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PRE-IMAGE ENTROPY FOR MAPS

ON NONCOMPACT TOPOLOGICAL SPACES

LEI LIU

Abstract. We propose a new definition of pre-image entropy for continuous maps on noncompact

topological spaces, investigate fundamental properties of the new pre-image entropy, and compare the
new pre-image entropy with the existing ones. The defined pre-image entropy generates that of Cheng
and Newhouse. Yet, it holds various basic properties of Cheng and Newhouse’s pre-image entropy, for
example, the pre-image entropy of a subsystem is bounded by that of the original system, topologically
conjugated systems have the same pre-image entropy, the pre-image entropy of the induced hyperspace
system is larger than or equal to that of the original system, and in particular this new pre-image
entropy coincides with Cheng and Newhouse’s pre-image entropy for compact systems.

1. Introduction

The concepts of entropy are useful for studying topological and measure-theoretic structures of
dynamical systems, that is, topological entropy (see [1, 3, 4]) and measure-theoretic entropy (see
[8, 13]). For instance, two conjugate systems have the same entropy and thus entropy is a numerical
invariant of the class of conjugated dynamical systems. The theory of expansive dynamical systems
has been closely related to the theory of topological entropy [6, 12, 19]. Entropy and chaos are
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closely related, for example, a continuous map of interval is chaotic if and only if it has a positive
topological entropy [2].

In [10], Hurley introduced several other entropy-like invariants for noninvertible maps. One
of these, which Nitecki and Przytycki [16] called pre-image branch entropy (retaining Hurley’s
notation), distinguishes points according to the branches of the inverse map. Cheng and Newhouse
[7] further extended the concept of topological entropy of a continuous map and gave the concept of
pre-image entropy for compact dynamical systems. Several important pre-image entropy invariants,
such as pointwise pre-image, pointwise branch entropy, partial pre-image entropy, and bundle-like
pre-image entropy, etc., have been introduced and their relationships with topological entropy have
been established. Zhang, Zhu and He [22] extended and studied some entropy-like invariants for
the non-autonomous discrete dynamical systems given by a sequence of continuous self-maps of a
compact topological space as mentioned above.

This paper investigates a more general definition of pre-image entropy for continuous maps
defined on noncompact topological spaces and explore the properties of such pre-image entropy.
This definition generalizes that of Cheng and Newhouse’s. Moreover, we have proved that the
pre-image entropy defined in this paper holds most properties of the pre-image entropy under
Cheng and Newhouse’s definition, for example, for compact systems, this new pre-image entropy
coincides with the pre-image entropy defined by Cheng and Newhouse’s, the defined pre-image
entropy (over noncompact topological spaces) either retains the fundamental properties of pre-
image entropy (over compact topological spaces) or has similar properties, the pre-image entropy
of a subsystem is bounded by that of the original system, topologically conjugated systems have
the same pre-image entropy, the pre-image entropy of an autohomeomorphism from R onto itself
is 0, and the pre-image entropy of the induced hyperspace map is at least that of the original
mapping.



JJ J I II

Go back

Full Screen

Close

Quit

2. The new definition of pre-image entropy
and its general properties

Let (X, d) be an arbitrary metric space and f : X → X be a continuous mapping. Then the pair
(X, f) is said to be a topological dynamical system. If X is compact, (X, f) is called a compact
dynamical system. Let N denote the set of all positive integers and let Z+ = N∪ {0}.

Definition 2.1 ([7]). Let (X, d) be a compact metric space and f : X → X be a continuous
map and let ε > 0 and n ∈ N. Then

hpre(f) = lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈X,k≥n
r(n, ε, f−k(x), f)

is called the pre-image entropy of f , where r(n, ε, f−k(x), f) is the maximal cardinality of (n, ε)-
separated subsets of f−k(x).

Note that if f is a homeomorphism, then hpre(f) = 0. When X needs to be explicitly mentioned,
we write hpre(f,X) instead of hpre(f).

Now, we begin our process to introduce our new definition of pre-image entropy. Let (X, f) be
a topological dynamical system, where X is an arbitrary topological space with metric d and f is
a continuous self-map of the metric space (X, d). Let n ∈ N. Define the metric df,n on X by

df,n(x, y) = max
0≤j<n

d(f j(x), f j(y)).

