

PRE-IMAGE ENTROPY FOR MAPS ON NONCOMPACT TOPOLOGICAL SPACES

LEI LIU

ABSTRACT. We propose a new definition of pre-image entropy for continuous maps on noncompact topological spaces, investigate fundamental properties of the new pre-image entropy, and compare the new pre-image entropy with the existing ones. The defined pre-image entropy generates that of Cheng and Newhouse. Yet, it holds various basic properties of Cheng and Newhouse's pre-image entropy, for example, the pre-image entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have the same pre-image entropy, the pre-image entropy of the induced hyperspace system is larger than or equal to that of the original system, and in particular this new pre-image entropy coincides with Cheng and Newhouse's pre-image entropy for compact systems.

1. INTRODUCTION

The concepts of entropy are useful for studying topological and measure-theoretic structures of dynamical systems, that is, topological entropy (see [1, 3, 4]) and measure-theoretic entropy (see [8, 13]). For instance, two conjugate systems have the same entropy and thus entropy is a numerical invariant of the class of conjugated dynamical systems. The theory of expansive dynamical systems has been closely related to the theory of topological entropy [6, 12, 19]. Entropy and chaos are

Go back

Full Screen

Close

Received August 24, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 54H20, 28D20.

Key words and phrases. Pre-image entropy; Locally compact space; Alexandroff compactification; Hyperspace dynamical system.

Supported by the Natural Science Foundation of Henan Province (122300410427), PR China.

closely related, for example, a continuous map of interval is chaotic if and only if it has a positive topological entropy [2].

In [10], Hurley introduced several other entropy-like invariants for noninvertible maps. One of these, which Nitecki and Przytycki [16] called pre-image branch entropy (retaining Hurley's notation), distinguishes points according to the branches of the inverse map. Cheng and Newhouse [7] further extended the concept of topological entropy of a continuous map and gave the concept of pre-image entropy for compact dynamical systems. Several important pre-image entropy invariants, such as pointwise pre-image, pointwise branch entropy, partial pre-image entropy, and bundle-like pre-image entropy, etc., have been introduced and their relationships with topological entropy have been established. Zhang, Zhu and He [22] extended and studied some entropy-like invariants for the non-autonomous discrete dynamical systems given by a sequence of continuous self-maps of a compact topological space as mentioned above.

This paper investigates a more general definition of pre-image entropy for continuous maps defined on noncompact topological spaces and explore the properties of such pre-image entropy. This definition generalizes that of Cheng and Newhouse's. Moreover, we have proved that the pre-image entropy defined in this paper holds most properties of the pre-image entropy under Cheng and Newhouse's definition, for example, for compact systems, this new pre-image entropy coincides with the pre-image entropy defined by Cheng and Newhouse's, the defined pre-image entropy (over noncompact topological spaces) either retains the fundamental properties of pre-image entropy (over compact topological spaces) or has similar properties, the pre-image entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have the same pre-image entropy, the pre-image entropy of an autohomeomorphism from R onto itself is 0, and the pre-image entropy of the induced hyperspace map is at least that of the original mapping.

Quit

Go back

Full Screen

Close

2. The New Definition of pre-image entropy and its general properties

Let (X, d) be an arbitrary metric space and $f: X \to X$ be a continuous mapping. Then the pair (X, f) is said to be a topological dynamical system. If X is compact, (X, f) is called a compact dynamical system. Let \mathbb{N} denote the set of all positive integers and let $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$.

Definition 2.1 ([7]). Let (X, d) be a compact metric space and $f: X \to X$ be a continuous map and let $\varepsilon > 0$ and $n \in \mathbb{N}$. Then

$$h_{\rm pre}(f) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in X, k \ge n} r(n, \varepsilon, f^{-k}(x), f)$$

is called the pre-image entropy of f, where $r(n, \varepsilon, f^{-k}(x), f)$ is the maximal cardinality of (n, ε) -separated subsets of $f^{-k}(x)$.

Note that if f is a homeomorphism, then $h_{\text{pre}}(f) = 0$. When X needs to be explicitly mentioned, we write $h_{\text{pre}}(f, X)$ instead of $h_{\text{pre}}(f)$.

Now, we begin our process to introduce our new definition of pre-image entropy. Let (X, f) be a topological dynamical system, where X is an arbitrary topological space with metric d and f is a continuous self-map of the metric space (X, d). Let $n \in \mathbb{N}$. Define the metric $d_{f,n}$ on X by

$$d_{f,n}(x,y) = \max_{0 \le j < n} d(f^j(x), f^j(y)).$$

A set $E \subseteq X$ is an (n, ε) -separated set if for any $x \neq y$ in E, one has $d_{f,n}(x, y) > \varepsilon$. Given a subset $K \subseteq X$, we define the quantity $r(n, \varepsilon, K, f)$ to be the maximal cardinality of (n, ε, K, f) -separated subset of K. A subset $E \subseteq K$ is an (n, ε, K) -spanning set if for every $x \in K$, there is a $y \in E$ such that $d_{f,n}(x, y) \leq \varepsilon$. Let $s(n, \varepsilon, K, f)$ be the minimal cardinality of any (n, ε, K, f) -spanning

set. Uniform continuity of f^j for $0 \le j < n$, guarantees that $r(n, \varepsilon, K, f)$ and $s(n, \varepsilon, K, f)$ are both finite for all $n, \varepsilon > 0$. It is a standard that for any subset $K \subseteq X$,

(2.1)
$$s(n,\varepsilon,K,f) \le r(n,\varepsilon,K,f) \le s\left(n,\frac{\varepsilon}{2},K,f\right).$$

