ON THE GEODESIC TORSION OF A TANGENTIAL INTERSECTION
CURVE OF TWO SURFACES IN R3

B. UYAR DULDUL AND M. CALISKAN

ABSTRACT. In this paper, we find the unit tangent vector and the geodesic torsion of the tangential
intersection curve of two surfaces in all three types of surface-surface intersection problems (parametric-
parametric, implicit-implicit and parametric-imp- licit) in three-dimensional Euclidean space.

1. INTRODUCTION

We know that the curvatures of a curve can be calculated easily if the curve is given by its
parametric equation. But the curvature calculations become harder when the curve is given as an
intersection of two surfaces in three-dimensional Euclidean space.

In differential geometry the surfaces are generally given by their parametric or implicit equations.
For that reason, the surface-surface intersection (SSI) problems can be three types: parametric-
parametric, implicit-implicit, parametric-implicit. The SSI is called transversal or tangential if
the normal vectors of the surfaces are linearly independent or linearly dependent, respectively at
the intersecting points. In transversal intersection problems, the tangent vector of the intersection
curve can be found easily by the vector product of the normal vectors of the surfaces. Because
of this, there are many studies related to the transversal intersection problems in literature on

Received June 12, 2012.
2010 Mathematics Subject Classification. Primary 53A04, 53A05.
Key words and phrases. intersection curve; transversal intersection; tangential intersection.



differential geometry. Also there are some studies about tangential intersection curve and its
properties. Some of these studies are mentioned below.

Willmore [1] describes how to obtain the Frenet apparatus of the transversal intersection curve
of two implicit surfaces in Euclidean 3-space. Using the implicit function theorem, Hartmann
[2] obtains formulas for computing the curvature s of the transversal intersection curve for all
three types of SSI problems. Ye and Maekawa [3] present algorithms for computing the differ-
ential geometry properties of intersection curves of two surfaces and give algorithms to evaluate
the higher-order derivatives for transversal as well as tangential intersections for all three types
of intersection problems. Wu, Aléssio and Costa [4], using only the normal vectors of two reg-
ular surfaces, present an algorithm to compute the local geometric properties of the transversal
intersection curve. Goldman [5], using the classical curvature formulas in differential geometry,
provides formulas for computing the curvatures of intersection curve of two implicit surfaces. Us-
ing the implicit function theorem, Aléssio [6] gives a method to compute the Frenet vectors and
also the curvature and the torsion of the intersection curve of two implicit surfaces. Aléssio [7]
presents algorithms for computing the differential geometry properties of intersection curves of
three implicit surfaces in R*, using the implicit function theorem and generalizing the method of
Ye and Maekawa. Diildil [8] gives a method for computing the Frenet vectors and the curva-
tures of the transversal intersection curve of three parametric hypersurfaces in four-dimensional
ﬂ ﬂﬂﬂ Euclidean space. In our recent study [9], we give the geodesic curvature and the geodesic torsion of

the intersection curve of two transversally intersecting surfaces in Euclidean 3-space. Aléssio [10]
Go back presents formulas on geodesic torsion, geodesic curvature and normal curvature of the intersection
curve of n — 1 implicit hypersurfaces in R™.

vt Szan In this study, first we find the unit tangent vector of the tangential intersection curve of two

surfaces in all three types of SSI problems. Then we calculate the geodesic torsion of the intersection
curve and give examples related to the subject.



2. PRELIMINARIES

Consider a unit-speed curve a: I — R3, parametrized by arclength function s. Let {t(s),n(s),b(s)}
be the moving Frenet frame along «, where t, n and b denote the tangent, the principal normal
and the binormal vector fields, respectively. The vector t' = o’/(s) is called the curvature vector
and the length of this vector denotes the curvature x(s) of the curve a.

