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TWO-PERIODIC TERNARY RECURRENCES
AND THEIR BINET-FORMULA

M. ALP, N. IRMAK and L. SZALAY

Abstract. The properties of k-periodic binary recurrences have been discussed by several authors.

In this paper, we define the notion of the two-periodic ternary linear recurrence. First we follow
Cooper’s approach to obtain the corresponding recurrence relation of order six. Then we provide
explicit formulae linked to the three possible cases.

1. INTRODUCTION

Let a, b, c, d, and q0, q1 denote arbitrary complex numbers, and consider the the sequence {qn}
(n ∈ N) defined by

qn =
{
aqn−1 + bqn−2 if n is even
cqn−1 + dqn−2 if n is odd.(1)

The sequence {qn} is called two-periodic binary recurrence. It was first described by Edson and
Yayenie in [2]. The authors discussed the specific case q0 = 0, q1 = 1 and b = d = 1, gave the
generating function and Binet-type formula of {qn}, further they proved several identities among
the terms of {qn}. In the same paper the sequence {qn} was investigated for arbitrary initial values
q0 and q1, but b = d = 1 were presumed.
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Later Yayenie [6] determined the Binet’s formula for {qn}, where b and d were arbitrary numbers,
but held for the initial values q0 = 0 and q1 = 1.

The k-periodic binary recurrence

qn =


a0qn−1 + b0qn−2 if n ≡ 0 (mod k)
a1qn−1 + b1qn−2 if n ≡ 1 (mod k)
...

...
ak−1qn−1 + bk−1qn−2 if n ≡ k − 1 (mod k)

(2)

was introduced by Cooper in [1], where mainly the combinatorial interpretation of the coefficients
Ak and Bk appearing in the recurrence relation qn = Akqn−k + Bkqn−2k was discussed. Edson,
Lewis and Yayenie [3] also studied the k-periodic extension, again with q0 = 0, q1 = 1 and with
the restrictions b0 = b1 = · · · = bk−1 = 1.

The main tool in [2] and [6] is to work with the corresponding generating functions. Later we
suggested a new approach (see [4]), namely to apply the fundamental theorem of homogeneous
linear recurrences (Theorem 1). This powerful method made us possible to give the Binet’s formula
of {qn} for any b, d and for arbitrary initial values. Moreover, we were able to maintain the
remaining case when the zeros of the polynomial

p2(x) = x2 − (ac+ b+ d)x+ bd

coincide. We showed that the application of the fundamental theorem of linear recurrences was
very effective and it could even be used at k-periodic sequences generally.

Now define the two-periodic ternary recurrence sequence by

γn =
{
aγn−1 + bγn−2 + cγn−3 if n is even
dγn−1 + eγn−2 + fγn−3 if n is odd(3)
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with arbitrary complex coefficients and initial conditions γ0, γ1.
In this paper, we provide a recurrence relation of order six for γn and then give the corresponding

Binet-formulae (Theorem 2–4) by using the fundamental theorem of linear recurrences. According
to the relation between the zeros of the characteristic polynomial of the recurrence we need to
distinguish three principal cases (Case I, II and III).

At the end of the first section we recall a theorem for linear recurrences. A homogeneous linear
recurrence {Gn}∞n=0 of order k (k ≥ 1, k ∈ N) is defined by the recursion

Gn = A1Gn−1 +A2Gn−2 + · · ·+AkGn−k (n ≥ k) ,(4)

where the initial values G0, . . . , Gk−1 and the coefficients A1, . . . , Ak are complex numbers, Ak 6= 0
and |G0|+ · · ·+ |Gk−1| > 0. The characteristic polynomial of the sequence {Gn} is the polynomial

g(x) = xk −A1x
k−1 − · · · −Ak .

Denote by α1, . . . , αt the distinct zeros of the characteristic polynomial g(x) which can there be
written in the form

g(x) = (x− α1)e1 · · · (x− αt)et .(5)

The following result (see e.g. [5]) plays a basic role in the theory of recurrence sequences, and
here in our approach.
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Theorem 1.1. Let {Gn} be a sequence satisfying the relation (4) with Ak 6= 0, and g(x) its char-
acteristic polynomial with distinct roots α1, . . . , αt. Let K=Q(α1, . . . , αt, A1, . . . , Ak, G0, . . . , Gk−1)
denote the extension of the field of rational numbers and let g(x) be given in the form (5). Then
there exist uniquely determined polynomials gi(x) ∈ K[x] of degree less than ei (i = 1, . . . , t) such
that

Gn = g1(n)αn1 + · · ·+ gt(n)αnt (n ≥ 0) .