Next, using techniques as in Bowen [5], we have the following. If $n_1, n_2, l \in \mathbb{N}$ with $l \ge n_1$, then

(2.2)
$$r(n_1 + n_2, \varepsilon, f^{-l}(K), f) \leq s\left(n_1, \frac{\varepsilon}{2}, f^{-l}(K), f\right) s\left(n_2, \frac{\varepsilon}{2}, f^{-l+n_1}(K), f\right)$$
$$\leq r\left(n_1, \frac{\varepsilon}{2}, f^{-l}(K), f\right) r\left(n_2, \frac{\varepsilon}{2}, f^{-l+n_1}(K), f\right)$$

By K(X, f), denote the set of all f-invariant nonempty compact subsets of X, that is, $K(X, f) = \{F \subseteq X : F \neq \emptyset, F \text{ is compact and } f(F) \subseteq F\}$. If X is compact, it follows from $f(X) \subseteq X$ that $K(X, f) \neq \emptyset$. However, when X is noncompact, K(X, f) could be empty. The translation $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x + 1$ is such an example. Another example is $f : (0, \infty) \to (0, \infty)$, where f(x) = 2x and $(0, \infty)$ has the subspace topology of \mathbb{R} .

Definition 2.2. Let (X, f) be a topological dynamical system, where (X, d) is a metric space and let $\varepsilon > 0$ and $n \in \mathbb{N}$. For $F \in K(X, f)$,

$$h_{\rm pre}^*(f|_F,F) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in F, k \ge n} r(n,\varepsilon,(f|_F)^{-k}(x),f|_F)$$

is called the pre-image entropy of f on F, where $f|_F \colon F \to F$ is the induced map of f, that is, for any $x \in F$, $f|_F(x) = f(x)$.

Remark 1. By Definition 2.2, if $F \in K(X, f)$ and $x \in F$, then $f(F) \subseteq F$ and $(f|_F)^{-k}(x) \subseteq F$. Furthermore, we have $f|_F \colon F \to F$ is a uniformly continuous mapping. Hence, $r(n, \varepsilon, (f|_F)^{-k}(x), f|_F)$ is finite for every $n \in \mathbb{N}$ and $\varepsilon > 0$. Moreover, by Definition 2.1, we have $h^*_{\text{pre}}(f|_F, F) = h_{\text{pre}}(f|_F)$.

Theorem 2.1. Let (X, f) be a topological dynamical system where (X, d) is a metric space. For $F_1, F_2 \in K(X, f)$ with $F_1 \subseteq F_2$, the inequality $h^*_{\text{pre}}(f|_{F_1}, F_1) \leq h^*_{\text{pre}}(f|_{F_2}, F_2)$ holds.

Proof. Let $\varepsilon > 0$ and $n, k \in \mathbb{N}$ with $k \ge n$, and let $x \in F_1$ and $E \subseteq (f|_{F_1})^{-k}(x)$ be an $(n, \varepsilon, f|_{F_1})^{-k}(x), f|_{F_1}$ -separated subset with the maximal cardinality. Let $\operatorname{card}(E) = m$, that is, $r(n, \varepsilon, (f|_{F_1})^{-k}(x), f|_{F_1}) = m$. Since $x \in F_1$ and $F_1 \subseteq F_2$, then $x \in F_2$ and $(f|_{F_1})^{-k}(x) \subseteq F_1$. Furthermore, we have $(f|_{F_1})^{-k}(x) \subseteq (f|_{F_2})^{-k}(x)$ and $(f|_{F_1})^{-k}(x) \subseteq F_2$. Hence, E is an $(n, \varepsilon, f|_{F_2})^{-k}(x), f|_{F_2}$ -separated subset of $(f|_{F_2})^{-k}(x)$. Therefore, $r(n, \varepsilon, (f|_{F_2})^{-k}(x)) \ge m$, that is,

$$r(n,\varepsilon,(f|_{F_1})^{-k}(x),f|_{F_1}) \le r(n,\varepsilon,(f|_{F_2})^{-k}(x),f|_{F_2}).$$

Furthermore, we have

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in F_1, k \ge n} r(n, \varepsilon, (f|_{F_1})^{-k}(x), f|_{F_1})$$

$$\leq \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in F_2, k \ge n} r(n, \varepsilon, (f|_{F_2})^{-k}(x), f|_{F_2}).$$

Therefore, $h_{\text{pre}}^*(f|_{F_1}, F_1) \le h_{\text{pre}}^*(f|_{F_2}, F_2).$

Definition 2.3. Let (X, f) be a topological dynamical system, where (X, d) is a metric space. When $K(X, f) \neq \emptyset$, define

$$h_{\text{pre}}^{*}(f) = \sup_{F \in K(X,f)} \{h_{\text{pre}}^{*}(f|_{F},F)\}$$

where the supremum is taken over F of K(X, f). When $K(X, f) = \emptyset$, define $h_{\text{pre}}^*(f) = 0$. $h_{\text{pre}}^*(f)$ is called the pre-image entropy of f.

Proposition 2.1. $h_{\text{pre}}^*(f)$ is independent of the choice of metric on X.