A set E ⊆ X is an (n, ε)−separated set if for any x 6= y in E, one has df,n(x, y) > ε. Given a
subset K ⊆ X, we define the quantity r(n, ε,K, f) to be the maximal cardinality of (n, ε,K, f)-
separated subset of K. A subset E ⊆ K is an (n, ε,K)-spanning set if for every x ∈ K, there is a y ∈
E such that df,n(x, y) ≤ ε. Let s(n, ε,K, f) be the minimal cardinality of any (n, ε,K, f)-spanning
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set. Uniform continuity of f j for 0 ≤ j < n, guarantees that r(n, ε,K, f) and s(n, ε,K, f) are both
finite for all n, ε > 0. It is a standard that for any subset K ⊆ X,

s(n, ε,K, f) ≤ r(n, ε,K, f) ≤ s
(
n,
ε

2
,K, f

)
.(2.1)

Next, using techniques as in Bowen [5], we have the following.
If n1, n2, l ∈ N with l ≥ n1, then

r(n1 + n2, ε, f
−l(K), f) ≤ s

(
n1,

ε

2
, f−l(K), f

)
s
(
n2,

ε

2
, f−l+n1(K), f

)
≤ r

(
n1,

ε

2
, f−l(K), f

)
r
(
n2,

ε

2
, f−l+n1(K), f

)
.

(2.2)

By K(X, f), denote the set of all f -invariant nonempty compact subsets of X, that is, K(X, f) =
{F ⊆ X : F 6= ∅,F is compact and f (F ) ⊆ F}. If X is compact, it follows from f(X) ⊆ X
that K(X, f) 6= ∅. However, when X is noncompact, K(X, f) could be empty. The translation
f : R → R defined by x 7→ x + 1 is such an example. Another example is f : (0,∞) → (0,∞),
where f(x) = 2x and (0,∞) has the subspace topology of R.

Definition 2.2. Let (X, f) be a topological dynamical system, where (X, d) is a metric space
and let ε > 0 and n ∈ N. For F ∈ K(X, f),

h∗pre(f |F , F ) = lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈F,k≥n
r(n, ε, (f |F )−k(x), f |F )

is called the pre-image entropy of f on F , where f |F : F → F is the induced map of f , that is, for
any x ∈ F , f |F (x) = f(x).

Remark 1. By Definition 2.2, if F ∈ K(X, f) and x ∈ F , then f(F ) ⊆ F and (f |F )−k(x) ⊆ F .
Furthermore, we have f |F : F→F is a uniformly continuous mapping. Hence, r(n, ε, (f |F )−k(x), f |F )
is finite for every n ∈ N and ε > 0. Moreover, by Definition 2.1, we have h∗pre(f |F , F ) = hpre(f |F ).
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Theorem 2.1. Let (X, f) be a topological dynamical system where (X, d) is a metric space. For
F1, F2 ∈ K(X, f) with F1 ⊆ F2, the inequality h∗pre(f |F1

, F1) ≤ h∗pre(f |F2
, F2) holds.

Proof. Let ε > 0 and n, k ∈ N with k ≥ n, and let x ∈ F1 and E ⊆ (f |F1
)−k(x) be an

(n, ε, f |F1
)−k(x), f |F1

)-separated subset with the maximal cardinality. Let card(E) = m, that
is, r(n, ε, (f |F1)−k(x), f |F1) = m. Since x ∈ F1 and F1 ⊆ F2, then x ∈ F2 and (f |F1)−k(x) ⊆
F1. Furthermore, we have (f |F1)−k(x) ⊆ (f |F2)−k(x) and (f |F1)−k(x) ⊆ F2. Hence, E is an
(n, ε, f |F2

)−k(x), f |F2
)-separated subset of (f |F2

)−k(x). Therefore, r(n, ε, (f |F2
)−k(x)) ≥ m, that

is,

r(n, ε, (f |F1
)−k(x), f |F1

) ≤ r(n, ε, (f |F2
)−k(x), f |F2

).

Furthermore, we have

lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈F1,k≥n
r(n, ε, (f |F1

)−k(x), f |F1
)

≤ lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈F2,k≥n
r(n, ε, (f |F2

)−k(x), f |F2
).

Therefore, h∗pre(f |F1
, F1) ≤ h∗pre(f |F2

, F2). �

Definition 2.3. Let (X, f) be a topological dynamical system, where (X, d) is a metric space.
When K(X, f) 6= ∅, define

h∗pre(f) = sup
F∈K(X,f)

{h∗pre(f |F , F )},

where the supremum is taken over F of K(X, f). When K(X, f) = ∅, define h∗pre(f) = 0. h∗pre(f)
is called the pre-image entropy of f .

