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SLOWLY VARYING SOLUTIONS OF A CLASS OF FIRST ORDER SYSTEMS

OF NONLINEAR DIFFERENTIAL EQUATIONS

JAROSLAV JAROŠ and KUSANO TAKAŜI

Abstract. We analyze positive solutions of the two-dimensional systems of nonlinear differential equa-

tions

x′ + p(t)yα = 0, y′ + q(t)xβ = 0,(A)

x′ = p(t)yα, y′ = q(t)xβ ,(B)

in the framework of regular variation and indicate the situation in which system (A) (resp. (B))
possesses decaying solutions (resp. growing solutions) with precise asymptotic behavior as t → ∞.

1. Introduction

This paper is devoted to the study of the existence and precise asymptotic behavior of positive
solutions of two simple classes of first order systems of nonlinear differential equations the form

x′ + p(t)yα = 0, y′ + q(t)xβ = 0,(A)

x′ = p(t)yα, y′ = q(t)xβ ,(B)

where the following assumptions are always assumed to hold:

(a) α and β are positive constants such that αβ < 1;
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(b) p(t) and q(t) are positive continuous functions on [a,∞).

The aim of this paper is to show how an application of the theory of regular variation gives the
possibility to acquire as detailed information as possible about the asymptotic behavior at infinity
of solutions (x(t), y(t)) of (A) such that limt→∞ x(t) = limt→∞ y(t) = 0, which are referred to as
decaying solutions of (A), and solutions (x(t), y(t)) of (B) such that limt→∞ x(t) = limt→∞ y(t) =
∞, which are referred to as growing solutions of (B). Such solutions will be constructed as solutions
of the integral equations

x(t) =

∫ ∞
t

p(s)y(s)αds, y(t) =

∫ ∞
t

q(s)x(s)βds, t ≥ T,

and

x(t) = x0 +

∫ t

T

p(s)x(s)αds, y(t) = y0 +

∫ t

T

q(s)x(s)βds, t ≥ T,

x0 > 0, y0 > 0 and T > a being constants in the class of nearly regularly varying functions with
specific asymptotic behavior at infinity. The Schauder-Tychonoff fixed point theorem is employed
for this purpose.

For the in-depth analysis of oscillation and asymptotic behavior for systems of nonlinear dif-
ferential equations the reader is referred to the book of Mirzov [7]. As for systems (A) and (B)
under consideration, it is very difficult to characterize the existence of decaying (resp. growing)
positive solutions and determine their precise asymptotic behavior at infinity in the case p(t) and
q(t) are general positive continuous functions. However, if we limit ourselves to systems (A) and
(B) with regularly varying coefficients p(t) and q(t), then fairly detailed and precise information
can be acquired about the existence and precise asymptotic behavior of regularly varying solutions
of (A) or (B). For related results see [2]–[5].
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It is hoped that the present work will be a step towards deep and systematic investigations of
positive solutions of general multi-dimensional systems of differential equations based on the use
of the theory of regular variation combined with fixed point techniques.

2. Regularly varying functions

For the reader’s convenience we recall here the definition of regularly varying functions, nota-
tions and some of basic properties including Karamata’s integration theorem which will play an
important role in establishing the main results of this paper.

Definition 2.1. A measurable function f : (0,∞) → (0,∞) is said to be regularly varying of
index ρ ∈ R if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for all λ > 0,

or equivalently it is expressed in the form

f(t) = c(t) exp

{∫ t

t0

δ(s)

s
ds

}
, t ≥ t0,

for some t0 > 0 and some measurable functions c(t) and δ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If c(t) ≡ c0, then f(t) is called a normalized regularly varying function of index ρ. The totality
of regularly varying functions of index ρ is denoted by RV(ρ). We often use the symbol SV instead
of RV(0) and call members of SV slowly varying functions. By definition any function f(t) ∈
RV(ρ) is written as f(t) = tρg(t) with g(t) ∈ SV. So, the class SV of slowly varying functions
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is of fundamental importance in theory of regular variation. Typical examples of slowly varying
functions are all functions tending to positive constants as t→∞,

N∏
n=1

(logn t)
αn , αn ∈ R, and exp

{
N∏
n=1

(logn t)
βn

}
, βn ∈ (0, 1),

where logn t denotes the n-th iteration of the logarithm. It is known that the function

L(t) = exp
{

(log t)
1
3 cos (log t)

1
3

}
is a slowly varying function which oscillates in the sense that

lim sup
t→∞

L(t) =∞ and lim inf
t→∞

L(t) = 0.

A function f(t) ∈ RV(ρ) is called a trivial regularly varying function of index ρ if it is expressed
in the form f(t) = tρL(t) with L(t) ∈ SV satisfying limt→∞ L(t) = const > 0. Otherwise f(t) is
called a nontrivial regularly varying function of index ρ. The symbol tr-RV(ρ) (or ntr-RV(ρ)) is
used to denote the set of all trivial RV(ρ)-functions (or the set of all nontrivial RV(ρ)-functions).

The regularity of differentiable positive functions can be decided by the following simple criterion
(see [6]).

Proposition 2.1. A differentiable positive function f(t) is a normalized regularly varying func-
tion of index ρ if and only if

lim
t→∞

t
f ′(t)

f(t)
= ρ.

The following proposition, known as Karamata’s integration theorem, is particularly useful in
handling slowly and regularly varying functions analytically and is extensively used throughout
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the paper. Here and throughout the symbol ∼ is used to denote the asymptotic equivalence, that
is,

f(t) ∼ g(t), t→∞ ⇐⇒ lim
t→∞

g(t)

f(t)
= 1.