Proof. We only prove that $h_{\text{pre}}^*(f|_F, F)$ is independent of the choice of metric on X for every $F \in K(X, f)$. Let d_1 and d_2 be two metrics on X. Then, by compactness of F and $f|_F \colon F \to F$, for every $\varepsilon > 0$, there is $\delta > 0$ such that for all $x, y \in F$, if $d_1(x, y) < \delta$, then $d_2(x, y) < \varepsilon$. It follows that $r(n, \varepsilon, (f|_F)^{-k}(x), f|_F, d_2) \leq r(n, \delta, (f|_F)^{-k}(x), f|_F, d_1)$ for all $x \in F$, $\varepsilon > 0$ and for every $n \in \mathbb{N}$ with $k \geq n$. This shows that $h_{\text{pre}}^*(f|_F, F, \varepsilon, d_2) \leq h_{\text{pre}}^*(f|_F, F, \delta, d_1)$. Letting $\delta \to 0$, $h_{\text{pre}}^*(f|_F, F, \varepsilon, d_2) \leq h_{\text{pre}}^*(f|_F, F, d_1)$ holds. Now, letting $\varepsilon \to 0$, $h_{\text{pre}}^*(f|_F, F, d_2) \leq h_{\text{pre}}^*(f|_F, F, d_1) = h_{\text{pre}}^*(f|_F, F, d_2)$.

The next theorem indicates the concept of pre-image entropy $h_{\text{pre}}^*(f)$ defined above, generating that of Cheng and Newhouse [7], that is, $h_{\text{pre}}^*(f)$ coincides with $h_{\text{pre}}(f)$ when X is compact. Recall that $h_{\text{pre}}(f)$ is defined for compact dynamical systems only while in the preceding section, $h_{\text{pre}}^*(f)$ is defined for arbitrary topological spaces.

Theorem 2.2. Let (X, f) be a compact topological dynamical system, where (X, d) is a metric space. Then $h_{\text{pre}}^*(f) = h_{\text{pre}}(f, X)$.

Proof. Since X is compact and $f(X) \subseteq X$, we have $X \in K(X, f)$ implying $K(X, f) \neq \emptyset$. Thus from Definition 2.3, $h_{\text{pre}}^*(f) = \sup_{F \in K(X, f)} \{h_{\text{pre}}^*(f|_F, F)\}$. By Theorem 2.1, for any $F \in K(X, f)$, it holds $h_{\text{pre}}^*(f|_F, F) \leq h_{\text{pre}}^*(f, X)$, that is, the supremum is achieved when F = X. Recall the definitions of $h_{\text{pre}}^*(f, X)$ and $h_{\text{pre}}(f, X)$, that is,

$$h_{\text{pre}}^*(f,X) = h_{\text{pre}}^*(f|_X,X) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in X, k \ge n} r(n,\varepsilon,(f|_X)^{-k}(x),f|_X)$$
$$= \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in X, k \ge n} r(n,\varepsilon,f^{-k}(x),f)$$

and

$$h_{\rm pre}(f,X) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in X, k \ge n} r(n,\varepsilon, f^{-k}(x), f)$$

Hence, we have $h^*_{\text{pre}}(f, X) = h_{\text{pre}}(f, X)$. So, from the previous proved equality $h^*_{\text{pre}}(f) = h^*_{\text{pre}}(f, X)$, we conclude $h_{\text{pre}}^*(f) = h_{\text{pre}}(f, X)$.

From Definition 2.3, $h_{\text{pre}}^*(f)$ may be $+\infty$. The following example is given.

Example 2.1. Let $(\sum_{\mathbb{Z}_+}, \sigma)$ be one-sided infinite symbolic dynamics, $\sum_{\mathbb{Z}_+} = \{x = (x_n)_{n=0}^{\infty} :$ $x_n \in \mathbb{Z}_+$ for every n, $\sigma(x_0, x_1, x_2, ...) = (x_1, x_2, ...)$. Then $h_{\text{pre}}^*(\sigma)$ is $+\infty$.

Considering \mathbb{Z}_+ as a discrete space and putting product topology on $\sum_{\mathbb{Z}_+}$, an admissible metric ρ on the space $\sum_{\mathbb{Z}_+}$ is defined by

$$\rho(x,y) = \sum_{n=0}^{\infty} \frac{d(x_n, y_n)}{2^n},$$

where

$$d(x_n, y_n) = \begin{cases} 0 & \text{if } x_n = y_n \\ 1 & \text{if } x_n \neq y_n \end{cases}$$

for $x = (x_0, x_1, \ldots)$, $y = (y_0, y_1, \ldots) \in \sum_{\mathbb{Z}_+}$. Then $\sum_{\mathbb{Z}_+}$ is a noncompact metric space. Let $p \in \mathbb{N}$ and $\sum_p = \{x = (x_n)_{n=0}^{\infty} : x_n \in \{0, 1, \ldots, p-1\}$ for every $n\}$. Then we have

 $\sum_{p} \subseteq \sum_{\mathbb{Z}_{+}}$. By Robinson [18] and Zhou [23], \sum_{p} is a compact space and $\sigma(\sum_{p}) \subseteq \sum_{p}$. Hence

 $\sum_{p} \in K(\sum_{\mathbb{Z}_{+}}, \sigma)$. Furthermore, we have $h_{\text{pre}}^{*}(\sigma) \geq h_{\text{pre}}^{*}(\sigma|_{\sum_{p}}, \sum_{p})$ from Definition 2.3.

Full Screen

Go back

••

Close

By Nitecki [17] and Cheng-Newhouse [7], $h_{\text{pre}}(\sigma|_{\sum_p}) = \log p$. By Definition 2.3, we have $h_{\text{pre}}^*(\sigma|_{\sum_p}, \sum_p) = h_{\text{pre}}(\sigma|_{\sum_p})$. Hence, $h_{\text{pre}}^*(\sigma) \ge \log p$. Since p is an arbitrary positive integer, it implies $h_{\text{pre}}^*(\sigma) = +\infty$.

3. Fundamental properties and main results of the pre-image entropy

Proposition 3.1. Let (X, d) be a metric space and id be the identity map from X onto itself. Then for the dynamical system (X, id), we have $h^*_{pre}(id) = 0$.