Proposition 2.1. h∗pre(f) is independent of the choice of metric on X.
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Proof. We only prove that h∗pre(f |F , F ) is independent of the choice of metric on X for every
F ∈ K(X, f). Let d1 and d2 be two metrics on X. Then, by compactness of F and f |F : F → F ,
for every ε > 0, there is δ > 0 such that for all x, y ∈ F , if d1(x, y) < δ, then d2(x, y) < ε. It
follows that r(n, ε, (f |F )−k(x), f |F , d2) ≤ r(n, δ, (f |F )−k(x), f |F , d1) for all x ∈ F , ε > 0 and for
every n ∈ N with k ≥ n. This shows that h∗pre(f |F , F, ε, d2) ≤ h∗pre(f |F , F, δ, d1). Letting δ → 0,
h∗pre(f |F , F, ε, d2) ≤ h∗pre(f |F , F, d1) holds. Now, letting ε → 0, h∗pre(f |F , F, d2) ≤ h∗pre(f |F , F, d1)
hols. Interchanging d1 and d2, it gives the opposite inequality, proving that h∗pre(f |F , F, d1) =
h∗pre(f |F , F, d2). �

The next theorem indicates the concept of pre-image entropy h∗pre(f) defined above, generating
that of Cheng and Newhouse [7], that is, h∗pre(f) coincides with hpre(f) when X is compact. Recall
that hpre(f) is defined for compact dynamical systems only while in the preceding section, h∗pre(f)
is defined for arbitrary topological spaces.

Theorem 2.2. Let (X, f) be a compact topological dynamical system, where (X, d) is a metric
space. Then h∗pre(f) = hpre(f,X).

Proof. Since X is compact and f(X) ⊆ X, we have X ∈ K(X, f) implying K(X, f) 6= ∅. Thus
from Definition 2.3, h∗pre(f) = sup

F∈K(X,f)

{h∗pre(f |F , F )}. By Theorem 2.1, for any F ∈ K(X, f),

it holds h∗pre(f |F , F ) ≤ h∗pre(f,X), that is, the supremum is achieved when F = X. Recall the
definitions of h∗pre(f,X) and hpre(f,X), that is,

h∗pre(f,X) = h∗pre(f |X , X) = lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈X,k≥n
r(n, ε, (f |X)−k(x), f |X)

= lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈X,k≥n
r(n, ε, f−k(x), f)
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and

hpre(f,X) = lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈X,k≥n
r(n, ε, f−k(x), f).

Hence, we have h∗pre(f,X) = hpre(f,X). So, from the previous proved equality h∗pre(f) = h∗pre(f,X),
we conclude h∗pre(f) = hpre(f,X). �

From Definition 2.3, h∗pre(f) may be +∞. The following example is given.

Example 2.1. Let (
∑

Z+
, σ) be one-sided infinite symbolic dynamics,

∑
Z+

= {x = (xn)∞n=0 :

xn ∈ Z+ for every n}, σ(x0, x1, x2, . . .) = (x1, x2, . . .). Then h∗pre(σ) is +∞.

Considering Z+ as a discrete space and putting product topology on
∑

Z+
, an admissible metric

ρ on the space
∑

Z+
is defined by

ρ(x, y) =

∞∑
n=0

d(xn, yn)

2n
,

where

d(xn, yn) =

 0 if xn = yn,

1 if xn 6= yn

for x = (x0, x1, . . .), y = (y0, y1, . . .) ∈
∑

Z+
. Then

∑
Z+

is a noncompact metric space.

Let p ∈ N and
∑
p = {x = (xn)∞n=0 : xn ∈ {0, 1, . . . , p − 1} for every n}. Then we have∑

p ⊆
∑

Z+
. By Robinson [18] and Zhou [23],

∑
p is a compact space and σ(

∑
p) ⊆

∑
p. Hence∑

p ∈ K(
∑

Z+
, σ). Furthermore, we have h∗pre(σ) ≥ h∗pre(σ|∑

p
,
∑
p) from Definition 2.3.
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By Nitecki [17] and Cheng-Newhouse [7], hpre(σ|∑
p
) = log p. By Definition 2.3, we have

h∗pre(σ|∑
p
,
∑
p) = hpre(σ|∑

p
). Hence, h∗pre(σ) ≥ log p. Since p is an arbitrary positive integer, it

implies h∗pre(σ) = +∞.

3. Fundamental properties and main results
of the pre-image entropy

Proposition 3.1. Let (X, d) be a metric space and id be the identity map from X onto itself.
Then for the dynamical system (X, id), we have h∗pre(id) = 0.