Proposition 2.2. Let L(t) ∈ SV. Then,
(i) if α > −1, ∫ t

a

sαL(s)ds ∼ 1

α+ 1
tα+1L(t), t→∞;

(ii) if α < −1, ∫ ∞
t

sαL(s)ds ∼ − 1

α+ 1
tα+1L(t), t→∞;

(iii) if α = −1,

l(t) =

∫ t

a

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

l(t)
= 0,

and

m(t) =

∫ ∞
t

L(s)

s
ds ∈ SV and lim

t→∞

L(t)

m(t)
= 0.

A measurable function f : (0,∞) → (0,∞) is called regularly bounded if for any λ0 > 1, there
exist positive constants m and M such that

1 < λ < λ0 =⇒ m ≤ f(λt)

f(t)
≤M for all large t.

The totality of regularly bounded functions is denoted by RO. It is clear that RV(ρ) ⊂ RO for
any ρ ∈ R. Any function which is bounded both from above and from below by positive constants
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is regularly bounded. For example, 2 + sin t and 2 + sin(log t) are regularly bounded. Note that
2+sin t and 2+sin(log t) are not slowly varying, whereas 2+sin(logn t), n ≥ 2, are slowly varying.

We now define the class of nearly regularly varying functions which is a useful subclass of RO
including all regularly varying functions. To this end it is convenient to introduce the following
notation.

Notation 2.1. Let f(t) and g(t) be two positive continuous functions defined in a neighborhood
of infinity, say for t ≥ T . We use the notation f(t) � g(t), t → ∞, to denote that there exist
positive constants m and M such that

mg(t) ≤ f(t) ≤Mg(t) for t ≥ T.

Clearly, f(t) ∼ g(t), t → ∞, implies f(t) � g(t), t → ∞, but not conversely. It is easy to see
that if f(t) � g(t), t→∞, and if limt→∞ g(t) = 0, then limt→∞ f(t) = 0.

Definition 2.2. If f(t) satisfies f(t) � g(t), t→∞, for some g(t) which is regularly varying of
index ρ, then f(t) is called a nearly regularly varying function of index ρ.

Since 2 + sin t � 2 + sin(logn t), t → ∞, for all n ≥ 2, the function 2 + sin t is nearly slowly
varying, and the same is true of 2 + sin(log t). If g(t) ∈ RV(ρ), then the functions (2 + sin t)g(t)
and (2 + sin(log t))g(t) are nearly regularly varying of index ρ, but not regularly varying of index
ρ.

A vector function (x(t), y(t)) defined on some interval [T,∞) is called positive if both x(t) > 0
and y(t) > 0 for t ≥ T and is called regularly varying (or nearly regularly varying) of index (ρ, σ)
if x(t) and y(t) are regularly varying (or nearly regularly varying) of indices ρ and σ, respectively.

The reader is referred to Bingham et al [1] for the most complete exposition of theory of regular
variation and its applications and to Marić [6] for the comprehensive survey of results up to 2000
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on the asymptotic analysis of second order linear and nonlinear ordinary differential equations in
the framework of regular variation.

3. Decaying slowly varying solutions of (A)

In order to have slowly varying solutions (x(t), y(t)) for (A) (or (B)) it is necessary that p(t) ∈
RV(−1) and q(t) ∈ RV(−1), that is, p(t) = t−1l(t) and q(t) = t−1m(t) for some l,m ∈ SV. This
means that p(t) ∼ L(t)q(t), t → ∞, for some L ∈ SV. The simplest choice of L(t) is L(t) ≡ 1,
which we are concerned with in this paper hoping to have an insight into the structure of slowly
varying solutions of (A) (or (B)) with general admissible p(t) and q(t).

We recall that a decaying solution (x(t), y(t)) of (A) defined in [T,∞) satisfies the system of
integral equations

x(t) =

∫ ∞
t

p(s)y(s)αds, y(t) =

∫ ∞
t

q(s)x(s)βds, t ≥ T.(IA)

We associate with (IA) the system of asymptotic relations

x(t) ∼
∫ ∞
t

p(s)y(s)αds, y(t) ∼
∫ ∞
t

q(s)x(s)βds, t→∞(AR)

which may be regarded as an approximation of the system (IA) at infinity. The following result
concerning (AR) will be crucial in constructing decaying slowly varying solutions of (IA).

Theorem 3.1. Suppose that p(t) and q(t) are regularly varying functions of index −1 such
that p(t) ∼ q(t) as t → ∞. Then, the asymptotic system (AR) possesses decaying slowly varying
solutions if and only if p(t) and q(t) are integrable on [a,∞) are in such case the asymptotic
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behavior of all such solutions (x(t), y(t)) of (AR) is governed by the formulas

x(t) ∼
[1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p(s)ds
] α+1

1−αβ
, t→∞,(3.1)

y(t) ∼
[1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q(s)ds
] β+1

1−αβ
, t→∞.(3.2)

Proof. We begin with the proof of the “only if” part of the theorem. Let (x(t), y(t)) be a
decaying slowly varying solution of (AR) on [T,∞). Put

ξ(t) =

∫ ∞
t

p(s)y(s)αds, η(t) =

∫ ∞
t

q(s)x(s)βds.(3.3)

Notice that ξ(t) and η(t) are slowly varying because p(t) and q(t) are in RV(−1). Then, using
(3.3) we have

q(t)x(t)βξ′(t) = −p(t)q(t)x(t)βy(t)α = p(t)y(t)αη′(t), t ≥ T,
which in view of p(t) ∼ q(t), t→∞, implies that

ξ(t)βξ′(t) ∼ η(t)αη′(t), i.e.,

(
ξ(t)β+1

β + 1

)′
∼
(
η(t)α+1

α+ 1

)′
, t→∞.

