# TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA 

M. ALP, N. IRMAK and L. SZALAY

Abstract. The properties of $k$-periodic binary recurrences have been discussed by several authors. In this paper, we define the notion of the two-periodic ternary linear recurrence. First we follow Cooper's approach to obtain the corresponding recurrence relation of order six. Then we provide explicit formulae linked to the three possible cases.

## 1. INTRODUCTION

Let $a, b, c, d$, and $q_{0}, q_{1}$ denote arbitrary complex numbers, and consider the the sequence $\left\{q_{n}\right\}$ ( $n \in \mathbb{N}$ ) defined by

$$
q_{n}= \begin{cases}a q_{n-1}+b q_{n-2} & \text { if } n \text { is even }  \tag{1}\\ c q_{n-1}+d q_{n-2} & \text { if } n \text { is odd. }\end{cases}
$$

The sequence $\left\{q_{n}\right\}$ is called two-periodic binary recurrence. It was first described by Edson and Yayenie in [2]. The authors discussed the specific case $q_{0}=0, q_{1}=1$ and $b=d=1$, gave the generating function and Binet-type formula of $\left\{q_{n}\right\}$, further they proved several identities among the terms of $\left\{q_{n}\right\}$. In the same paper the sequence $\left\{q_{n}\right\}$ was investigated for arbitrary initial values $q_{0}$ and $q_{1}$, but $b=d=1$ were presumed.

[^0](2)

Later Yayenie [6] determined the Binet's formula for $\left\{q_{n}\right\}$, where $b$ and $d$ were arbitrary numbers, but held for the initial values $q_{0}=0$ and $q_{1}=1$.

The $k$-periodic binary recurrence

$$
q_{n}= \begin{cases}a_{0} q_{n-1}+b_{0} q_{n-2} & \text { if } n \equiv 0 \quad(\bmod k)  \tag{2}\\ a_{1} q_{n-1}+b_{1} q_{n-2} & \text { if } n \equiv 1 \quad(\bmod k) \\ \vdots & \vdots \\ a_{k-1} q_{n-1}+b_{k-1} q_{n-2} & \text { if } n \equiv k-1 \quad(\bmod k)\end{cases}
$$

was introduced by Cooper in [1], where mainly the combinatorial interpretation of the coefficients $A_{k}$ and $B_{k}$ appearing in the recurrence relation $q_{n}=A_{k} q_{n-k}+B_{k} q_{n-2 k}$ was discussed. Edson, Lewis and Yayenie [3] also studied the $k$-periodic extension, again with $q_{0}=0, q_{1}=1$ and with the restrictions $b_{0}=b_{1}=\cdots=b_{k-1}=1$.

The main tool in [2] and [6] is to work with the corresponding generating functions. Later we suggested a new approach (see [4]), namely to apply the fundamental theorem of homogeneous linear recurrences (Theorem 1). This powerful method made us possible to give the Binet's formula of $\left\{q_{n}\right\}$ for any $b, d$ and for arbitrary initial values. Moreover, we were able to maintain the remaining case when the zeros of the polynomial

$$
p_{2}(x)=x^{2}-(a c+b+d) x+b d
$$

coincide. We showed that the application of the fundamental theorem of linear recurrences was very effective and it could even be used at $k$-periodic sequences generally.
Full Screen

Close
Now define the two-periodic ternary recurrence sequence by

$$
\gamma_{n}= \begin{cases}a \gamma_{n-1}+b \gamma_{n-2}+c \gamma_{n-3} & \text { if } n \text { is even }  \tag{3}\\ d \gamma_{n-1}+e \gamma_{n-2}+f \gamma_{n-3} & \text { if } n \text { is odd }\end{cases}
$$

Go back

Full Screen

$$
\begin{equation*}
g(x)=\left(x-\alpha_{1}\right)^{e_{1}} \cdots\left(x-\alpha_{t}\right)^{e_{t}} . \tag{5}
\end{equation*}
$$

The following result (see e.g. [5]) plays a basic role in the theory of recurrence sequences, and here in our approach.
$44|4| \gg$
Go back