2. two-periodic ternary recurrence

Let a, b, c, d, e, f and γ0, γ1 denote complex numbers satisfying cf 6= 0 and |γ0| + |γ1| 6= 0. Recall
the sequence {γn} defined by (3).

Supposing that n is even, by Cooper’s method (see [1]), we can built up the tree of γn (see
Figure 1). For n odd we obtain a similar tree which leads to the same recurrence relation. Thus
sequence {γn} satisfies the recurrence relation

γn = (ad+ b+ e) γn−2 + (af − be+ cd) γn−4 + cfγn−6(6)

of order six.
Let

p (t) = t3 − (ad+ b+ e) t2 − (af − be+ cd) t− cf(7)

denote the polynomial determined by the characteristic polynomial

x6 − (ad+ b+ e)x4 − (af − be+ cd)x2 − cf

of the recurrence (6) by the substitution t = x2. According to the coefficients of p (t), we must
distinguish the following cases: the polynomial p(t) can possesses 3 or 2 or 1 different zeros (Case 1,
2 and 3, respectively). At this point, we apply Theorem 1 and obtain an appropriate Binet-formula.
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Figure 1. .

2.1. Case 1

Let κ, τ and µ are three distinct zeros of (7). By Theorem 1, there are complex numbers κi, τi and
µi (i = 1, 2) such that

γn = κ1

(√
κ
)n + κ2

(
−
√
κ
)n + µ1 (

√
µ)n + µ2 (−√µ)n + τ1

(√
τ
)n + τ2

(
−
√
τ
)n
.



JJ J I II

Go back

Full Screen

Close

Quit

Suppose first that n is even. Then we obtain

γn = (κ1 + κ2)(
√
κ)n + (τ1 + τ2)(

√
τ)n + (µ1 + µ2)(

√
µ)n,

which after considering the cases n = 0, 2 and 4 in order to determine κi, τi and µi (i = 1, 2),
leads to the explicit formula

γn =
γ4 − (µ+ τ) γ2 + µτγ0

(κ− µ) (κ− τ)
κ
n
2 +

γ4 − (κ+ τ) γ2 + κτγ0

(µ− τ) (µ− κ)
µ
n
2

+
γ4 − (µ+ κ) γ2 + µκγ0

(τ − κ) (τ − µ)
τ
n
2 .

Contrary, suppose that n is odd. In similar manner it leads to

γn =
γ5 − (µ+ τ) γ3 + µτγ1√

κ (κ− µ) (κ− τ)
κ
n
2 +

γ5 − (κ+ τ) γ3 + κτγ1√
µ (µ− τ) (µ− κ)

µ
n
2

+
γ5 − (µ+ κ) γ3 + µκγ1√

τ (τ − κ) (τ − µ)
τ
n
2 .

Comparing the two results above we proved the following theorem.

Theorem 2.1. Let ξn = n − 2
⌊
n
2

⌋
. Suppose that the three different roots of (7) are κ, µ and

τ . Then the terms of the sequence {γn} satisfy

γn =
γ4+ξn − (µ+ τ) γ2+ξn + µτγξn

(κ− µ) (κ− τ)
κb

n
2 c +

γ4+ξn − (κ+ τ) γ2+ξn + κτγξn
(µ− τ) (µ− κ)

µb
n
2 c

+
γ4+ξn − (µ+ κ) γ2+ξn + µκγξn

(τ − κ) (τ − µ)
τb

n
2 c.
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2.2. Case 2

In this case, we suppose that there are two distinct zeros of the polynomial (7). Say that κ = τ
and µ 6= τ. Thus by Theorem 1, it results that γn can be written in the form

(8) γn = (κ1n+ τ1)
(√
κ
)n + (κ2n+ τ2)

(
−
√
κ
)n + µ1 (

√
µ)n + µ2 (−√µ)n .

