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A MEAN VALUE PROPERTY OF HARMONIC FUNCTIONS
ON THE INTERIOR OF A HYPERBOLA

E. SYMEONIDIS

Abstract. We establish a mean value property for harmonic functions on the interior of a hyperbola.
This property connects their boundary values with the interior ones on the axis of the hyperbola from
the focus to infinity.

1. Introduction

Let Y denote the interior of the hyperbola x2

a2 − y2

b2 = 1, x > 0 (a, b > 0), that is,

Y :=
{

(x, y) ∈ R+ ×R :
x2

a2
− y2

b2
> 1
}
.

Let ∂Y denote its boundary which consists of the hyperbola itself.
If h is a harmonic function on an open set containing Y ∪ ∂Y and if h decays at infinity, we are

going to establish the following identity
∞∫

√
a2+b2

h(x, 0)√
x2 − a2 − b2

dx =
1
2

∞∫
−∞

h(a cosh r, b sinh r) dr(1)

that we regard as a mean value property.
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The left side involves exactly the values of h on the axis of the hyperbola between the focus
(
√
a2 + b2, 0) and infinity.
We avoid calling (1) a quadrature identity (and Y a quadrature domain) because the right side

is not an integral with respect to the arc length. (For a complete discussion of quadrature domains
and identities the reader is referred to [3].) This identity contributes to the few cases where explicit
mean value properties are known for unbounded domains.

We would like to point out the striking analogy of (1) to the following mean value property for
harmonic functions h̃ on (an open neighbourhood of) the elliptic disc x2

a2 + y2

b2 ≤ 1 (here a > b > 0)

√
a2−b2∫

−
√
a2−b2

h̃(x, 0)√
a2 − b2 − x2

dx =
1
2

π∫
−π

h̃(a cos s, b sin s) ds(2)

(see [5], [6]). For the proof of (1) we do not use (2). Nevertheless, we believe that it is worth
looking for a deeper connection between (1) and (2).

2. The mean value property

A simple dilatation transforms the hyperbola x2

a2− y2

b2 = 1 to the “standard” form x2

cos2 s0
− y2

sin2 s0
= 1

with s0 ∈ ]0, π2 [ and (1) takes the form

∞∫
1

h(x, 0)√
x2 − 1

dx =
1
2

∞∫
−∞

h(cosh r cos s0, sinh r sin s0) dr.(3)
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For s ∈ ]0, s0], we put

Ys :=
{

(x, y) ∈ R+ ×R :
x2

cos2 s
− y2

sin2 s
> 1
}
.

Every hyperbola ∂Ys is parametrized by the map{
R −→ R

2

r 7−→ (cosh r cos s, sinh r sin s) .

A simple computation shows that disjoint hyperbolae ∂Ys correspond to different s ∈ ]0, π2 [ and
Ys0 =

[⋃
0<s<s0

∂Ys
]
∪ ([1,∞[×{0}) holds. Thus, Ys0 can be parametrized by

F (r, s) := (cosh r cos s, sinh r sin s) ,

where (r, s) ∈ R× ]− s0, s0[ (F (r, s) = F (−r,−s)). Since F (r, s) = cosh(r + is), F is a conformal
mapping and the Laplacian in the coordinates r, s keeps its euclidean form ∂2

∂r2 + ∂2

∂s2 .

The method we apply for obtaining (3) is the solving of the Dirichlet problem for Ys0 by
separation of variables in the Laplace equation. To this end, let f : ∂Ys0 → R be a continuous
function. We assume that f (F (r, s)) decreases fast enough for r → ±∞ so that all integrals in
the sequel converge. A Dirichlet solution for (Ys0 , f) is a harmonic function Hf : Ys0 → R which
is continuously extendable to ∂Ys0 by f . We require Hf to be bounded.

The method of separation of variables starts with the determination of all harmonic functions
u : Ys0 → R of the form

u (F (r, s)) = U(r)V (s) .
The Laplace equation

∂2(u ◦ F )
∂r2

+
∂2(u ◦ F )

∂s2
= 0
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entails
U ′′(r)
U(r)

+
V ′′(s)
V (s)

≡ 0 so
U ′′

U
= −V

′′

V
=: γ ∈ R .

The following cases have to be examined separately.
Case 1. γ < 0: We write γ = −λ2 with λ > 0 and have

V (s) = a cosh(λs) + b sinh(λs) , U(r) = c cos(λr) + d sin(λr)

for r ∈ R, |s| < s0 with a, b, c, d ∈ R. While combining U and V to obtain u, we have to pay
attention to the condition u (F (r, s)) = u (F (−r,−s)) which results in the basic functions

cos(λr) cosh(λs) and sin(λr) sinh(λs)(4)

for u (cos(λr) sinh(λs) and sin(λr) cosh(λs) have to be rejected). At this point it is still unsettled
whether (4) represent harmonic functions in the cartesian coordinates x, y. The reason is that F
is singular for (r, s) = (0, 0) which means that (4) may not be smooth at the focus (x, y) = (1, 0)
of the hyperbola.

