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PROPERTIES OF THE INTERVAL GRAPH

OF A BOOLEAN FUNCTION

L. HAVIAROVÁ and E. TOMAN

Abstract. In the present paper we describe relations between the interval graph of a Boolean function,
its abbreviated disjunctive normal form and its minimal disjunctive normal forms. The inteval graph
of a Boolean function f has vertices corresponding to the maximal intervals of f and any two vertices
are joined with an edge if the corresponding maximal intervals have nonempty intersection.

1. Introduction

A Boolean function can be represented by several types of graphs. Among them, the greatest
attention has been devoted to the study of the graph G(f) induced by the vertices of the n-cube,
on which the Boolean function f takes the value 1. This geometric representation was introduced
by Yablonskiy in [1]. The concept of the interval graph of a Boolean function was defined by
Sapozhenko in [3]. The interval graph is a graph associated with a Boolean function f such that
the vertices correspond to maximal intervals of f and two vertices are joined with an edge if the
intersection of the corresponding intervals is nonempty. The parameters such as the size and the
number of connected components, the radius and the diameter of these graphs are closely related
to local algorithms of construction of a minimal disjunctive normal form of a Boolean function
(briefly d.n.f.), described by Zhuravlev; for exact definitions see [5]. Toman [6] employed a method
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of good and bad vertices of a Boolean function to give an upper bound for the vertex degree of the
interval graph for almost all Boolean functions. This method was applied by Toman, Olejar and
Stanek in [9] where they gave asymtotic upper and lower bounds for the average vertex degree in
the interval graph of a Boolean function. Toman and Daubner in [7] obtained asymptotic estimate
of a vertex degree in the interval graph of a Boolean function. In a recent paper [8], they also
obtained asymptotic estimates for the size of the neighbourhood of a constant order in the interval
graph of a Boolean function.

In the present paper, we prove that if the interval graph of a Boolean function is a complete
graph, then the abbreviated d.n.f. of this function is also a minimal d.n.f.. In addition, we
describe a construction of a Boolean function such that the abbreviated d.n.f. of this function is
also a minimal d.n.f., and the interval graph may be an arbitrary simple finite graph. We also study
a relationship between the number of vertices and edges in the interval graph and the dimension
of a corresponding Boolean function. We also present examples of pairs of Boolean functions
with isomorphic interval graphs where one of the functions has a mini-mal d.n.f. identical with
its abbreviated d.n.f. while the other has not. All the necessary definitions and notations are
formulated later.

2. Preliminaries and Notation

We use the standard notation from Boolean function theory. An n−ary Boolean function is a
function f : {0, 1}n → {0, 1}. The symbol Pn denotes the set of all n−ary Boolean functions.
Boolean variables and their negations are called literals. A literal of a variable x is denoted by xα,
where α ∈ {0, 1}, and we set

xα =

{
x̄ if α = 0,
x if α = 1.
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A conjunction K = x
αi1
i1
∧ . . . ∧ xαir

ir
of literals of different variables is called an elementary

conjunction. The number of literals (r) in K is called rank of K. A special case is the conjunction
of rank 0, it is called empty and its value is set to 1.

A formula D = K1 ∨ . . . ∨ Ks, the disjunction of distinct elementary conjunction, is called a
disjunctive normal form. The parameter s (the number of elementary conjunctions in D) is called
the length of D. A d.n.f. with s = 0 is called empty and its value is set to 0. A d.n.f. D represents
a Boolean function f if the truth tables of f and D coincide. Let us consider the class of all
d.n.f.that represent an n-ary Boolean function f . A d.n.f. with minimal number of literals in
this class is called a minimal d.n.f. of f and the one with minimal length in this class is called a
shortest d.n.f. of f .

We also use a geometric representation of Boolean functions. The Boolean n-cube is the graph
Bn with 2n vertices α̃ = (α1, . . . , αn), where αi ∈ {0, 1}, in which those pairs of vertices that differ
in exactly one coordinate are joined with an edge. For an n-ary Boolean function f let, Nf denote
the subset {α̃; f(α̃) = 1} and N−f denote the subset {α̃; f(α̃) = 0} of all vertices α̃. Notice that
there is a one-to-one correspondence between the sets Nf and Boolean functions f . The subgraph
of the Boolean n-cube induced by the set Nf is called the graph of f and is denoted by G(f).

The set of vertices Ni ⊆ {0, 1}n corresponding to an elementary conjunction Ki of rank r is
called the interval of rank r. Notice that to every elementary conjunction K = x

αi1
i1
∧. . .∧xαir

ir
there

corresponds an interval of rank r consisting of all vertices (β1, . . . , βn) of Bn such that βij = αij
for j = 1, . . . , r and values of other vertex coordinates are arbitrary. In the present paper, we often
work with intervals coresponding to elementary conjunctions.