Let {t(s), V(s),N(s)} be the moving Darboux frame on the curve o, where N(s) is the surface
normal restricted to @ and V(s) = N(s) x t(s). Then, we have

t' =K,V + K, N
(1) V' = —kgt +7,N
N' = —k,t — 7,V

where k,, Kk, and 7, are the normal curvature of the surface in the direction of t, the geodesic
curvature and the geodesic torsion of the curve «, respectively, [11]. Thus from (1), the normal
curvature, the geodesic curvature and the geodesic torsion of the curve « are

ko =(t'N),  r=(t,V), 7,=(V,N),

where (,) denotes the scalar product.
We know that the geodesic curvature and the geodesic torsion of the transversal intersection
curve of the surfaces A and B with the parametric equations X(u,v) and Y (p,q), respectively,



with respect to the surface A are given by

5 = EG1 VEG - F? {[( t %) )= _<Xv’t>] oy
@) + (Gu(Xu, t) = Eu(Xo, t)) u'v’
+ [%(Xu,t) (F - 7”) (Xv,t>] (v’)2}
+ VEG = FP W — vl
and
" A= —ﬁ {(EM - FL) ()" + (EN - GL) v/

+(FN — GM) (v')2}

in which v/ and v can be found by [3]
_ 1
- EG-F?

1
= 25—z (B6:X0) — F(t, X.))

where E, F', G and L, M, N, respectively, are the first and the second fundamental form coefficients
of the surface A (Egs. (2) and (3) can be found in classic books on differential geometry). The
values v and v” in Eq. (2) can be computed from the linear equation system [9]

<XU,NB>’U,” 4 (Xv,NB> "o _ <A NB>
(Xu, t)u” + (Xy, t)0" = —(Xyu, >(u')2 — 2(Xy, t)u'v' — (vaat>(vl)2

!

u (G<taXu> - F<t’XU>)

(4)

/
v



where A = Ypp(p’)2 +2Y,,p'qd + qu(q’)2 — X (u)? = 2X v’ — X, (v')2.

P = ﬁ (96, Y,) — F(£,Y,))
(5) Y

q =—075

eg — f?

and e, f, g and [, m, n, respectively, denote the first and the second fundamental form coefficients
of the surface B.

Also, the geodesic curvature of the transversal intersection curve of the surfaces A and B with
respect to the surface A is

(e<t7Y¢1> - f(taYP»

1
(6) /%"; _ 7 {(y/z// — ") o + (2" — Z”:L’/)fy + (2'y" — l'”y/)fz},
where t = (2, y/,2'), t' = (”,y", 2"") and f(=x,y, z) = 0 denotes the implicit equation of A [12].

. Tangential intersection curve of parametric-parametric surfaces

Let A and B be two regular surfaces given by parametric equations X (u,v) and Y(p, ¢), respec-
tively. Let us assume that these surfaces intersect tangentially along the intersection curve «(s).
Then, the unit normal vectors of the surfaces A and B are given by

NA — Xy X Xy NB — prYq'
X X X | REER 2|
Since the surfaces intersect tangentially, the normals N4 and NZ are parallel at all points of .

It can be assumed that N4 = NZ = N by orienting the surfaces properly. In this case, we can not
find the unit tangent vector t of the intersection curve by the vector product of the normal vectors.



Therefore, we have to find new methods to compute the geometric properties of the intersection
curve q.

Since VA = N4 x t and VB = N x t, let us denote VA = VB = V. Thus from (1), the
geodesic torsions of the intersection curve «@ with respect to the surfaces A and B are

=12 =(V/,N).
Also, we may write a(s) = X(u(s),v(s)) =Y (p(s), q(s)) which yield
(7) t=a/(s) =Xu' + X' =Y,p' +Y,q.

If we take the vector product of both hand sides of (7) with Y, and Y,, and then take the dot
product of both hand sides of these equations with N, we have

p’ = bu + bt/

8
®) q' = bot + bt/
where
det(X,, Yy, N) det(X,, Y, N)
b1 = = bio = —
eg—f eg— f
,_ det(Y,, X, N) det(Y,, X,,N)
] = ———F—— = 5%

. bao = .
Veg — f? eg — f?

Thus from (3), we have

(9) DI(UI)Q +D2u'v' +D3(’Ul)2 _ dl(p/)2 +d2plql +d3(q')2,



where

D_EM—FL D_EN—GL D_FN—GM
‘T VEG-F2 ' VEG-F2 ° JEG-F?
d em — fl d en — gl d fn—gm

1= = - :

Veg— [ P ey 7 P ey 12
Substituting (8) into (9), we have

(10) c1(u)? + cou'v' + c3(v)? =0,

where
1 = dib}; + dobi1ba + dsb3y — Dy,
c2 = 2d1b11b12 + da(bi1bag + b12b21) + 2d3ba1b22 — Do,
c3 = dyb}y + dabiabao + dsb3, — Ds.