Integrating the above from t to ∞ yields

ξ(t)β+1

β + 1
∼ η(t)α+1

α+ 1
, t→∞,(3.4)

whence it follows that

ξ(t) ∼
(
β + 1

α+ 1

) 1
β+1

η(t)
α+1
β+1 , η(t) ∼

(
α+ 1

β + 1

) 1
α+1

ξ(t)
β+1
α+1 , t→∞,
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which is clearly equivalent to

(3.5)

x(t) ∼
(
β + 1

α+ 1

) 1
β+1

y(t)
α+1
β+1 ,

y(t) ∼
(
α+ 1

β + 1

) 1
α+1

x(t)
β+1
α+1 , t→∞.

Using (3.5) in (3.3), we obtain the following system of asymptotic relations for x(t) and y(t) for
t→∞

x(t) ∼
(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p(s)x(s)
α(β+1)
α+1 ds;

y(t) ∼
(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q(s)y(s)
β(α+1)
β+1 ds.

(3.6)

Let u(t) denote the right-hand side of the upper relation in (3.6). Then, the upper relation can
be converted into the following differential asymptotic relation for u(t)

−u′(t) =

(
α+ 1

β + 1

) α
α+1

p(t)x(t)
α(β+1)
α+1 ∼

(
α+ 1

β + 1

) α
α+1

p(t)u(t)
α(β+1)
α+1 ,

or

−u(t)−
α(β+1)
α+1 u′(t) ∼

(
α+ 1

β + 1

) α
α+1

p(t), t→∞.(3.7)
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Integrating (3.7) from t to ∞ and noting that u(t) → 0 as t → ∞, we see that p(t) is integrable
on [a,∞) and obtain

x(t) ∼ u(t) ∼

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p(s)ds

] α+1
1−αβ

, t→∞.(3.8)

Denoting by v(t) the right-hand side of the lower relation in (3.6) and arguing as above, we conclude
that q(t) is integrable on [a,∞) and the asymptotic formula for y(t) is given by

y(t) ∼ v(t) ∼

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q(s)ds

] β+1
1−αβ

, t→∞.(3.9)

This finishes the proof of the “only if” part, of Theorem 3.1. To prove the “if” part it suffices to
show that if p(t) and q(t) are integrable on [a,∞), then the vector function (X(t), Y (t)) defined
by

X(t) =

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p(s)ds

] α+1
1−αβ

,

Y (t) =

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q(s)ds

] β+1
1−αβ

.

(3.10)

satisfies the system of asymptotic relations
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(3.11)

X(t) ∼
∫ ∞
t

p(s)Y (s)αds,

Y (t) ∼
∫ ∞
t

q(s)X(s)βds, t→∞.

But this is a matter of straightforward calculation of rudimentary nature. For example, the validity
of the first relation is confirmed as follows:∫ ∞

t

p(s)Y (s)αds =

∫ ∞
t

p(s)

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
s

q(r)dr

]α(β+1)
1−αβ

ds

∼
∫ ∞
t

p(s)

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
s

p(r)dr

]α(β+1)
1−αβ

ds

=

(
α+ 1

β + 1

)− 1
β+1

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

p(s)ds

] α+1
1−αβ

= X(t), t→∞.

This completes the proof. �

One of our main results in this section is the following theorem which ensures the existence of
decaying solutions for (A) in the class of slowly varying functions.

Theorem 3.2. Let p(t), q(t) be positive continuous functions which are integrable on [a,∞)
and are nearly regularly varying of index −1. Assume that p(t) � p0(t) ∈ RV(−1), q(t) � q0(t) ∈
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RV(−1), and p0(t) ∼ q0(t) as t → ∞. Then, the system (A) possesses a decaying slowly varying
solution (x(t), y(t)) such that for t→∞,

x(t) �

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p0(s)ds

] α+1
1−αβ

,(3.12)

y(t) �

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q0(s)ds

] β+1
1−αβ

.(3.13)

Proof. By hypothesis there exist positive constants k and K such that

kp0(t) ≤ p(t) ≤ Kp0(t), kq0(t) ≤ q(t) ≤ Kq0(t), t ≥ a.(3.14)

Let X0(t) and Y0(t) denote the functions defined by

X0(t) =

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ ∞
t

p0(s)ds

] α+1
1−αβ

,

Y0(t) =

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ ∞
t

q0(s)ds

] β+1
1−αβ

.

(3.15)

As shown in Theorem 3.1, (X0(t), Y0(t)) satisfies the system of asymptotic relations

(3.16) X0(t) ∼
∫ ∞
t

p0(s)Y0(s)αds, Y0(t) ∼
∫ ∞
t

q0(s)X0(s)βds, t→∞,
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from which it follows that there exists T > a such that

1

2
X0(t) ≤

∫ ∞
t

p0(s)Y0(s)αds ≤ 2X0(t), t ≥ T,(3.17)

and

1

2
Y0(t) ≤

∫ ∞
t

q0(s)X0(s)βds ≤ 2Y0(t), t ≥ T.(3.18)

Let us define W as the set of continuous vector functions (x(t), y(t)) ∈ C[T,∞)×C[T,∞)
satisfying

(3.19) aX0(t) ≤ x(t) ≤ AX0(t), bY0(t) ≤ y(t) ≤ BY0(t), t ≥ T,

where the positive constants a, A, b, B are required to satisfy the inequalities

a ≤ k

2
bα, 2KBα ≤ A, b ≤ k

2
aβ , 2KAβ ≤ B.(3.20)

It is easy to see that there is an infinitely many such choices of (a,A, b, B). For instance, one can
choose

a =

(
k

2

) α+1
1−αβ

, A = (2K)
α+1
1−αβ , b =

(
k

2

) β+1
1−αβ

, B = (2K)
β+1
1−αβ .