In the geometric model, every interval of rank r represents an (n − r)-dimensional subcube of
Bn. Therefore we call the interval of rank r also the (n− r)-dimensional interval. An interval N is
called the maximal interval of Boolean function f if N ⊆ Nf and there is no interval N ′ ⊆ Nf such
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that N ⊆ N ′. A d.n.f. which consists of all elementary conjunctions corresponding to maximal
intervals is called the abbreviated d.n.f. and it is denoted by DA(f).

Now we can define the interval graph Γ(f) as the graph associated with a Boolean function
f as follows: its vertices correspond to maximal intervals of f and the vertices corresponding to
intervals Ni and Nj are joined with an edge in Γ(f) if Ki ∧Kj is nonempty.

For an arbitrary Boolean function f and each of its d.n.f.s K1 ∨ . . . ∨Ks, we have

Nf =

s⋃
j=1

Nj .

In other words, every d.n.f. of a Boolean function f corresponds to a covering of Nf by intervals
N1, . . . , Ns such that Nj ⊆ Nf . Conversely, every covering of Nf by intervals N1, . . . , Ns contained
in Nf corresponds to some d.n.f. of f . Using the geometric interpretation of d.n.f.s, we can express
the irreducibility of d.n.f.. The d.n.f. D of a Boolean function f cannot be simplified if every
interval Nj of the covering corresponding to D contains at least one vertex belonging to just this
one interval of the covering. Such a d.n.f. is called an irredundant d.n.f..

Let rj denote the order of the interval Nj . Then the number of literals in d.n.f. is r =
∑s
j=1 rj

and the construction of a minimal d.n.f. in the geometric model can be formulated as a problem
of constructing a covering of Nf by intervals Nj ⊆ Nf with minimal r. On the other hand, the
construction of a covering corresponding to the shortest d.n.f. requires to minimize the number of
intervals in a covering of Nf .

The set of all conjuctions Kj from K1, . . . ,Ks corresponding to intervals for which

Nj 6⊆
s⋃

i=1
i6=j

Ni.

is called the core of d.n.f. D =
∨s
j=1Kj of a Boolean function f . It is denoted by γ(D(f)).
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3. Complete interval graph and a minimal disjunctive normal form

In this section, we study Boolean functions whose interval graph is a complete graph. To avoid
trivial cases, we omit interval graphs consisting from two or fewer vertices, where it is obvious that
the corresponding abreviated d.n.f. is also a minimal d.n.f..

Theorem 3.1. If f is a Boolean function such that Γ(f) is complete, then the intersection of
the maximal intervals of f is nonempty.

Proof. Let N1 and N2 be arbitrary maximal intervals of f . Assume that the dimension of N1

is m, that is,

K1 = x
αi1
i1
∧ . . . ∧ x

αin−m

in−m

and the dimension of N2 is k, that is,

K2 = x
αj1
j1
∧ . . . ∧ x

αjn−k

jn−k
.

We have two possibilities for these intervals.

1. N1 ∩N2 = ∅. This occurs when il = js for some l and s and αil 6= αjs for at least one fixed
coordinate of the intervals N1, N2.

2. Otherwise, N1 ∩ N2 = NI for some conjunction I. It is clear that I =
K1 ∧ K2. Therefore the number of fixed coordinates of I is (n − m) +
(n − k) − r, where r is the number of positions of fixed coordinates on which the inter-
vals N1, N2 coincide.

Let N1 ∩ · · · ∩ Ns be maximal intervals of f . In the complete interval graph Γ(f), any two
vertices are joined with an edge, therefore, any two maximal intervals have a common intersection.
In other words, for any two maximal intervals, there do not exist fixed coordinates in which these
two intervals differ. Therefore, NI = N1 ∩ . . . ∩Ns. Thus I = K1 ∧ . . . ∧Ks. �
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Theorem 3.2. Let f be a Boolean function of n variables and let DM (f) be a minimal d.n.f.
of f . If Γ(f) is complete, then DA(f) = DM (f).

Proof. Assume that DA(f) = K1 ∨ K2 ∨ . . . ∨ Ks. This d.n.f. corresponds to the covering
N1 ∪ . . . ∪ Ns by the maximal intervals. To be sure that the abbreviated d.n.f. is identical with
a irredundant d.n.f., each Ki, 1 ≤ i ≤ s, has to be from γ(DA(f)). By the assumption of the
theorem, Γ(f) is complete. From Theorem 3.1 it follows that all maximal intervals have a common
intersection I = N1 ∩ . . . ∩Ns.

To prove the result, we now proceed by contradiction. Let us assume that the abbreviated d.n.f.
contains a conjuction Ki which does not belong to the core of d.n.f. γ(DA(f)). Assume that the
dimension of corresponding maximal interval Ni is m. It follows that

Ni ⊆
s⋃

j=1
j 6=i

Nj .