Firstly suppose again that n is even. Then we obtain

γn = ((κ1 + κ2)n+ (τ1 + τ2))
(√
κ
)n + (µ1 + µ2) (

√
µ)n .(9)

Observe that (9) at n = 0, 2, 4 is a system of three equations in κ1 +κ2, τ1 + τ2 and µ1 +µ2. One
can easily get the solution

κ1 + κ2 =
γ4 − (κ+ µ) γ2 + κµγ0

2κ (κ− µ)
, τ1 + τ2 = −

γ4 − 2κγ2 +
(
2κµ− µ2

)
γ0

(κ− µ)2

and

µ1 + µ2 =
γ4 − 2κγ2 + κ2γ0

(κ− µ)2
.

Now, suppose that n is odd. Thus we obtain

γn = ((κ1 − κ2)n+ (τ1 − τ2))
(√
κ
)n + (µ1 − µ2) (

√
µ)n ,

where similarly to the previous case, one can determine

κ1 − κ2 =
γ5 − (κ+ µ) γ3 + κµγ1

2κ
3
2 (κ− µ)

, µ1 − µ2 =
γ5 − 2κγ3 + κ2γ1

µ
1
2 (κ− µ)2
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and

τ1 − τ2 =
(µ− 3κ) γ5 +

(
5κ2 − µ2

)
γ3 +

(
3κµ2 − 5κ2µ

)
γ1

2κ
3
2 (κ− µ)2

.

Hence we proved the following theorem.

Theorem 2.2. If the polynomial p(x) possesses two distinct zeros κ and µ, among them κ has
the multiplicity 2, then the explicit formula

γn =

{
γ4+ξn − (κ+ µ) γ2+ξn + κµγξn

2κ1+ ξn
2 (κ− µ)

n

+ (−1)ξn+1
(µ− 3κ)ξn γ4+ξn + (−2κ)ξn+1

(
5κ2 − µ2

)ξn
γ2+ξn

2κ1+ ξn
2 (κ− µ)2

+ (−1)ξn+1

(
2κµ− µ2

)ξn+1
(
3κµ2 − 5κ2µ

)ξn
γξn

2κ1+ ξn
2 (κ− µ)2

}
κb

n
2 c−1

+
γ4+ξn − 2κγ2+ξn + κ2γξn

µ
ξn
2 (κ− µ)2

µb
n
2 c−1.

describes the nth term of the sequence {γ}.

2.3. Case 3

In the last part, we suppose that the zeros of (7) coincide. Again by Theorem 1,

γn =
(
κ1n

2 + τ1n+ µ1

) (√
κ
)n +

(
κ2n

2 + τ2n+ µ2

) (
−
√
κ
)n(10)
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If n is even, then

γn =
(
(κ1 + κ2)n2 + (τ1 + τ2)n+ (µ1 + µ2)

) (√
κ
)n

holds, where

κ1 + κ2 =
γ4 − 2κγ2 + κ2γ0

8κ2
, τ1 + τ2 = −γ4 − 4κγ2 + 3κ2γ0

4κ2
and µ1 + µ2 = γ0.

Assuming odd n, (10) returns with

γn =
(
(κ1 − κ2)n2 + (τ1 − τ2)n+ (µ1 − µ2)

) (√
κ
)n

where

κ1 − κ2 =
γ5 − 2κγ3 + κ2γ1

8κ
5
2

, τ1 − τ2 =
−
(
γ5 − 3κγ3 + 2κ2γ1

)
2κ

5
2

and

µ1 − µ2 =
3γ5 − 10κγ3 + 15κ2γ1

8κ
5
2

.

Thus the proof of the forthcoming theorem is complete.

Theorem 2.3. If p(x) has only one zero with multiplicity 3, say κ, then

γn =
{(

γ4+ξn − 2κγ2+ξn + κ2γξn

8κ2+ ξn
2

)
n2

−
(
γ4+ξn − 4ξn+13ξnκγ2+ξn + 3ξn2ξn+1κ2γξn

2ξn2κ2+ ξn
2

)
n

+ γ
ξn+1
0

(
3γ5 − 10κγ3 + 15κ2γ1

8κ2+ ξn
2

)ξn}
κb

n
2 c−1.
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