If we denote p = ;}L: when ¢; # 0, or v = % when ¢; = 0 and c3 # 0, Eq. (10) becomes

c1p®+cogpt+c3=0
or
031/2 + cov = 0.

Let A = ¢2 —4cje3. If A > 0, then solving the above equations according to p or v, two different
values are found. For these values of p and v, let us consider the vectors

szu + Xv Xu + Vin

11 r; = o rj=-—>—"-——-, 1=
(D : A &

a llpiXeu + Xy |l

We need to determine the vector which denotes the tangent vector r1 and/or ry at the intersection
point P.

1,2.



Let R; denotes the plane determined by the common surface normal N and the vector r; at
P. R; has the parametric equation Z(r,w). Since the normals of the plane R; and the surface
A are perpendicular, the intersection of these surfaces is the transversal intersection at P. Let us
denote the normal vector of the plane R; by N; = N X r;. Then, the unit tangent vector of the
transversal intersection curve of the surface A and the plane R; is determined by

NXNl

t = —
PN X N]|

From (2), the geodesic curvature n‘g‘ll of this intersection curve with respect to R; is

(12) kg =\ E1G1 — F2(r'vw" —r"v'),

where By = (Z,,Z,), F\ = (Z,Z,,), G1 = (Zy,Z,,) and

1
[ —_
r = E1G1 _ F12 (G1<t17ZT> F1<t1’Zw>)’
(13) .
’w/ (E1<t1,Zw) —F1<t1,Zr>).

T E\G, - F?
The unit tangent vector of the transversal intersection curve of A and R; is
ti = Z,r' + Zpyw =X u 4+ X0,

where u’ and v’ can be calculated by taking t; instead of t in Eq. (4). Since Z, = Ziyy = Zipw =
(07 07 0)7

(14) t, =Z0" +Z,w" =X u" +X,0" + Af,
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where Af = X, (u')? + 2X,u'v" + X, (v')2. By taking the dot product of both hand sides of
(14) with N, we get

(15) (Zr, NYT" 4 (Zoy, N = (A}, N).
Since t} is perpendicular to ti,
(16) <ZTat1>T// + <Zwat1>w” =0

is also obtained. (15) and (16) constitute a linear system with respect to " and w” which has
nonvanishing coefficients determinant, i.e., § = —||Z, X Zy|| - [N x Ny || # 0. Thus, " and w” can
be computed by solving this linear system. So, from Eq. (12), ”2;11 is calculated.

On the other hand, the unit tangent vector of the transversal intersection curve of the surface
B and the plane R; is also t;. Then, the geodesic curvature of this intersection curve with respect
to Ry is

(17) Ki =/E1G1 — F2(r'v" —r"w'),

where 7' and w’ are calculated by Eq. (13). Let us find ” and w”. The unit tangent vector of the
transversal intersection curve of B and R is

t1 =2 +Zyw' =Y, 0 + Yy,
where p’ and ¢’ can be computed by taking t; instead of t in Eq. (5). Also,
(18) t) =Z0" + Zyw" =Y,p" +Yeq" + AL,

where AP =Y ,,(p')? + 2Ypo0'd’ + Yqq(q')?. If we solve Eq. (16) and the equation obtained by

taking the dot product of both hand sides of (18) with N, we find the unknowns " and w”. Thus,

kg is calculated from Eq. (17).



Similarly, if we denote the plane determined by the common surface normal N and the vector
ro at P by Rs, we can calculate the geodesic curvatures nglz and KgB; (with respect to Rs) of the
intersection curve of the plane Ry with A and Ry with B, respectively.

We have the following cases for A > 0:

1) If ,%;41 = ﬁﬁ , then the transversal intersection curve of both Ry with A and R; with B is the

same curve around the point P, i.e., t =r;. If ng = nfz, then the transversal intersection
curve of both Ry with A and R, with B is the same curve around the point P, i.e., t = rs.
Hence, P is a branch point.