Clearly, W is a closed convex subset of the locally convex space C[T,∞)×C[T,∞).
Consider the integral operators

(3.21)

Fy(t) =

∫ ∞
t

p(s)y(s)αds,

Gx(t) =

∫ ∞
t

q(s)x(s)βds, t ≥ T,
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and define the mapping Φ: W → C[T,∞)×C[T,∞) by

Φ(x(t), y(t)) = (Fy(t), Gx(t)), t ≥ T.(3.22)

It can be proved that Φ is a continuous self-map on W and sends W into a relatively compact
subset of C[T,∞)×C[T,∞).
(i) Φ(W ) ⊂W . Let (x(t), y(t)) ∈W . Then, using (3.16)–(3.22), we see that for t ≥ T ,

Fy(t) ≤ KBα
∫ ∞
t

p0(s)Y0(s)αds ≤ 2KBαX0(t) ≤ AX0(t),

Fy(t) ≥ kbα
∫ ∞
t

p0(s)Y0(s)αds ≥ k

2
bαX0(t) ≥ aX0(t),

Gx(t) ≤ KAβ
∫ ∞
t

q0(s)X0(s)βds ≤ 2KAβY0(t) ≤ BY0(t),

Gx(t) ≥ kaβ
∫ ∞
t

q0(s)X0(s)βds ≥ k

2
aβY0(t) ≥ bY0(t).

This shows that Φ(x(t), y(t)) ∈W . Implying that Φ maps W into itself.

(ii) Φ(W ) is relatively compact. The inclusion Φ(W ) ⊂ W guarantees that Φ(W ) is uniformly
bounded on [T,∞). From the inequalities

0 ≥ (Fy)′(t) = −p(t)y(t)α ≥ −KBαp0(t)Y0(t)α,

0 ≥ (Gx)′(t) = −q(t)x(t)β ≥ −KAβq0(t)X0(t)β ,

holding for t ≥ T and for all (x(t), y(t)) ∈ W , it follows that Φ(W ) is equicontinuous on
[T,∞). The relative compactness then follows from the Arzela-Ascoli lemma.
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(iii) Φ is continuous. Let {(xn(t), yn(t))} be a sequence in W converging to (x(t), y(t)) ∈ W
uniformly on any compact subinterval of [T,∞). Noting that

|Fyn(t)− Fy(t)| ≤
∫ ∞
t

p(s)|yn(s)α − y(s)α|ds,

|Gxn(t)−Gx(t)| ≤
∫ ∞
t

q(s)|xn(s)β − y(s)β |ds,

for t ≥ T and applying the Lebesgue dominated convergence theorem to the above integrals,
we find that Fyn(t) → Fy(t) and Gxn(t) → Gx(t) as n → ∞ uniformly on [T,∞), which
implies that

Φ(xn(t), yn(t)) = (Fyn(t), Gxn(t))

→ (Fy(t), Gx(t)) = Φ(x(t), y(t)) as n→∞,

the convergence being uniform on [T,∞). This establishes the continuity of Φ in the topology
of C[T,∞)×C[T,∞).

Therefore, by the Schauder-Tychonoff fixed point theorem, there exists(x(t), y(t)) ∈ W such
that (x(t), y(t)) = Φ(x(t), y(t), t ≥ T , that is,

x(t) =

∫ ∞
t

p(s)y(s)αds, y(t) =

∫ ∞
t

q(s)x(s)βds, t ≥ T.

This means that (x(t), y(t)) is a solution of the differential system (A). That x(t) and y(t) are
nearly slowly varying functions satisfying (3.12) and (3.13), respectively, is a consequence of the
fact that (x(t), y(t)) is a member of W .
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It remains to verify that (x(t), y(t)) is really slowly varying. For this purpose we note that

x(t) =

∫ ∞
t

p(s)y(s)αds � X0(t),

y(t) =

∫ ∞
t

q(s)x(s)βds � Y0(t), t→∞,
(3.23)

and

−x′(t) = p(t)y(t)α � p0(t)Y0(t)α,

−y′(t) = q(t)x(t)β � q0(t)X0(t)β , t→∞.
(3.24)

According to Proposition 2.1 in order to make sure that x(t) and y(t) are slowly varying, it suffices
to show that

lim
t→∞

t
x′(t)

x(t)
= 0, lim

t→∞
t
y′(t)

y(t)
= 0.(3.25)

It is convenient to rewrite X0(t) and Y0(t) as

X0(t) =

[
λ

∫ ∞
t

p0(s)ds

] α+1
1−αβ

∼
[
λ

∫ ∞
t

q0(s)ds

] α+1
1−αβ

, t→∞,

Y0(t) =

[
µ

∫ ∞
t

q0(s)ds

] β+1
1−αβ

∼
[
µ

∫ ∞
t

p0(s)ds

] β+1
1−αβ

, t→∞.
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Using (3.23), (3.24) and the above simplified expressions for X0(t) and Y0(t), we obtain

−tx
′(t)

x(t)
�
tp0(t)

[
µ
∫∞
t
p0(s)ds

]α(β+1)
1−αβ[

λ
∫∞
t
p0(s)ds

] α+1
1−αβ

=
(α+ 1)tp0(t)