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. For any $F \in K(X, \mathrm{id})$ and $x \in F$, $k \ge n$, we have $r(n, \varepsilon, (\mathrm{id}|_F)^{-k}(x), \mathrm{id}|_F) = r(n, \varepsilon, \{x\}, \mathrm{id}|_F)$. Hence, $r(n, \varepsilon, (\mathrm{id}|_F)^{-k}(x), \mathrm{id}|_F) \le 1$. Then

$$h_{\rm pre}^*(\operatorname{id}|_F, F) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log \sup_{x \in F, k \ge n} r(n, \varepsilon, (\operatorname{id}|_F)^{-k}(x), \operatorname{id}|_F) = 0.$$

It follows from Definitions 2.3 that $h_{\text{pre}}^*(\text{id}) = \sup_{F \in K(X,f)} \{h_{\text{pre}}^*(\text{id}|_F, F)\} = 0.$

Let (X, f) and (Y, g) be two topological dynamical systems. Then, (X, f) is an extension of (Y, g), or (Y, g) is a factor of (X, f) if there exists a surjective continuous map $\pi \colon X \to Y$ (called a factor map) such that $\pi \circ f(x) = g \circ \pi(x)$ for every $x \in X$. If further, π is a homeomorphism, then (X, f) and (Y, g) are said to be topologically conjugate and the homeomorphism π is called a conjugate map.

Let (X, f) and (Y, g) be two topological dynamical systems, where (X, d_1) and (Y, d_2) are metric spaces. For the product space $X \times Y$, define a map $f \times g \colon X \times Y \to X \times Y$ by $(f \times g)(x, y) = (f(x), g(y))$. This map $f \times g$ is continuous and $(X \times Y, f \times g)$ forms a topological dynamical system.

Given $X \times Y$, the metric

$$d((x_1, y_1), (x_2, y_2)) = \max\{d_1(x_1, x_2), d_2(y_1, y_2)\}.$$

Theorem 3.1. ([7, Theorem 2.1]) Let $f: X \to X$ and $g: Y \to Y$ be continuous self-maps of the compact metric spaces X, Y, respectively. Then

- (1) (power rule) for any $m \in \mathbb{N}$, we have $h_{\text{pre}}(f^m) = m \cdot h_{\text{pre}}(f)$;
- (2) (product rule) $h_{\text{pre}}(f \times g) = h_{\text{pre}}(f) + h_{\text{pre}}(g);$
- (3) (topological invariance) if f is topologically conjugate to g, then $h_{\text{pre}}(f) = h_{\text{pre}}(g)$.

Let $F_x \in K(X, f)$ and $F_y \in K(Y, g)$. By Definition 2.1, we have $h_{\text{pre}}^*(f|_{F_x}, F_x) = h_{\text{pre}}(f|_{F_x})$ and $h_{\text{pre}}^*(g|_{F_y}, F_y) = h_{\text{pre}}(g|_{F_y})$. Furthermore, we have the following corollary.

Corollary 3.1. Let $f: X \to X$ and $g: Y \to Y$ be continuous self-maps of the metric spaces X, Y, respectively. Let $F_x \in K(X, f)$ and $F_y \in K(Y, g)$. Then

- (1) (power rule) for any $m \in \mathbb{N}$, we have $h_{\text{pre}}^*(f^m|_{F_x}, F_x) = m \cdot h_{\text{pre}}^*(f|_{F_x}, F_x)$;
- (2) (product rule) $h_{\text{pre}}^*(f \times g|_{F_x \times F_y}, F_x \times F_y) = h_{\text{pre}}^*(f|_{F_x}, F_x) + h_{\text{pre}}^*(g|_{F_y}, F_y);$
- (3) (topological invariance) if f is topologically conjugate to g and π is their conjugate map, then $h_{\text{pre}}^*(f|_{F_x}, F_x) = h_{\text{pre}}^*(g|_{\pi(F_x)}, \pi(F_x)).$

Proposition 3.2. For any $m \in \mathbb{N}$, $h_{\text{pre}}^*(f^m) \ge m \cdot h_{\text{pre}}^*(f)$. When $K(X, f) = K(X, f^m)$, $h_{\text{pre}}^*(f^m) = m \cdot h_{\text{pre}}^*(f)$.

Proof. If $K(X, f) = \emptyset$, then $h_{\text{pre}}^*(f) = 0$, thus $h_{\text{pre}}^*(f^m) \ge m \cdot h_{\text{pre}}^*(f)$. If $K(X, f) \ne \emptyset$, then $K(X, f) \subseteq K(X, f^m)$. For any $F \in K(X, f)$, thus $F \in K(X, f^m)$. By Corollary 3.1 (1),

h

$$_{\text{pre}}^{*}(f^{m}|_{F},F) = h_{\text{pre}}^{*}((f|_{F})^{m},F) = m \cdot h_{\text{pre}}^{*}(f|_{F},F). \text{ Then}$$

$$h_{\text{pre}}^{*}(f^{m}) = \sup_{L \in K(X,f^{m})} \{h_{\text{pre}}^{*}(f^{m}|_{L},L)\}$$

$$\geq \sup_{F \in K(X,f)} \{h_{\text{pre}}^{*}(f^{m}|_{F},F)\} = m \cdot \sup_{F \in K(X,f)} \{h_{\text{pre}}^{*}(f|_{F},F)$$

$$= m \cdot h_{\text{pre}}^{*}(f).$$

Hence, $h_{\text{pre}}^*(f^m) \ge m \cdot h_{\text{pre}}^*(f)$. Next, we show that when $K(X, f) = K(X, f^m)$, the equality holds, that is, $h_{\text{pre}}^*(f^m) = m \cdot h_{\text{pre}}^*(f)$. Consider two cases.

