs′ and pµp′, s, s′ ∈ S, p, p′ ∈ P . Since H ⊆ µ and µ is a left
S-poset congruence, we obtain sp µ s′p µ s′p′, and hence sp µ s′p′. Similarly one can show that
all the other definitions are correct. Obviously we obtain biacts. To prove that the first action
is monotone in the first argument, we suppose that [s]ρ ≤ [s′]ρ for s, s′ ∈ S. Then s ≤

ρ
s′, i.e.

s ≤ s1ρs
′
1 ≤ s2ρ . . . ρs

′
n ≤ s′ for some s1, . . . , sn, s

′
1, . . . , s

′
n ∈ S. This implies for each p ∈ P ,

sp ≤ s1p H s′1p ≤ . . . ≤ snp H s′np ≤ s′p, hence sp ≤
α(H)

s′p and [sp]µ ≤ [s′p]µ. On the other hand,

assuming that s ∈ S, p, p′ ∈ P and [p]µ ≤ [p′]µ, we have p ≤
α(H)

p′. The last inequality clearly

implies sp ≤
α(H)

sp′, and so [sp]µ ≤ [sp′]µ. Thus we have obtained an (S/ρ, T/τ)-biposet P/µ.

Analogously, Q/λ is a (T/τ, S/ρ)-biposet. Unitarity of P/µ and Q/λ follows from the unitarity of
P and Q.
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Define a mapping θ : P/µ⊗Q/λ→ S/ρ by

θ([p]µ ⊗ [q]λ) := [θ(p⊗ q)]ρ,

p ∈ P , q ∈ Q. Let us prove that θ preserves the order. First we notice that, for all p ∈ P , q ∈ Q,
s, s′ ∈ S, u ∈ S1, t, t′ ∈ T , v ∈ T 1,

(s, s′) ∈ ρ =⇒ θ(usp⊗ q) ρ θ(us′p⊗ q),(4)
(t, t′) ∈ τ =⇒ θ(ptv ⊗ q) ρ θ(pt′v ⊗ q).(5)

The first implication holds because θ is a left S-poset homomorphism and ρ is compatible with
multiplication. For the second implication we use that τ is compatible with multiplication and (3)
holds.

Next we show that for all x, x′, p ∈ P , y, y′, q ∈ Q,

[x]µ ≤ [x′]µ =⇒ θ(x⊗ q) ≤
ρ
θ(x′ ⊗ q),(6)

[y]λ ≤ [y′]λ =⇒ θ(p⊗ y) ≤
ρ
θ(p⊗ y′).(7)

If [x]µ ≤ [x′]µ, then x ≤
α(H)

x′ and there exist x1, . . . , xn ∈ P such that

x ≤ x1α(H)x′1 ≤ x2α(H)x′2 ≤ . . . ≤ xnα(H)x′n ≤ x′,

where for each j ∈ {1, . . . , n} there exist a natural number nj and (si, s′i) ∈ ρ, (ti, t′i) ∈ τ , pi ∈ P ,
ui ∈ S1, vi ∈ T 1, i = 1, . . . , nj , such that

xj = u1s1p1v1 u2p2t
′
2v2 = u3s3p3v3 . . . unjpnj t

′
njvnj = x′j .

u1s
′
1p1v1 = u2p2t2v2.
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Using (4) and (5), we obtain

θ(xj ⊗ q) = θ(u1s1p1v1 ⊗ q) ρ θ(u1s
′
1p1v1 ⊗ q) = θ(u2p2t2v2 ⊗ q)

ρ θ(u2p2t
′
2v2 ⊗ q) = θ(u3s3p3v3 ⊗ q) ρ . . . ρ θ(x′j ⊗ q)

which implies

θ(x⊗ q) ≤ θ(x1 ⊗ q) ρ θ(x′1 ⊗ q) ≤ θ(x2 ⊗ q) ρ θ(x′2 ⊗ q) ≤ . . . ≤ θ(x′ ⊗ q).

Hence θ(x⊗ q) ≤
ρ
θ(x′ ⊗ q). The proof of the implication (7) is analogous.

Suppose now that [p]µ ⊗ [q]λ ≤ [p′]µ ⊗ [q′]λ in P/µ⊗Q/λ. From (1) we obtain p1, . . . , pn ∈ P ,
q2, . . . , qn ∈ Q, t1, . . . , tn, w1, . . . , wn ∈ T 1 such that

[p]µ ≤ [p1]µ[t1]τ
[p1]µ[w1]τ ≤ [p2]µ[t2]τ [t1]τ [q]λ ≤ [w1]τ [q2]λ
[p2]µ[w2]τ ≤ [p3]µ[t3]τ [t2]τ [q2]λ ≤ [w2]τ [q3]λ

. . . . . .
[pn]µ[wn]τ ≤ [p′]µ [tn]τ [qn]λ ≤ [wn]τ [q′]λ.

Using the implications (6) and (7), we obtain

θ(p⊗ q) ≤
ρ
θ(p1t1 ⊗ q) = θ(p1 ⊗ t1q)

≤
ρ
θ(p1 ⊗ w1q2) = θ(p1w1 ⊗ q2)

≤
ρ
. . . ≤

ρ
θ(p′ ⊗ q′),



JJ J I II

Go back

Full Screen

Close

Quit

and therefore [θ(p ⊗ q)]ρ ≤ [θ(p′ ⊗ q′]ρ. So θ preserves the order. Let us show that θ is a biposet
morphism. For every s, s′ ∈ S,

θ ([s]ρ ([p]µ ⊗ [q]λ)) = θ([sp]µ ⊗ [q]λ) = [θ(sp⊗ q)]ρ = [sθ(p⊗ q)]ρ
= [s]ρ[θ (p⊗ q)]ρ = [s]ρθ ([p]µ ⊗ [q]λ) .

Similarly one can show that θ preserves the right action. Surjectivity of θ follows from the sur-
jectivity of θ. Analogously one can construct a surjective morphism φ : Q/λ ⊗ P/µ → T/τ of
(T/τ, T/τ)-biposets. The equalities (2) are easy to check. �

If a posemigroup S has an identity element 1 and SA is a left S-poset then SA = A if and only
if 1a = a for every a ∈ A. Thus the S-poset SA over a monoid S is unitary if and only if it is
an S-poset in the sense of [5]. From Theorem 6 of [5] it follows that two posemigroups S and T
with identity elements are strongly Morita equivalent if and only if they are Morita equivalent as
pomonoids (in the sense of [5]). So we have the following corollary.

Corollary 1. Congruence lattices of Morita equivalent pomonoids are isomorphic.

In [4] one can find a list of non-isomorphic Morita equivalent monoids. These can be considered
as Morita equivalent pomonoids with trivial order, and hence Corollary 1 applies to them. More-
over, an example of non-isomorphic Morita equivalent pomonoids with non-trivial order is given
in [5].

Suppose that semigroups S and T with common joint weak local units are strongly Morita
equivalent. We may consider S and T as posemigroups with trivial order and they will be strongly
Morita equivalent as posemigroups. By Theorem 1 their lattices of posemigroup congruences are
isomorphic. But for semigroups with trivial order the posemigroup congruences are precisely the
semigroup congruences. Hence we have the following result.
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Corollary 2 ([6]). Congruence lattices of strongly Morita equivalent semigroups with common
joint weak local units are isomorphic.

In Theorem 1, we have proven that congruence lattices of strongly Morita equivalent posemi-
groups with common joint weak local units are isomorphic. As pointed out in [10], in general
congruence lattices of strongly Morita equivalent posemigroups need not be isomorphic.
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e-mail : Valdis.Laan@ut.ee