(1− αβ)
∫∞
t
p0(s)ds

, t→∞,

(3.26)

and similarly,

−ty
′(t)

y(t)
� (β + 1)tq0(t)

(1− αβ)
∫∞
t
q0(s)ds

, t→∞.(3.27)

Since p0(t) and q0(t) are regularly varying of index −1, from Karamata’s integration theorem it
follows that

lim
t→∞

tp0(t)∫∞
t
p0(s)ds

= lim
t→∞

tq0(t)∫∞
t
q0(s)ds

= 0

which, combined with (3.26) and (3.27), ensures that (3.25) holds true as desired. Thus, both x(t)
and y(t) are slowly varying functions. This completes the proof. �

As the next result shows, under the stronger assumption that p(t) and q(t) in Theorem 3.2
are regularly varying functions, the existence of decaying slowly varying solutions for (A) can be
completely characterized.

Corollary 3.1. Let p(t), q(t) be continuous regularly varying functions of index −1 such that
p(t) ∼ q(t) as t→∞. Then, system (A) possesses decaying slowly varying solutions if and only if
p(t) and q(t) are integrable on [a,∞), in which case the asymptotic behavior of all such solutions
(x(t), y(t)) is governed by the formulas (3.1) and (3.2).
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Example 3.1. Consider the system of differential equations

x′ + p(t)yα = 0, y′ + q(t)xβ = 0,(3.28)

where p(t) and q(t) are positive continuous functions on [e,∞).
(i) Suppose that p(t), q(t) are continuous nearly regularly varying functions of index −1 such

that p(t) � r(t) and q(t) � r(t) as t→∞, where r(t) ∈ RV(−1) satisfies

r(t) ∼ (α+ 1)−
α
α+1 (β + 1)−

β
β+1 t−1(log t)−

α+β+2
(α+1)(β+1) , t→∞.

Then, system (3.28) possesses a slowly varying solution (x(t), y(t)) such that

x(t) � (β + 1)
1

β+1 (log t)−
1

β+1 ,

y(t) � (α+ 1)
1

α+1 (log t)−
1

α+1 , t→∞.

(ii) Suppose that p(t) and q(t) are continuous regularly varying functions of index −1 satisfying

p(t) ∼ q(t) ∼ (α+ 1)−
α
α+1 (β + 1)−

β
β+1 t−1(log t)−

α+β+2
(α+1)(β+1) , t→∞.

Then, system (3.28) possesses slowly varying solutions (x(t), y(t)) and all of them enjoy the
following precise asymptotic behavior at infinity:

x(t) ∼ (β + 1)
1

β+1 (log t)−
1

β+1 ,

y(t) ∼ (α+ 1)
1

α+1 (log t)−
1

α+1 , t→∞.
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4. Growing slowly varying solutions of (B)

Let (x(t), y(t)) be a growing slowly varying solution of (B) on [T,∞), T ≥ a. Then, it satisfies the
system of integral equations

x(t) = x0 +

∫ t

T

p(s)y(s)αds, y(t) = y0 +

∫ t

T

q(s)x(s)βds, t ≥ T,(IB)

where x0 > 0, y0 > 0, and hence the system of asymptotic relations

x(t) ∼
∫ t

T

p(s)y(s)αds, y(t) ∼
∫ t

T

q(s)x(s)βds, t ≥ T.(BR)

An analogue of Theorem 3.1 is the following result.

Theorem 4.1. Suppose that p(t) and q(t) are regularly varying functions of index −1 such
that p(t) ∼ q(t) as t → ∞. Then, the asymptotic system (BR) possesses growing slowly varying
solutions if and only if ∫ ∞

a

p(t)dt =

∫ ∞
a

q(t)dt =∞,(4.1)

and in such case the asymptotic behavior of all such solutions (x(t), y(t)) of (BR) is governed by
the formulas

x(t) ∼

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ t

a

p(s)ds

] α+1
1−αβ

, t→∞,(4.2)

y(t) ∼

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ t

a

q(s)ds

] β+1
1−αβ

, t→∞.(4.3)
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Proof. (The “only if” part) Let (x(t), y(t)) be a growing slowly varying solution of (AR) on
[T,∞). Put

ξ(t) =

∫ t

T

p(s)y(s)αds, η(t) =

∫ t

T

q(s)x(s)βds.(4.4)

Notice that ξ(t) and η(t) are slowly varying because p(t) and q(t) are in RV(−1). Then, using
(4.4), we have

q(t)x(t)βξ′(t) = p(t)q(t)x(t)βy(t)α = p(t)y(t)αη′(t), t ≥ T,

which in view of p(t) ∼ q(t), t→∞, implies that

ξ(t)βξ′(t) ∼ η(t)αη′(t), i.e.,

(
ξ(t)β+1

β + 1

)′
∼
(
η(t)α+1

α+ 1

)′
, t→∞.

Integrating the above from T to t yields

ξ(t)β+1

β + 1
∼ η(t)α+1

α+ 1
, t→∞,(4.5)

whence it follows that

ξ(t) ∼
(
β + 1

α+ 1

) 1
β+1

η(t)
α+1
β+1 , η(t) ∼

(
α+ 1

β + 1

) 1
α+1

ξ(t)
β+1
α+1 , t→∞,

which is clearly equivalent to

(4.6) x(t) ∼
(
β + 1

α+ 1

) 1
β+1

y(t)
α+1
β+1 , y(t) ∼

(
α+ 1

β + 1

) 1
α+1

x(t)
β+1
α+1 , t→∞.
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Using (4.6) in (4.4), we obtain the following system of asymptotic relations for x(t) and y(t) for
t→∞:

x(t) ∼
(
α+ 1

β + 1

) α
α+1

∫ t

T

p(s)x(s)
α(β+1)
α+1 ds,

y(t) ∼
(
β + 1

α+ 1

) β
β+1

∫ t

T

q(s)y(s)
β(α+1)
β+1 ds.