Full Screen

Close

Quit
Theorem 1.1. Let $\left\{G_{n}\right\}$ be a sequence satisfying the relation (4) with $A_{k} \neq 0$, and $g(x)$ its characteristic polynomial with distinct roots $\alpha_{1}, \ldots, \alpha_{t}$. Let $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}, A_{1}, \ldots, A_{k}, G_{0}, \ldots, G_{k-1}\right)$ denote the extension of the field of rational numbers and let $g(x)$ be given in the form (5). Then there exist uniquely determined polynomials $g_{i}(x) \in K[x]$ of degree less than $e_{i}(i=1, \ldots, t)$ such that

$$
G_{n}=g_{1}(n) \alpha_{1}^{n}+\cdots+g_{t}(n) \alpha_{t}^{n} \quad(n \geq 0)
$$

## 2. TWO-PERIODIC TERNARY RECURRENCE

Let $a, b, c, d, e, f$ and $\gamma_{0}, \gamma_{1}$ denote complex numbers satisfying $c f \neq 0$ and $\left|\gamma_{0}\right|+\left|\gamma_{1}\right| \neq 0$. Recall the sequence $\left\{\gamma_{n}\right\}$ defined by (3).

Supposing that $n$ is even, by Cooper's method (see [1]), we can built up the tree of $\gamma_{n}$ (see Figure 1). For $n$ odd we obtain a similar tree which leads to the same recurrence relation. Thus sequence $\left\{\gamma_{n}\right\}$ satisfies the recurrence relation

$$
\begin{equation*}
\gamma_{n}=(a d+b+e) \gamma_{n-2}+(a f-b e+c d) \gamma_{n-4}+c f \gamma_{n-6} \tag{6}
\end{equation*}
$$

of order six.
Let

$$
\begin{equation*}
p(t)=t^{3}-(a d+b+e) t^{2}-(a f-b e+c d) t-c f \tag{7}
\end{equation*}
$$

denote the polynomial determined by the characteristic polynomial

$$
x^{6}-(a d+b+e) x^{4}-(a f-b e+c d) x^{2}-c f
$$

of the recurrence (6) by the substitution $t=x^{2}$. According to the coefficients of $p(t)$, we must distinguish the following cases: the polynomial $p(t)$ can possesses 3 or 2 or 1 different zeros (Case 1,


Figure 1. .


### 2.1. Case 1

Let $\kappa, \tau$ and $\mu$ are three distinct zeros of (7). By Theorem 1 , there are complex numbers $\kappa_{i}, \tau_{i}$ and $\mu_{i}(i=1,2)$ such that

$$
\gamma_{n}=\kappa_{1}(\sqrt{\kappa})^{n}+\kappa_{2}(-\sqrt{\kappa})^{n}+\mu_{1}(\sqrt{\mu})^{n}+\mu_{2}(-\sqrt{\mu})^{n}+\tau_{1}(\sqrt{\tau})^{n}+\tau_{2}(-\sqrt{\tau})^{n} .
$$

Suppose first that $n$ is even. Then we obtain

$$
\gamma_{n}=\left(\kappa_{1}+\kappa_{2}\right)(\sqrt{\kappa})^{n}+\left(\tau_{1}+\tau_{2}\right)(\sqrt{\tau})^{n}+\left(\mu_{1}+\mu_{2}\right)(\sqrt{\mu})^{n}
$$

which after considering the cases $n=0,2$ and 4 in order to determine $\kappa_{i}, \tau_{i}$ and $\mu_{i}(i=1,2)$, leads to the explicit formula

$$
\begin{aligned}
\gamma_{n}= & \frac{\gamma_{4}-(\mu+\tau) \gamma_{2}+\mu \tau \gamma_{0}}{(\kappa-\mu)(\kappa-\tau)} \kappa^{\frac{n}{2}}+\frac{\gamma_{4}-(\kappa+\tau) \gamma_{2}+\kappa \tau \gamma_{0}}{(\mu-\tau)(\mu-\kappa)} \mu^{\frac{n}{2}} \\
& +\frac{\gamma_{4}-(\mu+\kappa) \gamma_{2}+\mu \kappa \gamma_{0}}{(\tau-\kappa)(\tau-\mu)} \tau^{\frac{n}{2}}
\end{aligned}
$$