2) If k) = kB and kj) # k5 (or k3 # kB and k), = &B), then the intersection curve is
unique, i.e.,, t =1 (or t =ry).

A B A B : ; ;
3) If k). # kg, and K, # K, then P is an isolated contact point.

We have the following cases for A = 0:

1) If ¢4 = ¢a = ¢35 = 0, then P is an isolated contact point when Ii";l == ﬁ_ﬁ, or the surfaces
have at least second order contact at P when Iﬂ??l = Iifl obtained by taking any tangent
vector rj.

2) If § +c3 + ¢ # 0, then ry = ry. In this case, t = r; when x, = k2 or P is an isolated
contact point when kg # k5.

If A <0, then P is an isolated contact point.

Thus, using the unit tangent vector t of the tangential intersection curve of the surfaces A and
B, v and v’ can be calculated from Eq. (4). Substituting these values into (3), the geodesic torsion
of the intersection curve with respect to the surfaces A and B at P is obtained.



Example 1. Let A and B be two surfaces given by the parametric equations, respectively,

1. . . .
X(u,v) = <300su—cosucosv+—smusm’u,3s1nu—smucosv

V10
1 cosusinv,u + 3 sin )
- — u sin v, ——sinv
v 10 V10

and
Y (p,q) = (2cosp,2sinp, q),

where 0 < u,v,p, q < 27 (Figure 1). Let us find the unit tangent vector and the geodesic torsions
with respect to the surfaces A and B of the intersection curve at the point P = X(0,0) = Y(0,0) =
(2,0,0).

The partial derivatives of the surface A are X, = (0,2,1), X, = (0,—\/%—0, \/il_o)’ Xy =

(=2,0,0), Xyp = (\/%, 0,0) and X,, = (1,0,0) at P. Thus we find the unit normal vector and the

first and the second fundamental form coefficients of A at P as N4 = (1,0,0), E =5, F = \/%,
G=1,L=—2,M:+O,N=1.

Similarly, for the surface B at the point P, we get NP = (1,0,0), Y, = (0,2,0), Y, = (0,0,1),
Y =(—-2,0,0), Ypg =Yg =(0,0,0),e=4,9g=1,1=-2, f=m=n=0.

Also, we have D1 = dy = 1, Dy = /10, D3 = dy = d3 = 0 and by = by; = 1, byy = —ﬁ,
bao = \/%. Therefore, we obtain 5v/10v + v? = 0, i.e., A = 250 > 0. By solving this equation,
the values v; = 0 and v, = —5v/10 are found. So, from (11), we obtain r; = (0, %, %) and

Ity = (03 Lsa _%)
Let us denote the common unit normal vectors of the surfaces A and B by N. Since the
normal vector of R; determined by N and r; is N3 = (0, —%, %), R; has the parametric



equation Z(r,w) = (r,2w,w). Then, Z, = (1,0,0),Z, = (0,2,1), Ey =1, F; =0, G; = 5,

_ 2 1 ;o r_ 1 n_ 2 "_ A2 Qi

t; = (0,——\/3,——\/3), =0, w = —7 =5 v = 0. So, we have k/, = —z. Similarly, we
B _ 2 A _ 238 B _ -1 A _ B A B

get Ky, = —%. On the other hand, we find Kgy = 5157 Kgy = To- Since Kgy = Kgy and Kg, == Ky

the vector r; is the tangent vector of the tangential intersection curve of the surfaces A and B at
P,ie., t = (0, %, %) Also, we find v/ = %, v =0and p = ¢ = % Thus, we obtain the

geodesic torsions 74 = 78 = % of the tangential intersection curve at the point P.

g9 g9

Figure 1. The tangential intersection of the cylinder and the canal surface.
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Figure 3. Tangential intersection of two cylinders.



Example 2. Let us consider the parametric surfaces A and B, respectively, with
X (u,v) = (cosucosv,—1 + sinucosv,sinv), Y(p,q) = (cosq,1+sing,p),

where —m <u <7, -5 <v< 3, -1<p<l,—m<qg<m.