Proof. Let ε > 0 and n ∈ N. For any F ∈ K(X, id) and x ∈ F, k≥n, we have r(n, ε, (id |F )−k(x),
id |F ) = r(n, ε, {x}, id |F ). Hence, r(n, ε, (id |F )−k(x), id |F )≤1. Then

h∗pre(id |F , F ) = lim
ε→0

lim
n→∞

sup
1

n
log sup

x∈F,k≥n
r(n, ε, (id |F )−k(x), id |F ) = 0.

It follows from Definitions 2.3 that h∗pre(id) = sup
F∈K(X,f)

{h∗pre(id |F , F )} = 0. �

Let (X, f) and (Y, g) be two topological dynamical systems. Then, (X, f) is an extension of
(Y, g), or (Y, g) is a factor of (X, f) if there exists a surjective continuous map π : X → Y (called
a factor map) such that π ◦ f(x) = g ◦ π(x) for every x ∈ X. If further, π is a homeomorphism,
then (X, f) and (Y, g) are said to be topologically conjugate and the homeomorphism π is called
a conjugate map.

Let (X, f) and (Y, g) be two topological dynamical systems, where (X, d1) and (Y, d2) are metric
spaces. For the product space X × Y , define a map f × g : X × Y → X × Y by (f × g)(x, y) =
(f(x), g(y)). This map f×g is continuous and (X×Y, f×g) forms a topological dynamical system.
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Given X × Y , the metric

d((x1, y1), (x2, y2)) = max{d1(x1, x2), d2(y1, y2)}.

Theorem 3.1. ([7, Theorem 2.1]) Let f : X → X and g : Y → Y be continuous self-maps of
the compact metric spaces X, Y , respectively. Then

(1) (power rule) for any m ∈ N, we have hpre(fm) = m · hpre(f);

(2) (product rule) hpre(f × g) = hpre(f) + hpre(g);

(3) (topological invariance) if f is topologically conjugate to g, then hpre(f) = hpre(g).

Let Fx ∈ K(X, f) and Fy ∈ K(Y, g). By Definition 2.1, we have h∗pre(f |Fx
, Fx) = hpre(f |Fx

)
and h∗pre(g|Fy

, Fy) = hpre(g|Fy
). Furthermore, we have the following corollary.

Corollary 3.1. Let f : X → X and g : Y → Y be continuous self-maps of the metric spaces
X, Y , respectively. Let Fx ∈ K(X, f) and Fy ∈ K(Y, g). Then

(1) (power rule) for any m ∈ N, we have h∗pre(fm|Fx
, Fx) = m · h∗pre(f |Fx

, Fx);

(2) (product rule) h∗pre(f × g|Fx×Fy
, Fx × Fy) = h∗pre(f |Fx

, Fx) + h∗pre(g|Fy
, Fy);

(3) (topological invariance) if f is topologically conjugate to g and π is their conjugate map, then
h∗pre(f |Fx

, Fx) = h∗pre(g|π(Fx), π(Fx)).

Proposition 3.2. For any m ∈ N, h∗pre(fm) ≥ m · h∗pre(f). When K(X, f) = K(X, fm),
h∗pre(fm) = m · h∗pre(f).

Proof. If K(X, f) = ∅, then h∗pre(f) = 0, thus h∗pre(fm) ≥ m · h∗pre(f). If K(X, f) 6= ∅,
then K(X, f) ⊆ K(X, fm). For any F ∈ K(X, f), thus F ∈ K(X, fm). By Corollary 3.1 (1),
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h∗pre(fm|F , F ) = h∗pre((f |F )m, F ) = m · h∗pre(f |F , F ). Then

h∗pre(fm) = sup
L∈K(X,fm)

{h∗pre(fm|L, L)}

≥ sup
F∈K(X,f)

{h∗pre(fm|F , F )} = m · sup
F∈K(X,f)

{h∗pre(f |F , F )}

= m · h∗pre(f).

Hence, h∗pre(fm) ≥ m ·h∗pre(f). Next, we show that when K(X, f) = K(X, fm), the equality holds,
that is, h∗pre(fm) = m · h∗pre(f). Consider two cases.

Case 1. K(X, f) = K(X, fm) = ∅. By applying Definition 2.3, we have h∗pre(fm) = m ·
h∗pre(f) = 0.

Case 2. K(X, f) = K(X, fm) 6= ∅. For any F ∈ K(X, f) = K(X, fm), we have h∗pre(fm|F , F ) =
h∗pre((f |F )m, F ) = m · h∗pre(f |F , F ). Then

h∗pre(fm) = sup
F∈K(X,fm)

{h∗pre(fm|F , F )} = sup
F∈K(X,f)

{h∗pre(fm|F , F )}

= m · sup
F∈K(X,f)

{h∗pre(f |F , F )} = m · h∗pre(f).