(4.7)

Let u(t) denote the right-hand side of the upper relation in (4.7). Then, the upper relation can
be converted into the following differential asymptotic relation for u(t):

u′(t) =

(
α+ 1

β + 1

) α
α+1

p(t)x(t)
α(β+1)
α+1 ∼

(
α+ 1

β + 1

) α
α+1

p(t)u(t)
α(β+1)
α+1 ,

or

u(t)−
α(β+1)
α+1 u′(t) ∼

(
α+ 1

β + 1

) α
α+1

p(t), t→∞.(4.8)

Integrating (4.8) from T to t and noting that u(t)→∞ as t→∞, we see that p(t) is not integrable
on [a,∞) and obtain

x(t) ∼ u(t) ∼

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ t

T

p(s)ds

] α+1
1−αβ

, t→∞.(4.9)

Let v(t) denote the right-hand side of the lower relation in (4.7). Arguing as above, we conclude
that q(t) is not integrable on [a,∞) and the asymptotic formula for y(t) is given by

y(t) ∼ v(t) ∼
[
1−αβ
β+1

(
β+1
α+1

) β
β+1 ∫ t

T
q(s)ds

] β+1
1−αβ

, t→∞.(4.10)
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This finishes the proof of the “only if” part of Theorem 4.1.
(The “if” part) It suffices to show that if p(t) and q(t) are not integrable on [a,∞), then the

vector function (X(t), Y (t)) defined by

X(t) =

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ t

a

p(s)ds

] α+1
1−αβ

,

Y (t) =

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ t

a

q(s)ds

] β+1
1−αβ

.

(4.11)

satisfies the system of asymptotic relations

X(t) ∼
∫ t

a

p(s)Y (s)αds, Y (t) ∼
∫ t

a

q(s)X(s)βds, t→∞.(4.12)

But this is a matter of straightforward calculation of rudimentary nature. For example, the validity
of the first relation is confirmed as follows:∫ t

a

p(s)Y (s)αds =

∫ t

a

p(s)

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ s

a

q(r)dr

]α(β+1)
1−αβ

ds

∼
∫ t

a

p(s)

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ s

a

p(r)dr

]α(β+1)
1−αβ

ds

∼
(
α+ 1

β + 1

)− 1
β+1

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ t

a

p(s)ds

] α+1
1−αβ

= X(t), t→∞.
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This completes the proof. �

A dual result to Theorem 3.2 is the following theorem.

Theorem 4.2. Let p(t) and q(t) be positive continuous functions which satisfy (4.1). Assume
that p(t) � p0(t) ∈ RV(−1), q(t) � q0(t) ∈ RV(−1) and p0(t) ∼ q0(t) as t→∞. Then, the system
(B) possesses a growing slowly varying solution (x(t), y(t)) such that for t→∞,

x(t) �
[

1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ t

a

p0(s)ds

] α+1
1−αβ

,(4.13)

y(t) �
[

1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ t

a

q0(s)ds

] β+1
1−αβ

.(4.14)

Proof. Since p(t) � p0(t) and q(t) � q0(t), there exist positive constants k and K such that

kp0(t) ≤ p(t) ≤ Kp0(t), kq0(t) ≤ q(t) ≤ Kq0(t), t ≥ a.(4.15)

Let X0(t) and Y0(t) denote the functions defined by

X0(t) =

[
1− αβ
α+ 1

(
α+ 1

β + 1

) α
α+1

∫ t

a

p0(s)ds

] α+1
1−αβ

,

Y0(t) =

[
1− αβ
β + 1

(
β + 1

α+ 1

) β
β+1

∫ t

a

q0(s)ds

] β+1
1−αβ

.

(4.16)
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It is known from the proof of Theorem 4.1 that (X0(t), Y0(t)) satisfies

(4.17)

X0(t) ∼
∫ t

b

p0(s)Y0(s)αds,

Y0(t) ∼
∫ t

b

q0(s)X0(s)βds, t→∞,

for any b ≥ a, from which it follows that there exists T0 ≥ a such that

(4.18)

∫ t

T0

p0(s)Y0(s)αds ≤ 2X0(t),∫ t

T0

q0(s)X0(s)βds ≤ 2Y0(t), t ≥ T0.

Since (4.17) holds for b = T0, there exists T1 > T0 such that

(4.19)

∫ t

T0

p0(s)Y0(s)αds ≥ 1

2
X0(t),∫ t

T0

q0(s)X0(s)βds ≥ 1

2
Y0(t), t ≥ T1.

Choose positive constants a, A, b and B so that a < A, b < B and the inequalities

a ≤ 1

2
kbα, b ≤ 1

2
kaβ , 4KBα ≤ A, 4KAβ ≤ B,(4.20)

and

aX0(T1) ≤ 1

2
AX0(T0), bY0(T1) ≤ 1

2
BY0(T0)(4.21)
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hold. It is easy to check that such choices of a, A, b and B are indeed possible by taking, if
necessary, k sufficiently small and K sufficiently large. With these constants we define W as the
set of continuous functions (x(t), y(t)) on [T0,∞) such that

aX0(t) ≤ x(t) ≤ AX0(t),

Y0(t) ≤ y(t) ≤ BY0(t), t ≥ T0.
(4.22)

It is clear that W is closed and convex in C[T0,∞) × C[T0,∞). Consider the mapping Φ: W →
C[T0,∞)× C[T0,∞) defined by

(4.23) Φ(x(t), y(t)) = (Fy(t),Gx(t)), t ≥ T0,

where

(4.24)

Fy(t) = x0 +

∫ t

T0

p(s)y(s)αds,

Gx(t) = y0 +

∫ t

T0

q(s)x(s)βds, t ≥ T0.