These surfaces intersect tangentially at the origin. We have ¢; =0, co = —1, ¢c3 =0, i.e. A > 0.
Applying the explained method for r; = (0,0,1) and ry = (—1,0,0), we find /-c‘g“l = —1, /ifl =0,
kg =—1, kB =1. Since rf, # £Z and &}, # kB, P is an isolated contact point (Figure 2).

Example 3. The surfaces A...X(u,v) = (cosu,sinu,v) and B...Y(p,q) = (p,2+ cos g, sinq)
(0 < u,q < 2w, —1 < w,p < 1) intersect tangentially at the point P = (0,1,0). We obtain A =0

Figure 4. Tangential intersection with higher order contact.



with ¢; = ¢o = ¢3 = 0. Thus, by taking ry = (—1,0,0), we have ’%41 = nﬁ. Hence, P is an isolated

contact point (Figure 3).

Example 4. Let us consider the parametric surfaces A and B respectively, with
X(u,v) = (w,0,0%),  Y(p,q) = (p,¢:0), —1<u,v,p,q<1,

which are intersect tangentially at origin. For these surfaces we find A = 0 with ¢; = ¢ = ¢3 = 0.

By taking r; = (1,0,0) we have x7} = Hfl. Thus, the surfaces have at least second order contact
at origin (Figure 4).

g1

. Tangential intersection curve of implicit-implicit surfaces

Let A and B be two regular tangentially intersecting surfaces with implicit equations f(z,y,z) =0
and g(z,y, z) = 0, respectively. Since Vf = (fy, fy, f») # 0 and Vg = (g, gy, 9-) # 0, the normal
vectors of the surfaces are

a_ VI p_ V9
VAP IVyll

By orienting the surfaces properly, we can assume N4 = NZ = N along the intersection curve a.
Let us denote the unit tangent vector of o with o/(s) =t = (2/,y/,2’). Since T;‘ = ((VAY,N4)
and VA = N4 x t, we have

(19) 7'gA = ﬁ{(a?»fy - a2fZ)$/ 4 {nis — anz)y/ + (a2 fe — alfy)z/},



where (N4) = (a1, as,a3) and
1

“= W (foumsi + foiw; @5 + Faia i)

1

with 21 =z, 20 =y, 3 = 2z (4,4, k = 1,2, 3 cyclic).
Similarly, for the geodesic torsion of the intersection curve with respect to the surface B, we
find

1
20 P = e
(20) v = TVl

where (NB) = (b1, by, b3) and

{(b3gy — b2g.)x" + (b19> — b3ga)y' + (b2gs — b1gy)2'},

by = g (9mie) G, 5+ )

1
IVgll®

+ 9z, 9z; (gmjmix; + 9z ;z; -’E; + gmjmkx;g)

|:gﬂzvi (g%%x; + gzizjx;‘ aF gzzmkaﬁc)

+ gzing (gzkz,m; + gszjm; + gzkzkmz) ]

with &1 =z, 20 =y, 23 = 2z (4,J,k = 1,2, 3 cyclic).
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Since the surfaces A and B intersect tangentially along the intersection curve, T;‘ = Tf is valid.
Then, from Eq. (19) and (20), we obtain
(21) )\133/ aF )\zy/ aF )\32’ =0,
where
- azfy —asf. = bag. — bagy
[V £l IVl
Ay = al.fz - a3fz + b3gw - blgz’
IVl [IVgl|
N = azfz —aify | bigy — bage
IVl [IVgl|
Also, since the tangent vector t is perpendicular to the gradient vector V f, we have
(22) fw$,+fyy/+fzz/ = 0.