Case 1. $K(X, f) = K(X, f^m) = \emptyset$. By applying Definition 2.3, we have $h^*_{\text{pre}}(f^m) = m \cdot h^*_{\text{pre}}(f) = 0$.

Case 2. $K(X, f) = K(X, f^m) \neq \emptyset$. For any $F \in K(X, f) = K(X, f^m)$, we have $h^*_{\text{pre}}(f^m|_F, F) = h^*_{\text{pre}}((f|_F)^m, F) = m \cdot h^*_{\text{pre}}(f|_F, F)$. Then

$$h_{\text{pre}}^{*}(f^{m}) = \sup_{F \in K(X, f^{m})} \{h_{\text{pre}}^{*}(f^{m}|_{F}, F)\} = \sup_{F \in K(X, f)} \{h_{\text{pre}}^{*}(f^{m}|_{F}, F)\}$$
$$= m \cdot \sup_{F \in K(X, f)} \{h_{\text{pre}}^{*}(f|_{F}, F)\} = m \cdot h_{\text{pre}}^{*}(f).$$

 Go back

 Full Screen

 Close

Quit

Lemma 3.1. ([14]) Let (X, f) and (Y, g) be two topological dynamical systems. Let $P_x: X \times Y \to X$ and $P_y: X \times Y \to Y$ be the projections on X and Y, respectively. If $F \in K(X \times Y, f \times g)$, then $P_x(F) \in K(X, f)$, $P_y(F) \in K(Y, g)$ and $F \subseteq P_x(F) \times P_y(F)$.

Proposition 3.3. Let (X, f) and (Y, g) be two topological dynamical systems, where X and Y are two metric spaces. If $K(X \times Y, f \times g) \neq \emptyset$, then $h_{\text{pre}}^*(f \times g) = h_{\text{pre}}^*(f) + h_{\text{pre}}^*(g)$.

Proof. Recall the projections $P_x \colon X \times Y \to X$ and $P_y \colon X \times Y \to Y$. Since $K(X \times Y, f \times g) \neq \emptyset$, then for any $F \in K(X \times Y, f \times g)$, by Lemma 3.1, $P_x(F) \in K(X, f)$, $P_y(F) \in K(Y, g)$ and $F \subseteq P_x(F) \times P_y(F)$. Denote $P_x(F)$ by F_x and $P_y(F)$ by F_y . By Theorem 2.1, $h_{\text{pre}}^*(f \times g|_{F_x \times F_y}, F_x \times F_y)$. From Corollary 3.1 (2), we have $h_{\text{pre}}^*(f \times g|_{F_x \times F_y}, F_x \times F_y) = h_{\text{pre}}^*(f|_{F_x}, F_x) + h_{\text{pre}}^*(g|_{F_y}, F_y)$. Then

$$\begin{split} h_{\text{pre}}^{*}(f \times g) &= \sup\{h_{\text{pre}}^{*}(f \times g|_{F}, F) : F \in K(X \times Y, f \times g)\} \\ &\leq \sup\{h_{\text{pre}}^{*}(f \times g|_{F_{x} \times F_{y}}, F_{x} \times F_{y}) : F_{x} \in K(X, f) \text{ and } F_{y} \in K(Y, g)\} \\ &\leq \sup\{h_{\text{pre}}^{*}(f|_{F_{x}}, F_{x}) : F_{x} \in K(X, f)\} \\ &+ \sup\{h_{\text{pre}}^{*}(f|_{F_{y}}, F_{y}) : F_{y} \in K(Y, g)\} \\ &= h_{\text{pre}}^{*}(f) + h_{\text{pre}}^{*}(g). \end{split}$$

We prove the converse inequality. Let $F_x \in K(X, f)$ and $F_y \in K(Y, g)$. By Corollary 3.1 (2), $h_{\text{pre}}^*(f \times g|_{F_x \times F_y}, F_x \times F_y) = h_{\text{pre}}^*(f|_{F_x}, F_x) + h_{\text{pre}}^*(g|_{F_y}, F_y)$. Then

$$\begin{split} h_{\rm pre}^{*}(f \times g) &= \sup\{h_{\rm pre}^{*}(f \times g|_{F}, F) : F \in K(X \times Y, f \times g)\}\\ &\geq \sup\{h_{\rm pre}^{*}(f \times g|_{F_{X} \times F_{y}}, F_{X} \times F_{y}) : F_{x} \in K(X, f) \text{ and } F_{y} \in K(Y, g)\}\\ &= \sup\{h_{\rm pre}^{*}(f|_{F_{x}}, F_{x})\\ &+ h_{\rm pre}^{*}(g|_{F_{y}}, F_{y}) : F_{x} \in K(X, f) \text{ and } F_{y} \in K(Y, g)\}\\ &= \sup\{h_{\rm pre}^{*}(f|_{F_{x}}, F_{x}) : F_{x} \in K(X, f)\}\\ &+ \sup\{h_{\rm pre}^{*}(f|_{F_{y}}, F_{y}) : F_{y} \in K(Y, g)\}\\ &= h_{\rm pre}^{*}(f) + h_{\rm pre}^{*}(g). \end{split}$$

Definition 3.1. Let (X, f) be a topological dynamical system. If $\Lambda \subseteq X$ and $f(\Lambda) \subseteq \Lambda$, then $(\Lambda, f|_{\Lambda})$ is said to be a topological subsystem of (X, f), or simply a subsystem of (X, f).

Remark 2. In above definition, Λ is not necessarily compact or closed. In the literature of dynamics, many authors assume subsystems to be compact or closed.