In other words, for each vertex δ̃ of the maximal interval Ni, we have:

• if δ̃ ∈ Ni ∩ I, then δ̃ is contained in each maximal interval of DA(f),

• if δ̃ ∈ Ni\I (this set cannot be empty), then there exists at least one maximal interval
different from Ni, let us denote it Nj for which

I ⊂ Nj ∧ δ̃ ∈ Nj .
Let us choose a vertex α̃ such that α̃ ∈ I ∩ Ni and a vertex β̃ different from α̃ exactly in m
coordinates and such that β̃ ∈ Ni\I. The dimension of Ni is m, therefore, such two vertices exist.

Hence, there exists a maximal interval Nj which contains both α̃ and β̃. As α̃ and β̃ generate an
m-dimensional subcube, the dimension of Nj is at least m. If it equals m, then Nj = Ni. If the
dimension of Nj is greater than m, then Ni ⊂ Nj . But this contradicts the fact that Ni is the
maximal interval.
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We have shown that all maximal intervals belong to the core. Therefore we can not omit any
interval from abbreviated d.n.f. while constructing irredundant d.n.f.. Otherwise we would violate
irreducibility of d.n.f.. Considering that DA(f) contains all maximal intervals, we have proved
that there does not exist another irredundant d.n.f.. Because minimal d.n.f. is also the unique
irredundant, it holds DA(f) = DM (f). �

Now we discuss the converse of Theorem 3.2. Let DM (f) be a minimal d.n.f. of a Boolean
function f . Suppose that DA(f) = DM (f), then Γ(f) need not be complete. In the example
below, we show that there exists a Boolean function f such that DA(f) = DM (f) but the graph
Γ(f) is not complete. Thus the converse oof Theorem 3.2 is false.

Example 3.1. The Boolean function is described in Figure 1 left by bold lines. The interval
graph of this function is shown in Figure 1 right. The abbreviated d.n.f. of the function f is
DA(f) = x̄1 ∨ x̄2x̄3 ∨ x2x3 and it is easy to see that it is also minimal.

Figure 1. Geometric representation of a Boolean function f(x1, x2, x3), covering with maximal intervals and cor-

responding interval graph Γ(f).
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4. The interval graph and a minimal disjunctive normal form

In this section we construct a Boolean function for an arbitrary simple graph G such that the
interval graph of this function is isomorphic with G. We also consider the number of variables that
such a function needs to have.

Theorem 4.1. Let G be a graph of order n. There exists a Boolean function f(x1, . . . , xn)
whose abbreviated d.n.f. is also its minimal d.n.f. and Γ(f) ∼= G.

Proof. We will prove the Theorem by induction with respect to n.

The base case. We prove the Theorem for graph G = (V,E) consisting of n vertices for n = 1
and n = 2. This case is described in Figure 2.

We divide the base case into 3 subcases, the number of vertices being the primary criterion and
the number of edges being a secondary criterion.

(1) |V | = 1 and |E| = 0. The satisfying Boolean function is f(x1) = x1.
(2.1) |V | = 2 and |E| = 0. The Boolean function is f(x1, x2) = x̄1x̄2 ∨ x1x2.
(2.2) |V | = 2 and |E| = 1. The Boolean function is f(x1, x2) = x1 ∨ x̄2.

It is clear that in these 3 subcases the following holds DA(f) = DM (f).

Induction step. Let G = (V,E) be an arbitrary graph with n+1 vertices. We want to show that
there exists a Boolean function f(x1, . . . , xn+1) such that Γ(f) ∼= G and the abbreviated d.n.f. is
also its minimal d.n.f.. Let v be a vertex of G with minimum degree. Let G′ = G − v. By the
induction hypothesis there exists a Boolean function f ′(x1, . . . , xn) with Γ(f ′) ∼= G′ such that the
abbreviated d.n.f. is also its minimal d.n.f..

We enlarge the n-cube with maximal intervals corresponding to vertices Γ(f ′) by one. We create
the copy and add 2n edge. An interval of f ′ will be called active if it corresponds to a neighbour
of v. Otherwise it will be called passive. We denote the interval corresponding to v as Nn+1.
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Figure 2. Graph Γ(f) ∼= G of the function f and corresponding maximal intervals for n = 1 and n = 2.

An edge between vertices implies that the corresponding maximal intervals have a common
intersection. We need at least one vertex belonging to the added interval for each active interval.
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To make sure that these intervals are from the core they contain at least one point which is not
contained in any other interval. In our construction maximal intervals have the same dimension
as their degree in the interval graph.

We enlarge the original maximal intervals in the direction towards the copy. We will construct
maximal interval corresponding to the new vertex in the copy and its dimension will be equal to
its degree. Vertices corresponding to passive maximal intervals are not affected.