However, the harmonicity of sin(λr) sinh(λs) is guaranteed by the reflection principle, since it
is an odd function with respect to y (see, e. g. [1, Theorem 1.3.6]). Then, also cos(λr) cosh(λs) is
harmonic as a harmonic conjugate function (a conjugate with respect to (x, y), which must exist,
has to be conjugate with respect to (r, s), too).
Case 2. γ > 0: Here we write γ = λ2 with λ > 0 and have

V (s) = a cos(λs) + b sin(λs) , U(r) = c cosh(λr) + d sinh(λr)

for r ∈ R, |s| < s0 with a, b, c, d ∈ R. The condition F (r, s) = F (−r,−s) results in the basic
functions

cosh(λr) cos(λs) and sinh(λr) sin(λs) .
We are not going to further examine these functions because they are unbounded on Ys0 .
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Case 3. γ = 0: Here we have

V (s) = as+ b , U(r) = cr + d .

The only bounded functions u with u (F (r, s)) = u (F (−r,−s)) are the constant ones.

After the determination of the basic harmonic functions of separate variables we return to the
Dirichlet setting and assume that the (bounded) solution Hf can be expressed in the form

Hf (F (r, s)) = c+

∞∫
0

aλ cosh(λs) cos(λr) dλ+

∞∫
0

bλ sinh(λs) sin(λr) dλ(5)

with appropriate coefficient functions aλ, bλ. If the right side is continuously extendable to s = s0,
the boundary condition implies

f(F (r, s0)) = c+

∞∫
0

aλ cosh(λs0) cos(λr) dλ+

∞∫
0

bλ sinh(λs0) sin(λr) dλ .(6)

Since by assumption the left side tends to zero for r → ±∞, on the basis of the Riemann-Lebesgue
lemma it should hold c = 0 provided that aλ cosh(λs0) and bλ sinh(λs0) are integrable in λ. (For
this lemma and the following facts about the Fourier transform, see, e. g. [2].) Then, (6) is nothing
but the Fourier inversion formula which at the same time forces aλ cosh(λs0) and bλ sinh(λs0) to
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constitute the Fourier transform of r 7→ f (F (r, s0)) as follows:

aλ cosh(λs0) =
1
π

∞∫
−∞

f (F (r, s0)) cos(λr) dr ,

bλ sinh(λs0) =
1
π

∞∫
−∞

f (F (r, s0)) sin(λr) dr .

(7)

At this point we have to clarify the conditions under which all previous plausible conclusions are
allowed. By Fourier theory we know that if the functionr 7→ f (F (r, s0)) is integrable and twice
differentiable with integrable first and second derivative, then the left sides of (7) are integrable,
(6) holds with c = 0, and (5) solves the Dirichlet problem for (Ys0 , f). We remark that this Hf is
a bounded function on Ys0 .
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Substituting aλ and bλ in (5) by their expressions from (7) and interchanging of integration lead
to the following representation of the Dirichlet solution

Hf (cosh r cos s, sinh r sin s)

=

∞∫
−∞

f(cosh ρ cos s0, sinh ρ sin s0) ·
∞∫
0

cosh(λs) cos(λr) cos(λρ)
π cosh(λs0)

dλ dρ

+

∞∫
−∞

f(cosh ρ cos s0, sinh ρ sin s0) ·
∞∫
0

sinh(λs) sin(λr) sin(λρ)
π sinh(λs0)

dλ dρ

=

∞∫
−∞

f(cosh ρ cos s0, sinh ρ sin s0)

·
∞∫
0

[
cosh(λs) cos(λr) cos(λρ)

π cosh(λs0)
+

sinh(λs) sin(λr) sin(λρ)
π sinh(λs0)

]
dλ dρ,

where the inner integral can be regarded as a Poisson kernel.
In particular, for s = 0, we have

Hf (coshr, 0)

=

∞∫
−∞

f(cosh ρ cos s0, sinh ρ sin s0) ·
∞∫
0

cos(λr) cos(λρ)
π cosh(λs0)

dλ dρ .
(8)

At this point we need the following lemma.



JJ J I II

Go back

Full Screen

Close

Quit

Lemma. Let g : ∂Ys0 → R be a bounded continuous function. Then there exists at most one
bounded solution to the Dirichlet problem for (Ys0 , g).

Proof. It suffices to show that if g = 0 and the bounded function h : Ys0 → R solves the Dirichlet
problem for (Ys0 , g), then h = 0.