Theorem 3.2. Let $(\Lambda, f|_{\Lambda})$ be a subsystem of (X, f), where X is a metric space. Then $h^*_{\text{pre}}(f|_{\Lambda}) \leq h^*_{\text{pre}}(f)$.

Proof. If $K(\Lambda, f|_{\Lambda}) = \emptyset$, it follows from Definition 2.3 that $h_{\text{pre}}^*(f|_{\Lambda}) = 0$, thus $h_{\text{pre}}^*(f|_{\Lambda}) \leq h_{\text{pre}}^*(f)$. If $K(\Lambda, f|_{\Lambda}) \neq \emptyset$, then $K(\Lambda, f|_{\Lambda}) \subseteq K(X, f)$. For any $F \in K(\Lambda, f|_{\Lambda})$, we have $h_{\text{pre}}^*((f|_{\Lambda})|_F, F) = h_{\text{pre}}^*(f|_F, F)$. Hence,

$$h_{\text{pre}}^*(f|_{\Lambda}) = \sup_{F \in K(\Lambda, f|_{\Lambda})} h_{\text{pre}}^*((f|_{\Lambda})|_F, F) = \sup_{F \in K(\Lambda, f|_{\Lambda})} h_{\text{pre}}^*(f|_F, F)$$
$$\leq \sup_{F \in K(X, f)} h_{\text{pre}}^*(f|_F, F) = h_{\text{pre}}^*(f).$$

Theorem 3.3. Let (X, f) and (Y, g) be two topological dynamical systems, where X, Y are two metric spaces. If (X, f) and (Y, g) are topologically conjugate, that is, there exists a continuous map $\pi: X \to Y$ satisfying $\pi \circ f = g \circ \pi$, then $h_{\text{pre}}^*(f) = h_{\text{pre}}^*(g)$.

Proof. Consider two cases.

Case 1. $K(X, f) = \emptyset$. We claim $K(Y, g) = \emptyset$. If not, assume $K(Y, g) \neq \emptyset$. Then there exists $F \in K(Y, g) \neq \emptyset$ satisfying $g(F) \subseteq F$. As $\pi \colon X \to Y$ is a conjugate map, that is, $\pi \circ f = g \circ \pi$, the inverse π^{-1} is a conjugate map from (Y, g) and (X, f), that is, $\pi^{-1} \circ g = f \circ \pi^{-1}$. Note that $\pi^{-1}(F)$ is a nonempty compact subset of X and $f(\pi^{-1}(F)) = \pi^{-1}(g(F)) \subseteq \pi^{-1}(F)$. Hence, $\pi^{-1}(F) \in K(X, f)$, which contradicts $K(X, f) = \emptyset$. Therefore, $K(X, f) = \emptyset$ implies $K(Y, g) = \emptyset$.

Case 2. $K(X, f) \neq \emptyset$. We prove that for every $F \in \dot{K}(X, f)$, $2^{\dot{\pi}} : K(X, f) \to K(Y, g)$, $2^{\pi}(F) = \pi(F)$ is a one-to-one correspondence between K(X, f) and K(Y, g). Recall $\pi : X \to Y$ is a conjugate map, that is, $\pi \circ f = g \circ \pi$. Since $2^{\pi}(F) = \pi(F)$ and $g(\pi(F)) = \pi(f(F)) \subseteq \pi(F)$, so we have $\pi(F) \in K(Y, g)$. Hence, 2^{π} is well definite. Furthermore, for any $F_1, F_2 \in K(X, f)$ and $F_1 \neq F_2$, we have $2^{\pi}(F_1) = \pi(F_1)$, $2^{\pi}(F_2) = \pi(F_2)$ and $\pi(F_1) \neq \pi(F_2)$, thus $2^{\pi}(F_1) \neq 2^{\pi}(F_2)$. Moreover, for any $F \in K(Y, g)$, we have $\pi^{-1}(F) \in K(X, f)$ and $2^{\pi}(\pi^{-1}(F)) = \pi(\pi^{-1}(F)) = F$. Therefore, $2^{\pi} : K(X, f) \to K(Y, g)$ is bijective. We consider $F \in K(X, f)$, then $\pi : F \to \pi(F)$ is a conjugate map, that is, $\pi \circ f|_F = g|_{\pi(F)} \circ \pi$. By Corollary 3.1 (3), we have $h_{\text{pre}}(f|_F, F) = h_{\text{pre}}(g|_{\pi(F)}, \pi(F))$. Hence,

$$h_{\rm pre}^*(f) = \sup_{F \in K(X,f)} h_{\rm pre}^*(f|_F,F) = \sup_{F \in K(X,f)} h_{\rm pre}^*(g|_{\pi(F)},\pi(F)).$$

Since $2^{\pi} \colon K(X, f) \to K(Y, g)$ is a one-to-one correspondence, we have

$$\sup_{F \in K(X,f)} h^*_{\rm pre}(g|_{\pi(F)}, \pi(F)) = \sup_{F' \in K(Y,g)} h^*_{\rm pre}(g|_{F'}, F') = h^*_{\rm pre}(g).$$

Therefore, $h_{\text{pre}}^*(f) = h_{\text{pre}}^*(g)$.

4. Pre-image entropies of locally compact spaces and induced hyperspaces

Let R denote the one-dimensional Euclidean space and X denote a (noncompact) locally compact metrizable space, if not indicated otherwise. From Kelley's result [11], the Alexandroff compactification (that is, one-point compactification) $\omega X = X \cup \{\omega\}$ of X is also metrizable.

Definition 4.1 ([14]). Let $f: X \to X$ be a continuous map.