Figure 3. Graph G = (V,E) with |V | = 4 and |E| = 4.
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If the degree of v is 0, we will find the vertex belonging to N−f in the original object. Such

vertex has to be found there, because the degree of a vertex in G′ is not more than n− 1 and thus
the dimension of the corresponding maximal interval in the n-cube is not more than n−1. To keep
dimensions and number of these intervals and to avoid a situation that we would be able to join
two intervals into one bigger, it is necessary to separate these n intervals with vertices belonging
to N−f . We find one such vertex and move in the direction towards the copy. This vertex we have

been looking for will be Nn+1. We add all other points in the copy to the set N−f .
If degree of v is k, 1 ≤ k ≤ n, we need to increase the dimension of k active intervals. Let us

denote them Ni1 , . . . , Nik . So we increase the dimensions of all intervals from the set {Ni1 , . . . , Nik}
by one towards the copy. It is clear that we do not affect passive intervals in original object and
the intervals with a common intersection in the original object will have a common intersection
also in the copy.

Now we find the maximal interval Nn+1 with the dimension of k which contains at least one
point from each of the intervals Ni1 , . . . , Nik and also one vertex which is not covered by any other
interval. We can place this k-dimensional interval in such a way that in the direction towards
the original object there are only points from N−f or from the common intersection of k incident
maximal intervals, because 0s separates the maximal intervals in the original object. We add all
other points in the copy to the set N−f .

This completes the construction of the required function f(x1, . . . , xn+1). From the manner
of construction it follows that all maximal intervals of the abbreviated d.n.f. belong to the core.
We have proved, that DA(f) is also the irredundant d.n.f.. Because minimal d.n.f. is also unique
irredundant, it holds DA(f) = DM (f). �

In Figure 3, there is the graph G = (V,E) with |V | = 4 and |E| = 4. We illustrate how
we construct the maximal intervals of searched Boolean function in 4-dimensional cube such that
Γ(f) ∼= G and the Theorem 4.1 holds. Vertex which we add is denoted as N4.
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Figure 4. Number of 0-dimensional maximal intervals in the cubes of particular dimensions.
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In the following part, we consider the number of variables of a Boolean function.
For a graph G of order m, let n(G) be the minimal number n of variables of a Boolean function

f(x1, . . . , xn) such that Γ(f) ∼= G. Set

n(m) = min{n(G); G of order m}
n(m) = max{n(G); G of order m}

Theorem 4.2. For every positive integer m, one has n(m) = dlogme+ 1 and n(m) = m.

Proof. We first prove that n(m) = dlogme + 1. The dimension of maximal intervals depends
on the degree of the corresponding vertex in the interval graph. Bigger degree of the vertex means
bigger dimension of corresponding maximal interval. The minimal dimension of a Boolean cube
can be obtained for the interval graph with no edges. The maximal intervals corresponding to
the vertices can be 0-dimensional intervals. To avoid that two 0-dimensional intervals could be
joined into 1-dimensional, for each vertex α̃ at the distance 1 from each maximal interval f(α̃) = 0
holds. Any two maximal intervals differ in at least two coordinates. It follows that we can place
2m/2 0-dimensional intervals into the m-cube. From the manner of construction it follows that
n(m) = m. �

In this part we show examples of isomorphic interval graphs such that for one graph the abbre-
viated d.n.f. is a minimal at the same time and for the other one is not. The Boolean functions are
described in both figures by bold lines on the right side and the interval graphs of this functions
are shown left.

Example 4.1. The abbreviated and at the same time minimal d.n.f. of the function f from
Figure 5 is D(f) = N1 ∨ N2 ∨ N3. The abbreviated d.n.f. of the function f from Figure 6 is
D(f) = N1 ∨N2 ∨N3 and its minimal d.n.f. is D(f) = N1 ∨N3.
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Figure 5. Interval graph and corresponding maximal intervals of a Boolean function f(x1, x2, x3).

Figure 6. Interval graph and corresponding maximal intervals of a Boolean function f(x1, x2, x3).
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5. Conclusion

In the present paper we have proved that if the interval graph of a Boolean function is a complete
graph, then the abbreviated d.n.f. of this function is also a minimal d.n.f.. In addition, we
have described a construction of a Boolean function such that the abbreviated d.n.f. of this
function is also a minimal d.n.f. for an arbitrary simple finite graphs. We have also studied the
relationship between the number of vertices and edges in the interval graph and the dimension of
the corresponding Boolean function.

It would be interesting to study graph whose vertices are d.n.f.s and whose edges are pairs of
d.n.f.s that differ in exactly one conjunction. The study of a simplified interval graph, for example,
one without the vertices (maximal intervals) corresponding to the core conjuctions or conjuctions
belonging to every irredundant d.n.f. would also be interesting. It would also be interesting to
study the behaviour of the interval graph under suitable transformations of Boolean functions.
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