Let R2 ∪ {∞} be the one-point compactification of R2, ∂∞Ys0 := ∂Ys0 ∪ {∞} the boundary of
Ys0 in R2 ∪ {∞}. Since {∞} is a polar subset of R2 ∪ {∞}, under the above assumptions it holds

lim
z→w
z∈Ys0

h(z) = 0 for every w ∈ ∂Ys0

and therefore for quasi-every point w ∈ ∂∞Ys0 . By a theorem of Bouligand (see [4]), this implies
h = 0. �

Thus, if h is a bounded harmonic function on an open neighbourhood of Ys0 = Ys0 ∪ ∂Ys0 , h
is the unique solution of the Dirichlet problem for

(
Ys0 , h|∂Ys0

)
, and if in addition the function

r 7→ h (F (r, s0)), (r ∈ R) as well as its first two derivatives are integrable, (8) entails

h(cosh r, 0)

=

∞∫
−∞

h(cosh ρ cos s0, sinh ρ sin s0) ·
∞∫
0

cos(λr) cos(λρ)
π cosh(λs0)

dλdρ .
(9)

Due to the inner integral and the arbitrariness of r, this equation, though crucial in our inves-
tigation, is not yet “simple” enough to present a mean value property that deserves its name.
However, it results in a whole class of such properties after being multiplied by suitable functions
and integrated. Let α = α(r) be a function for which the Fourier cosine transform and its inversion
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are applicable (see, e. g. [2])

∞∫
0

α(r) cos(λr) dr =: βλ cosh(λs0) , α(r) =
2
π

∞∫
0

βλ cosh(λs0) cos(λr) dλ.

Then, from (9) we get

∞∫
0

h(cosh r, 0)α(r) dr =

∞∫
−∞

h(cosh ρ cos s0, sinh ρ sin s0)

·
∞∫
0

cos(λρ)
π cosh(λs0)

∞∫
0

α(r) cos(λr) dr dλ dρ

=

∞∫
−∞

h(cosh ρ cos s0, sinh ρ sin s0) ·
∞∫
0

βλ
π

cos(λρ) dλ dρ.

(10)

Indeed, relation (10) is a generator of many mean value properties. We shall look closer into
the special case βλ = e−cλ

2
, c > 0; its Fourier cosine transform can be explicitly given

∞∫
0

e−cλ
2

cos(λρ) dλ =
1
2

√
π

c
e−

ρ2

4c(11)
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([2, p. 223]). In this case we have

α(r) =
1
π

∫ ∞
−∞

βλ cosh(λs0) cos(λr) dλ =
1
π

∫ ∞
−∞

e−cλ
2
· eλs0 + e−λs0

2
cos(λr) dλ

=
1

2π

∞∫
−∞

e−cλ
2+λs0 cos(λr) dλ+

1
2π

∞∫
−∞

e−cλ
2−λs0 cos(λr) dλ

=
1

2π

∞∫
−∞

e
−c

»
(λ− s02c )2− s20

4c2

–
cos(λr) dλ+

1
2π

∞∫
−∞

e
−c

»
(λ+

s0
2c )2− s20

4c2

–
cos(λr) dλ

=
1

2π
e
s20
4c

∞∫
−∞

e−c(λ−
s0
2c )2

cos(λr) dλ+
1

2π
e
s20
4c

∞∫
−∞

e−c(λ+
s0
2c )2

cos(λr) dλ

=
1

2π
e
s20
4c

∞∫
−∞

e−cx
2

cos
(
xr +

s0r

2c

)
dx+

1
2π

e
s20
4c

∞∫
−∞

e−cx
2

cos
(
xr − s0r

2c

)
dx

=
1
π

e
s20
4c cos

s0r

2c
·
∞∫
−∞

e−cx
2

cos(xr) dx =
1√
cπ

e
s20−r

2

4c cos
s0r

2c

according to (11). Using (10) and (11), we arrive at the following theorem.
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Theorem. Let h be a bounded harmonic function on an open neighbourhood of Ys0 for which
r 7→ h(cosh r cos s0, sinh r sin s0) and its first two derivatives are integrable over R. Then, for every
c > 0, it holds

∞∫
0

h(cosh r, 0) · e
s20−r

2

4c cos
s0r

2c
dr

=
1
2

∞∫
−∞

h(cosh ρ cos s0, sinh ρ sin s0) · e−
ρ2

4c dρ.

(12)

If we pass to the limit c → ∞ in (12), we obtain (since s0 can be replaced by any smaller
number) the following corollary.

Corollary. Under the hypotheses of the theorem it holds
∞∫
0

h(cosh r, 0) dr =
1
2

∞∫
−∞

h(cosh r cos s, sinh r sin s) dr

for every s ∈ [0, s0].

This establishes (3).
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