Contrary, suppose that $n$ is odd. In similar manner it leads to

$$
\begin{aligned}
\gamma_{n}= & \frac{\gamma_{5}-(\mu+\tau) \gamma_{3}+\mu \tau \gamma_{1}}{\sqrt{\kappa}(\kappa-\mu)(\kappa-\tau)} \kappa^{\frac{n}{2}}+\frac{\gamma_{5}-(\kappa+\tau) \gamma_{3}+\kappa \tau \gamma_{1}}{\sqrt{\mu}(\mu-\tau)(\mu-\kappa)} \mu^{\frac{n}{2}} \\
& +\frac{\gamma_{5}-(\mu+\kappa) \gamma_{3}+\mu \kappa \gamma_{1}}{\sqrt{\tau}(\tau-\kappa)(\tau-\mu)} \tau^{\frac{n}{2}}
\end{aligned}
$$

Comparing the two results above we proved the following theorem.
Theorem 2.1. Let $\xi_{n}=n-2\left\lfloor\frac{n}{2}\right\rfloor$. Suppose that the three different roots of (7) are $\kappa, \mu$ and $\tau$. Then the terms of the sequence $\left\{\gamma_{n}\right\}$ satisfy

$$
\begin{aligned}
\gamma_{n}= & \frac{\gamma_{4+\xi_{n}}-(\mu+\tau) \gamma_{2+\xi_{n}}+\mu \tau \gamma_{\xi_{n}}}{(\kappa-\mu)(\kappa-\tau)}\left\lfloor^{\left.\frac{n}{2}\right\rfloor}+\frac{\gamma_{4+\xi_{n}}-(\kappa+\tau) \gamma_{2+\xi_{n}}+\kappa \tau \gamma_{\xi_{n}}}{(\mu-\tau)(\mu-\kappa)}\left\lfloor^{\left.\frac{n}{2}\right\rfloor}\right.\right. \\
& +\frac{\gamma_{4+\xi_{n}}-(\mu+\kappa) \gamma_{2+\xi_{n}}+\mu \kappa \gamma_{\xi_{n}}}{(\tau-\kappa)(\tau-\mu)} \tau^{\left.\frac{n}{2}\right\rfloor} .
\end{aligned}
$$

### 2.2. Case 2

In this case, we suppose that there are two distinct zeros of the polynomial (7). Say that $\kappa=\tau$ and $\mu \neq \tau$. Thus by Theorem 1, it results that $\gamma_{n}$ can be written in the form

$$
\begin{equation*}
\gamma_{n}=\left(\kappa_{1} n+\tau_{1}\right)(\sqrt{\kappa})^{n}+\left(\kappa_{2} n+\tau_{2}\right)(-\sqrt{\kappa})^{n}+\mu_{1}(\sqrt{\mu})^{n}+\mu_{2}(-\sqrt{\mu})^{n} . \tag{8}
\end{equation*}
$$

Firstly suppose again that $n$ is even. Then we obtain

$$
\begin{equation*}
\gamma_{n}=\left(\left(\kappa_{1}+\kappa_{2}\right) n+\left(\tau_{1}+\tau_{2}\right)\right)(\sqrt{\kappa})^{n}+\left(\mu_{1}+\mu_{2}\right)(\sqrt{\mu})^{n} . \tag{9}
\end{equation*}
$$

Observe that (9) at $n=0,2,4$ is a system of three equations in $\kappa_{1}+\kappa_{2}, \tau_{1}+\tau_{2}$ and $\mu_{1}+\mu_{2}$. One can easily get the solution

$$
\kappa_{1}+\kappa_{2}=\frac{\gamma_{4}-(\kappa+\mu) \gamma_{2}+\kappa \mu \gamma_{0}}{2 \kappa(\kappa-\mu)}, \quad \tau_{1}+\tau_{2}=-\frac{\gamma_{4}-2 \kappa \gamma_{2}+\left(2 \kappa \mu-\mu^{2}\right) \gamma_{0}}{(\kappa-\mu)^{2}}
$$

and

$$
\mu_{1}+\mu_{2}=\frac{\gamma_{4}-2 \kappa \gamma_{2}+\kappa^{2} \gamma_{0}}{(\kappa-\mu)^{2}} .
$$