 Image: state of the state of t

Quit

- (1) If there exists an $a \in X$ such that for every sequence x_n of points of X, $\lim_{n \to \infty} f(x_n) = a$ holds whenever x_n does not have any convergent subsequence in X, then f is said to be convergent to a at infinity.
- (2) If for every sequence x_n of points of X, x_n does not have any convergent subsequence in X, $f(x_n)$ does not have any convergent subsequence, then f is said to be convergent to infinity at the infinity.
- (3) If (1) or (2) hold, f is said to be convergent at the infinity.

Theorem 4.1 ([21]). A continuous map $f: X \to X$ is convergent at the infinity if and only if f can be extended to a continuous map \overline{f} on the Alexandroff compactification ωX .

Theorem 4.2. Let (X, f) be a dynamical system. If f can be extended to a continuous map on the Alexandroff compactification ωX , that is, f is convergent at the infinity and $\bar{f}(\omega) = a$ or $\bar{f}(\omega) = \omega$ (refer to Definition 4.1), then $h_{\text{pre}}^*(f) \leq h_{\text{pre}}^*(\bar{f})$.

Proof. By the assumption, $(\omega X, \bar{f})$ is a topological dynamical system and (X, \bar{f}) is a subsystem of $(\omega X, \bar{f})$ (by a clear embedding). Hence, from Theorem 3.2, $h_{\text{pre}}^*(f) \leq h_{\text{pre}}^*(\bar{f})$.

Example 4.1. Let $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = 2x, $x \in \mathbb{R}$. Then $h_{\text{pre}}^*(f) = 0$.

From assumption, the only invariant compact subset of f is $\{0\}$, that is, $K(\mathbb{R}, f) = \{\{0\}\}$. Denote $F = \{0\}$. We prove $h_{\text{pre}}^*(f|_F, F) = 0$. In fact, $f: F \to F$ is a homeomorphism from compact space F onto itself. Hence, $h_{\text{pre}}(f|_F) = 0$. As $h_{\text{pre}}^*(f|_F, F) = h_{\text{pre}}(f|_F)$, which implies $h_{\text{pre}}^*(f|_F, F) = 0$. Therefore, by Definition 2.3, we have $h_{\text{pre}}^*(f) = 0$.

If \mathbb{R} is replaced by $(0, \infty)$ which is equipped with the subspace topology of \mathbb{R} , $K((0, \infty), f) = \emptyset$. It follows from Definition 2.3 that $h_{\text{pre}}^*(f) = 0$.

Theorem 4.3. If $f : \mathbb{R} \to \mathbb{R}$ is an autohomeomorphism, then $h^*_{\text{pre}}(f) = 0$.

Proof. Let x_n be a sequence of points of \mathbb{R} that does not have any convergent subsequence in \mathbb{R} . As f is a homeomorphism, the sequence $f(x_n)$ does not have any convergent subsequence in \mathbb{R} neither. By Theorem 4.1, f can be extended to a continuous map $\bar{f}: \omega \mathbb{R} \to \omega \mathbb{R}$ and $\bar{f}(\omega) = \omega$. Clearly, \bar{f} is also an autohomeomorphism. On the other hand, ωR is homeomorphic to the unit circle S^1 . Let $\pi: \omega \mathbb{R} \to S^1$ be such a homeomorphism. Define $g: S^1 \to S^1$ by $g = \pi \circ \bar{f} \circ \pi^{-1}$. Then, g is a homeomorphism and π gives the conjugace between $(\omega \mathbb{R}, \bar{f})$ and (S^1, g) . Hence, it follows from Theorem 3.3 that $h^*_{\text{pre}}(\bar{f}) = h^*_{\text{pre}}(g)$. Now, from the result given in Walters book [20], h(g) = 0, where h(g) denotes topological entropy of g. By [7], $h^*_{\text{pre}}(g) \leq h(g)$, which implies $h^*_{\text{pre}}(g) = 0$. Hence, $h^*_{\text{pre}}(\bar{f}) = 0$. From Theorem 4.2, $h^*_{\text{pre}}(f) \leq h^*_{\text{pre}}(\bar{f})$. Therefore, $h^*_{\text{pre}}(f) = 0$.

We investigate the pre-image entropy relation between a topological dynamical system and its induced hyperspace topological dynamical system. The hyperspace is employed with the Vietoris topology. Notice that if X is a noncompact metric space, the Vietoris topology is non-metrizable [15].

The Vietoris topology on 2^X , the family of all nonempty closed subsets of X, is generated by the base

$$v(U_1, U_2, \cdots, U_n) = \left\{ F \in 2^X : F \subseteq \bigcup_{i=1}^n U_i \text{ and } F \cap U_i \neq \emptyset \text{ for all } i \le n \right\}.$$

where U_1, U_2, \cdots, U_n are open subsets of X [9].

Let (X, f) be a topological dynamical system, where $f: X \to X$ is a closed mapping. The hyperspace map $2^f: 2^X \to 2^X$ is induced by f as follows: for every $F \in 2^X$, $2^f(F) = f(F)$. When f is a closed and continuous map, 2^f is well defined and it is continuous [11, 15], thus ensuring that $(2^X, 2^f)$ forms a topological dynamical system, i.e., the induced hyperspace topological dynamical system of (X, f).

By Michael's results [15], we have the following facts.

Go back

Full Screen

Close

Fact 1: If X is compact, then 2^X is compact.

Fact 2: If X is compact and Hausdorff, then 2^X is compact and Hausdorff.

Fact 3: $\pi: X \to 2^X$ defined by $\pi(x) = \{x\}$ for $x \in X$, is continuous. If X is compact and Hausdorff, then π is homeomorphic embedding and (X, f) and $(\pi(X), 2^f)$ are topologically conjugate.