Eq. (21) and Eq. (22) constitute a linear system with unknowns #/, ¥’ and z’. Since at least one
of the f, f, and f. is non-zero, we assume f, is non-zero. Then we get 2z’ = —f”mf# from

Eq. (22). Substituting this value of 2z’ into (21), we find
(23) 1’ + pay’ =0,
where 11 = A1 f, — Asfy and po = Xof. — Agfy. Since 2/, y’ and 2’ are components of the unit

tangent vector, ' and y’ both can not be zero. If we denote p = Z”—i when 3/ # 0, or v = g—: when
x' # 0, and solve (23) for p or v, then

x
L (ﬂylay/, f_le y/) ([(;/’l/x/’_u:-‘x/)
T x l,x €T Y
||(py/’y/, f}zfyy/)H ||( /7 /7 f ’:f /)“



are found. Now, let us determine the vector which corresponds to the tangent vector at the point
P. If we denote the plane determined by N and r; with R;, then R; has the implicit equation
h(z,y,z) = 0. The intersection of R; and A is the transversal intersection. Thus, the unit tangent
vector of this intersection curve is

NXNl

t) = ———
PN X N|

= (m17y1721)7

where the vector N; = N X r; is the normal vector of the plane R;. Then the geodesic curvature

”1941 of the transversal intersection curve with respect to R; is found from Eq. (6) as

1
(24) Ky = W{(y’ﬁi’ =yl 2)ha + (2121 — 2120y + (2197 — 271 R},
where t] = (zf,y{, 2}). If the linear equation system consisting of the equations
siol toef T4 = 0,
hax! + hyy! + h2z{ = 0,
fox? + fyyi + fo2f = —{foula])® + fyy(y/l)2 + foul21)?

+2(f:cym/1y’1 + fmzw’lzi + fyzyizi)}

is solved, the unknowns z/, y{ and z{ can be found. Substituting these values into Eq. (24) yield
the geodesic curvature n‘g“l. Similarly, the geodesic curvature /ifl of the transversal intersection
curve of the surface B and the plane R; can be found.

By using the previous method given in paramteric-parametric intersection, we determine the
tangent vector at P of the tangential intersection curve of the surfaces A and B. Then the geodesic

torsion TgA (or 72) of the intersection curve with respect to A (or B) is calculated by Eq. (19) (or

Eq. (20)).
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Example 5. The implicit surface A is given by f(z,y,2) = (Va2 + 32 —2)2+ (2 —1)2-1=0
and the implicit surface B is given by g(z,y,2) = z — 2 = 0 (Figure 5).

We have Vf = (0,0,2) and Vg = (0,0,1) at the point P = (0,2,2) on the intersection curve
of the surfaces A and B. At the intersection point we have |V f|| = 2, N4 = (0,0,1), (Vf) =
(0,2y,22"), (N4) = (0,%/,0) for the surface A and ||Vg| = 1, NB = (0,0,1), (Vg) = (NB) =
(0,0,0) for the surface B. Also, the vectors ry, ry are calculated as r; = (0,1,0) and ry = (1,0, 0),
and the geodesic curvatures are found as k7, = —1, k¥ =0, k7) =0, kZ = 0. Since s # x5
and n;‘,‘, = ng, the unit tangent vector of the tangential intersection curve of the surfaces A and
B at P is the vector ro, i.e., t = (1,0,0). Then the geodesic torsions 7';1 and Tf are calculated as

zero at P.

Figure 5. The tangential intersection of the torus and the plane.



2.3. Tangential intersection curve of parametric-implicit surfaces

Let A be a regular surface given by the parametric equation X(u,v) and B be a regular surface
given by the implicit equation g(z,y, z) = 0. The unit normal vectors of the surfaces A and B on
the intersection curve « are given by

Nio XuxX s Vg
X x Xl IVl
Let us denote the common surface normal by N = N4 = NZ. The unit tangent vector of the
curve « is
(25) t =X, + X' = (2,9, 7).
We know the geodesic torsions of a with respect to the surfaces A and B, respectively, as
(26) 72t = D1(w)? + Dau'v' + D3(v')?
and
(27) 7P = Eia’ + By + Es?,
where Fy = %, Ey = W, E; = %. Since the surfaces A and B intersect
tangentially along the curve «, TgA is equal to TgB, and so
(28) Dy (w')? + Dou/v' + D3(v')? — B2’ — Eay' — E32' = 0.

If we substitute the values of 2/, ¥/, 2z’ in terms of ' and v’ into Eq. (28), we obtain a quadratic
equation similar to (10). Solving this quadratic equation and applying the same method, the unit
tangent vector of the intersection curve at P is found. Also, substituting «' and v’ into Eq. (26)
or 2/, ', 2’ into Eq. (27), the geodesic torsions of « are obtained.
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