Now, suppose that $n$ is odd. Thus we obtain

$$
\gamma_{n}=\left(\left(\kappa_{1}-\kappa_{2}\right) n+\left(\tau_{1}-\tau_{2}\right)\right)(\sqrt{\kappa})^{n}+\left(\mu_{1}-\mu_{2}\right)(\sqrt{\mu})^{n}
$$

where similarly to the previous case, one can determine

$$
\kappa_{1}-\kappa_{2}=\frac{\gamma_{5}-(\kappa+\mu) \gamma_{3}+\kappa \mu \gamma_{1}}{2 \kappa^{\frac{3}{2}}(\kappa-\mu)}, \quad \mu_{1}-\mu_{2}=\frac{\gamma_{5}-2 \kappa \gamma_{3}+\kappa^{2} \gamma_{1}}{\mu^{\frac{1}{2}}(\kappa-\mu)^{2}}
$$

* 4 4 $|\bullet|>$

Go back

Full Screen

Close
and

$$
\tau_{1}-\tau_{2}=\frac{(\mu-3 \kappa) \gamma_{5}+\left(5 \kappa^{2}-\mu^{2}\right) \gamma_{3}+\left(3 \kappa \mu^{2}-5 \kappa^{2} \mu\right) \gamma_{1}}{2 \kappa^{\frac{3}{2}}(\kappa-\mu)^{2}}
$$

Hence we proved the following theorem.
Theorem 2.2. If the polynomial $p(x)$ possesses two distinct zeros $\kappa$ and $\mu$, among them $\kappa$ has the multiplicity 2, then the explicit formula

$$
\begin{aligned}
\gamma_{n}= & \left\{\frac{\gamma_{4+\xi_{n}}-(\kappa+\mu) \gamma_{2+\xi_{n}}+\kappa \mu \gamma_{\xi_{n}}}{2 \kappa^{1+\frac{\xi_{n}}{2}}(\kappa-\mu)}\right. \\
& \quad+(-1)^{\xi_{n+1}} \frac{(\mu-3 \kappa)^{\xi_{n}} \gamma_{4+\xi_{n}}+(-2 \kappa)^{\xi_{n+1}}\left(5 \kappa^{2}-\mu^{2}\right)^{\xi_{n}} \gamma_{2+\xi_{n}}}{2 \kappa^{1+\frac{\xi_{n}}{2}}(\kappa-\mu)^{2}} \\
& \left.\quad+(-1)^{\xi_{n+1}} \frac{\left(2 \kappa \mu-\mu^{2}\right)^{\xi_{n+1}}\left(3 \kappa \mu^{2}-5 \kappa^{2} \mu\right)^{\xi_{n}} \gamma_{\xi_{n}}}{2 \kappa^{1+\frac{\xi_{n}}{2}}(\kappa-\mu)^{2}}\right\} \kappa^{\left\lfloor\frac{n}{2}\right\rfloor-1} \\
& +\frac{\gamma_{4+\xi_{n}}-2 \kappa \gamma_{2+\xi_{n}}+\kappa^{2} \gamma_{\xi_{n}}}{\mu^{\frac{\xi_{n}}{2}}(\kappa-\mu)^{2}} \mu^{\left\lfloor\frac{n}{2}\right\rfloor-1}
\end{aligned}
$$

describes the $n$th term of the sequence $\{\gamma\}$.

### 2.3. Case 3

In the last part, we suppose that the zeros of (7) coincide. Again by Theorem 1,

$$
\begin{equation*}
\gamma_{n}=\left(\kappa_{1} n^{2}+\tau_{1} n+\mu_{1}\right)(\sqrt{\kappa})^{n}+\left(\kappa_{2} n^{2}+\tau_{2} n+\mu_{2}\right)(-\sqrt{\kappa})^{n} \tag{10}
\end{equation*}
$$

If $n$ is even, then

$$
\gamma_{n}=\left(\left(\kappa_{1}+\kappa_{2}\right) n^{2}+\left(\tau_{1}+\tau_{2}\right) n+\left(\mu_{1}+\mu_{2}\right)\right)(\sqrt{\kappa})^{n}
$$

holds, where

$$
\kappa_{1}+\kappa_{2}=\frac{\gamma_{4}-2 \kappa \gamma_{2}+\kappa^{2} \gamma_{0}}{8 \kappa^{2}}, \tau_{1}+\tau_{2}=-\frac{\gamma_{4}-4 \kappa \gamma_{2}+3 \kappa^{2} \gamma_{0}}{4 \kappa^{2}} \text { and } \mu_{1}+\mu_{2}=\gamma_{0} .
$$