Here x0 and y0 are positive constants satisfying

aX0(T1) ≤ x0 ≤
1

2
AX0(T0), bY0(T1) ≤ y0 ≤

1

2
BY0(T0).(4.25)

It is proved without difficulty that Φ is a continuous self-map of W with the property that
Φ(W ) is relatively compact in C[T0,∞)× C[T0,∞).
(i) Φ(W ) ⊂W . Let (x(t), y(t)) ∈W . Using (4.18)–(4.25), we see that

Fy(t) ≥ x0 ≥ aX0(T1) ≥ aX0(t), T0 ≤ t ≤ T1,
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and

Fy(t) ≥
∫ t

T0

p(s)y(s)αds ≥
∫ t

T0

kp0(s)
(
bY0(s)

)α
ds

≥ 1

2
kbαX0(t) ≥ aX0(t), t ≥ T1.

On the other hand, for t ≥ T0 we have

Fy(t) ≤ 1

2
AX0(T0) +

∫ t

T0

Kp0(s)
(
BY0(s)

)α
ds

≤ 1

2
AX0(t) + 2KBαX0(t) ≤ 1

2
AX0(t) +

1

2
AX0(t) = AX0(t).

This implies that aX0(t) ≤ Fy(t) ≤ AX0(t) for t ≥ T0. An analogous computation applies to
G, showing that bY0(t) ≤ Gx(t) ≤ BY0(t) for t ≥ T0. It follows that Φ

(
x(t), y(t)

)
∈W .

(ii) The relative compactness of Φ(W ) follows from the inclusion Φ(W ) ⊂ W which guarantees
that Φ(W ) is uniformly bounded on [T0,∞) and the inequalities

0 ≤
(
Fy
)′

(t) ≤ Bαp(t)Y0(t)α,

0 ≤
(
Gx
)′

(t) ≤ Aβq(t)X0(t)β , t ≥ T0,
imply that Φ(W ) is equicontinuous on [T0,∞).

(iii) To prove the continuity of Φ, it suffices to consider a sequence {(xn(t), yn(t))} in W converging
to (x(t), y(t)) ∈W uniformly on compact subintervals of [T0,∞) and to show that Fyn(t)→
Fy(t) and Gxn(t) → Gx(t) uniformly on compact subintervals of [T0,∞) by applying the
Lebesgue dominated convergence theorem to the integrals

|Fyn(t)−Fy(t)| ≤
∫ t

T0

p(s)|yn(s)α − y(s)α|ds,
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and

|Gxn(t)− Gx(t)| ≤
∫ t

T0

q(s)|xn(s)β − x(s)β |ds, t ≥ T0.

Consequently by the Schauder-Tychonoff fixed point theorem Φ has a fixed point
(
x(t), y(t)

)
∈

W , which satisfies the system of integral equations

x(t) = x0 +

∫ t

T0

p(s)y(s)αds, y(t) = y0 +

∫ t

T0

q(s)x(s)βds, t ≥ T0.

That (x(t), y(t)) provides a growing solution of (B) which is nearly slowly varying is a conse-
quence of the fact that (x(t), y(t)) is a member of W .

It remains to verify that (x(t), y(t)) is really a slowly varying vector function. For this purpose
we note that

x(t) = x0 +

∫ t

T0

p(s)y(s)αds � X0(t),

y(t) = y0 +

∫ t

T0

q(s)x(s)βds � Y0(t),

(4.26)

and

(4.27)
x′(t) = p(t)y(t)α � p0(t)Y0(t)α,

y′(t) = q(t)x(t)β � q0(t)X0(t)β ,

as t→∞. In order to make sure that x(t) and y(t) are slowly varying it suffices to show that

(4.28) lim
t→∞

tx′(t)

x(t)
= 0, lim

t→∞

ty′(t)

y(t)
= 0
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(see Proposition 2.1). It is convenient to rewrite X0(t) and Y0(t) as

X0(t) =

[
λ

∫ t

a

p0(s)ds

] α+1
1−αβ

∼
[
λ

∫ t

a

q0(s)ds

] α+1
1−αβ

, t→∞,

Y0(t) =

[
µ

∫ t

a

q0(s)ds

] β+1
1−αβ

∼
[
µ

∫ t

a

p0(s)ds

] β+1
1−αβ

, t→∞.

Using (4.26), (4.27) and the above simplified expressions for X0(t) and Y0(t), we obtain

(4.29)
tx′(t)

x(t)
�
tp0(t)

[
µ
∫ t
a
p0(s)ds

]α(β+1)
1−αβ

[
λ
∫ t
a
p0(s)ds

] α+1
1−αβ

� (α+ 1)tp0(t)

(1− αβ)
∫ t
a
p0(s)ds

, t→∞,

and similarly

(4.30)
ty′(t)

y(t)
� (β + 1)tq0(t)

(1− αβ)
∫ t
a
q0(s)ds

, t→∞,

Since p0(t) and q0(t) are regularly varying of index −1, from Karamata’s integration theorem it
follows that

lim
t→∞

tp0(t)∫ t
a
p0(s)ds

= lim
t→∞

tq0(t)∫ t
a
q0(s)ds

= 0

which combined with (4.29) and (4.30), ensures that (4.28) holds true as desired. Therefore, both
x(t) and y(t) are slowly varying functions. This completes the proof. �

Corollary 4.1. Let p(t) and q(t) be continuous regularly varying functions of index −1 such
that p(t) ∼ q(t) as t→∞. Then, system (B) possesses growing slowly varying solutions if and only
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if (4.1) holds, in which case the asymptotic behavior of all such solutions (x(t), y(t)) is governed
by the formulas (4.2) and (4.3).