Theorem 4.4. [14] Let (X, f) be a topological dynamical system, where X is Hausdorff and f is a closed map. If $F \in K(X, f)$, then $2^F \in K(2^X, 2^f)$. Hence, $(2^F, 2^f)$ is a subsystem of $(2^X, 2^f)$.

Theorem 4.5. Let (X, f) be a topological dynamical system, where X is Hausdorff and f is a closed map. Then $h_{\text{pre}}^*(2^f) \ge h_{\text{pre}}^*(f)$.

Proof. Case 1. $K(X, f) = \emptyset$. By Definition 2.3, we have $h_{\text{pre}}^*(f) = 0$. Hence, $h_{\text{pre}}^*(2^f) \ge h_{\text{pre}}^*(f)$. Case 2. $K(X, f) \neq \emptyset$. For $F \in K(X, f)$, it follows from Theorem 4.4 that $2^F \in K(2^X, 2^f)$. Define $\pi : F \to 2^F$ by $\pi(x) = \{x\}, x \in F$. From Fact 3 in the preceding paragraph of Theorem 4.4, (F, f) and $(\pi(F), 2^f)$ are topologically conjugate. From Cheng and Newhouse's result [7], $h_{\text{pre}}(f|_F, F) = h_{\text{pre}}(2^f|_{\pi(F)}, \pi(F))$. By Remark 1, $h_{\text{pre}}^*(f, F) = h_{\text{pre}}(f|_F, F)$ and $h_{\text{pre}}^*(2^f, \pi(F)) = h_{\text{pre}}(2^f|_{\pi(F)}, \pi(F))$, which imply $h_{\text{pre}}^*(f, F) = h_{\text{pre}}(2^f, \pi(F))$. Again, by the Fact 3, $\pi(F)$ is a compact subset of 2^X . On the other hand, from $2^f(\pi(F)) = \pi(f(F))$ and $f(F) \subseteq F$, we have $2^f(\pi(F)) = \pi(f(F)) \subseteq \pi(F)$, thus $\pi(F) \in K(2^X, 2^f)$. Furthermore, it follows from Definition 2.3 that $h_{\text{pre}}^*(2^f, \pi(F)) \leq h_{\text{pre}}^*(2^f)$ implying $h_{\text{pre}}^*(f, F) \leq h_{\text{pre}}^*(2^f)$. Therefore, $h_{\text{pre}}^*(f) = \sup_{F \in K(X, f)} \{h_{\text{pre}}^*(f|_F, F)\} \leq h_{\text{pre}}^*(2^f)$. □

Acknowledgment. The author is very grateful to the referee for her or his careful reading of this manuscript and helpful comments on this work.

- Adler R. L., Konheim A. G. and McAndrew, M. H. Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.
- Block L. S. and Coppel W. A., Dynamics in One Dimension. Lecture Notes in Mathematics, 1513, Springer Verlag, Berlin, 1992.
- 3. Bowen R., Topological entropy and axiom A, Proc. Symp. Pure Math, Amer. Math. Soc. 14 (1970), 23-42.
- 4. _____, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.
- 5. _____, Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972), 323-333.
- 6. Bowen R. and Walters P., Expansive one-parameter flows, J. Differ. Equat. 12 (1972), 180–193.
- 7. Cheng W. and Newhouse S. E., Pre-image entropy, Ergod. Th. Dynam. Sys. 25 (2005), 1091-1113.
- 8. Cornfeld I. P., Fomin S. V. and Sinai Y. G., Ergodic theory, Springer, Berlin, 1982.
- 9. Engelking R., General topology. PWN, Warszawa, 1977.
- 10. Hurley M., On topological entropy of maps, Ergod. Th. Dynam. Sys. 15 (1995), 557-568.
- 11. Kelley J. L., General topology, Addison-Wesley, Redwood City, 1989.
- Keynes H. B. and Sears M., Real-expansive flows and topological dimensions, Ergod. Theor. Dyn. Syst. 1 (1981), 179–195.
- 13. Kolmogorov A. N. and Tihomiorov Y. M., ε-Entropy and ε-capacity of sets in function spaces, Trans. Amer. Math. Soc. 17 (1961), 277–364.
- 14. Liu L., Wang Y. and Wei G., Topological entropy of continuous maps on topological spaces, Chaos, Solitons and Fractals. 39 (2009), 417–427.
- 15. Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- 16. Nitecki Z. and Przytycki F., Preimage entropy for mappings, Int. J. Bifurcation Chaos 9 (1999), 1815–1843.
- 17. Nitecki Z., Topological entropy and the preimage structure of maps, Real Anal. Exchange. 29 (2003/2004), 7–39.
- Robinson C., Dynamical systems: stability, symbolic dynamics, and chaos. 2nd ed. Boca Raton, FL: CRc Press Inc, 1999.
- Thomas R. F., Some fundamental properties of continuous functions and topological entropy, Pacific. J. Math. 141 (1990), 391–400.
- 20. Walters P., An introduction to ergodic theory. Springer Verlag, Berlin, 1982.

44 4 >

Go back

Full Screen

Close

- **21.** Wang Y., Wei G., Campbell W. H. and Bourquin S., A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos, Solitons and Fractals **41** (2009), 1708–1717.
- 22. Zhang J., Zhu Y. and He L., Preimage entropies of nonautonomous dynamical systems, Acta Mathematica Sinica 48 (2005), 693–702. (in Chinese)
- 23. Zhou Z. L., *Symbolic dynamical systems*. Shanghai Scientific and Technological Education Publishing House, Shanghai, 1997. (in Chinese)

Lei Liu, School of Mathematics and Information Science, Shangqiu Normal University, Shangqiu, Henan 476000, PR China, *e-mail*: mathliulei@163.com