Assuming odd $n$, (10) returns with

$$
\gamma_{n}=\left(\left(\kappa_{1}-\kappa_{2}\right) n^{2}+\left(\tau_{1}-\tau_{2}\right) n+\left(\mu_{1}-\mu_{2}\right)\right)(\sqrt{\kappa})^{n}
$$

where

$$
\kappa_{1}-\kappa_{2}=\frac{\gamma_{5}-2 \kappa \gamma_{3}+\kappa^{2} \gamma_{1}}{8 \kappa^{\frac{5}{2}}}, \tau_{1}-\tau_{2}=\frac{-\left(\gamma_{5}-3 \kappa \gamma_{3}+2 \kappa^{2} \gamma_{1}\right)}{2 \kappa^{\frac{5}{2}}}
$$

and

$$
\mu_{1}-\mu_{2}=\frac{3 \gamma_{5}-10 \kappa \gamma_{3}+15 \kappa^{2} \gamma_{1}}{8 \kappa^{\frac{5}{2}}} .
$$

Thus the proof of the forthcoming theorem is complete.
Theorem 2.3. If $p(x)$ has only one zero with multiplicity 3, say $\kappa$, then

$$
\begin{aligned}
\gamma_{n}=\{( & \frac{\gamma_{4+\xi_{n}}-2 \kappa \gamma_{2+\xi_{n}}+\kappa^{2} \gamma_{\xi_{n}}}{\left.8 \kappa^{2+\frac{\xi_{n}}{2}}\right) n^{2}} \\
& -\left(\frac{\gamma_{4+\xi_{n}}-4^{\xi_{n+1}} 3^{\xi_{n}} \kappa \gamma_{2+\xi_{n}}+3^{\xi_{n}} 2^{\xi_{n+1}} \kappa^{2} \gamma_{\xi_{n}}}{\left.2 \xi_{n} 2 \kappa^{2+\frac{\xi_{n}}{2}}\right) n}\right. \\
& \left.+\gamma_{0}^{\xi_{n+1}}\left(\frac{3 \gamma_{5}-10 \kappa \gamma_{3}+15 \kappa^{2} \gamma_{1}}{8+\frac{\xi_{n}}{2}}\right)^{\xi_{n}}\right\} \kappa^{\left\lfloor\frac{n}{2}\right\rfloor-1} .
\end{aligned}
$$

```
1. Cooper C., An identity for periodic \(k\) second order linear recurrence systems, Cong. Numer., 200 (2010), 95-106.
2. Edson M. and Yayenie O., A new generalization Fibonacci sequence and extended Binet's formula, Integers 9 (2009), 639-654.
3. Edson M., Lewis S. and Yayenie O., The \(k\)-periodic Fibonacci sequence and an extended Binet's formula, Integers 11 (2011), 639-652.
4. Irmak N. and Szalay L., On \(k\)-periodic binary recurrence, submitted.
5. Shorey T. N. and Tijdeman R., Exponential Diophantine Equations, Cambridge University Press, 1986.
6. Yayenie O., A note on generalized Fibonacci sequences, Appl. Math. Comp. 217 (2011) 5603-5611.
M. Alp, Mathematics Department, Art and Science Faculty, Niğde University, Nigde, Turkey, 51240, e-mail: muratalp@nigde.edu.tr
N. Irmak, Mathematics Department, Art and Science Faculty, Niğde University, Nigde, Turkey, 51240, e-mail: nirmak@nigde.edu.tr
L. Szalay, Institute of Mathematics, University of West Hungary, Ady E. utca 5, H-9400 Sopron, Hungary, e-mail: laszalay@emk.nyme.hu
```



Go back

Full Screen

Close

Quit


[^0]:    Received January 21, 2012
    2010 Mathematics Subject Classification. Primary 11B37.
    Key words and phrases. Two-periodic; Binet-formula; ternary recurrence.