Example 4.1. Consider the system of differential equations

x′ = p(t)yα, y′ = q(t)xβ ,(4.31)

where p(t) and q(t) are positive continuous functions on [e,∞).
(i) Suppose that p(t) and q(t) are nearly regularly varying functions of index −1 such that

p(t) � r(t) and q(t) � r(t) as t→∞, where r(t) ∈ RV(−1) satisfies

r(t) ∼ (α+ 1)−
α
α+1 (β + 1)−

β
β+1 t−1(log t)−

2αβ+α+β
(α+1)(β+1) , t→∞.

Then, system (4.31) possesses a nearly varying solution (x(t), y(t)) such that

x(t) � (β + 1)
1

β+1 (log t)
1

β+1 , y(t) � (α+ 1)
1

α+1 (log t)
1

α+1 , t→∞.

(ii) Suppose that p(t) and q(t) are regularly varying of index −1 satisfying

p(t) ∼ q(t) ∼ (α+ 1)−
α
α+1 (β + 1)−

β
β+1 t−1(log t)−

2αβ+α+β
(α+1)(β+1) , t→∞.

Then, system (4.31) possesses slowly varying solutions (x(t), y(t)) and all of them enjoy the
following precise asymptotic behavior at infinity:

x(t) ∼ (β + 1)
1

β+1 (log t)
1

β+1 , y(t) ∼ (α+ 1)
1

α+1 (log t)
1

α+1 , t→∞.

5. Application to generalized Thomas-Fermi equations

We conclude this paper with a remark that our results for the systems (A) and (B) can be applied
to provide new results on strongly monotone positive solutions of the second order nonlinear
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differential equation of Thomas-Fermi type

(p(t)|x′|α−1x′)′ = q(t)|x|β−1x,(5.1)

where α and β are positive constants such that α > β and p(t) and q(t) are positive continuous
functions on [a,∞).

A positive solution x(t) of (5.1) is said to be strongly decreasing if

lim
t→∞

x(t) = lim
t→∞

p(t)|x′(t)|α−1x′(t) = 0

and strongly increasing if

lim
t→∞

x(t) = lim
t→∞

p(t)|x′(t)|α−1x′(t) =∞.

It is easy to see that if x(t) is a strongly decreasing solution of (5.1), then by putting

y(t) = −p(t)|x′(t)|α−1x′(t) = p(t)(−x′(t))α,

equation (5.1) is converted into the system of first order equations

x′ + p(t)−
1
α y

1
α = 0, y′ + q(t)xβ = 0.(5.2)

Likewise,s if x(t) is a strongly increasing solution of (5.1), then by putting

y(t) = p(t)|x′(t)|α−1x′(t) = p(t)x′(t)α,

equation (5.1) is converted into the system of first order equations

x′ = p(t)−
1
α y

1
α , y′ = q(t)xβ .(5.3)

Conversely, if (x(t), y(t)) is a strongly decreasing solution of system (5.2) [resp. strongly increasing
solution of system (5.3)], then x(t) is a strongly decreasing [resp. strongly increasing] solution of
equation (5.1).



JJ J I II

Go back

Full Screen

Close

Quit

We now assume that p ∈ RV(α) and q ∈ RV(−1) and seek positive solutions x(t) of (5.1) such
that x(t) and p(t)|x′(t)|α are slowly varying. Then, by applying Corollary 3.1 and Corollary 4.1
to (5.2) and (5.3), respectively, we obtain the following proposition concerning the existence and
asymptotic behavior of strongly monotone solutions of equation (5.1) in the framework of slowly
varying functions.

Proposition 5.1. Let p ∈ RV(α) and q ∈ RV(−1) and suppose that p(t)−1/α ∼ q(t) as t →
∞.
(i) Equation (5.1) possesses strongly decreasing solutions which are slowly varying if and only

if p(t)−1/α and q(t) are integrable on [a,∞) and in that case the asymptotic behavior of any
such solution x(t) is governed by the unique formula

x(t) ∼
[

(α− β)α+1

α(α+ 1)α(β + 1)

(∫ ∞
t

p(s)−
1
α ds

)α+1] 1
α−β

, t→∞.(5.4)

(ii) Equation (5.1) possesses strongly increasing solutions which are slowly varying if and only if
p(t)−1/α and q(t) are non-integrable on [a,∞) and in that case the asymptotic behavior of any
such solution x(t) is governed by the unique formula

x(t) ∼
[

(α− β)α+1

α(α+ 1)α(β + 1)

(∫ t

a

p(s)−
1
α ds

)α+1] 1
α−β

, t→∞.(5.5)

We notice that the asymptotic analysis of equation (5.1) in the framework of regularly varying
functions has just begun. See, for example, the paper [5] in which the special case with p(t) ≡ 1
of (5.1) was studied. Nothing seems to be known about regularly varying solutions of (5.1) with
general positive p(t), and our observation could be a clue to a comprehensive study of generalized
Thomas-Fermi differential equations by means of regular variation.
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