�

Lemma 3.1. ([14]) Let (X, f) and (Y, g) be two topological dynamical systems. Let Px : X ×
Y → X and Py : X ×Y → Y be the projections on X and Y , respectively. If F ∈ K(X ×Y, f × g),
then Px(F ) ∈ K(X, f), Py(F ) ∈ K(Y, g) and F ⊆ Px(F )× Py(F ).

Proposition 3.3. Let (X, f) and (Y, g) be two topological dynamical systems, where X and Y
are two metric spaces. If K(X × Y, f × g) 6= ∅, then h∗pre(f × g) = h∗pre(f) + h∗pre(g).
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Proof. Recall the projections Px : X × Y → X and Py : X × Y → Y . Since K(X × Y, f ×
g) 6= ∅, then for any F ∈ K(X × Y, f × g), by Lemma 3.1, Px(F ) ∈ K(X, f), Py(F ) ∈ K(Y, g)
and F ⊆ Px(F ) × Py(F ). Denote Px(F ) by Fx and Py(F ) by Fy. By Theorem 2.1, h∗pre(f ×
g|F , F ) ≤ h∗pre(f×g|Fx×Fy

, Fx×Fy). From Corollary 3.1 (2), we have h∗pre(f×g|Fx×Fy
, Fx×Fy) =

h∗pre(f |Fx
, Fx) + h∗pre(g|Fy

, Fy). Then

h∗pre(f × g) = sup{h∗pre(f × g|F , F ) : F ∈ K(X × Y, f × g)}
≤ sup{h∗pre(f × g|Fx×Fy

, Fx × Fy) : Fx ∈ K(X, f) and Fy ∈ K(Y, g)}
≤ sup{h∗pre(f |Fx , Fx) : Fx ∈ K(X, f)}

+ sup{h∗pre(f |Fy , Fy) : Fy ∈ K(Y, g)}
= h∗pre(f) + h∗pre(g).

We prove the converse inequality. Let Fx ∈ K(X, f) and Fy ∈ K(Y, g). By Corollary 3.1 (2),
h∗pre(f × g|Fx×Fy , Fx × Fy) = h∗pre(f |Fx , Fx) + h∗pre(g|Fy , Fy). Then

h∗pre(f × g) = sup{h∗pre(f × g|F , F ) : F ∈ K(X × Y, f × g)}
≥ sup{h∗pre(f × g|Fx×Fy , Fx × Fy) : Fx ∈ K(X, f) and Fy ∈ K(Y, g)}
= sup{h∗pre(f |Fx

, Fx)

+ h∗pre(g|Fy
, Fy) : Fx ∈ K(X, f) and Fy ∈ K(Y, g)}

= sup{h∗pre(f |Fx
, Fx) : Fx ∈ K(X, f)}

+ sup{h∗pre(f |Fy , Fy) : Fy ∈ K(Y, g)}
= h∗pre(f) + h∗pre(g).

�
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Definition 3.1. Let (X, f) be a topological dynamical system. If Λ ⊆ X and f(Λ) ⊆ Λ, then
(Λ, f |Λ) is said to be a topological subsystem of (X, f), or simply a subsystem of (X, f).

Remark 2. In above definition, Λ is not necessarily compact or closed. In the literature of
dynamics, many authors assume subsystems to be compact or closed.

Theorem 3.2. Let (Λ, f |Λ) be a subsystem of (X, f), where X is a metric space. Then
h∗pre(f |Λ) ≤ h∗pre(f).

Proof. If K(Λ, f |Λ) = ∅, it follows from Definition 2.3 that h∗pre(f |Λ) = 0, thus h∗pre(f |Λ) ≤
h∗pre(f). If K(Λ, f |Λ) 6= ∅, then K(Λ, f |Λ) ⊆ K(X, f). For any F ∈ K(Λ, f |Λ), we have
h∗pre((f |Λ)|F , F ) = h∗pre(f |F , F ). Hence,

h∗pre(f |Λ) = sup
F∈K(Λ,f |Λ)

h∗pre((f |Λ)|F , F ) = sup
F∈K(Λ,f |Λ)

h∗pre(f |F , F )

≤ sup
F∈K(X,f)

h∗pre(f |F , F ) = h∗pre(f).

�

Theorem 3.3. Let (X, f) and (Y, g) be two topological dynamical systems, where X, Y are two
metric spaces. If (X, f) and (Y, g) are topologically conjugate, that is, there exists a continuous
map π : X → Y satisfying π ◦ f = g ◦ π, then h∗pre(f) = h∗pre(g).

Proof. Consider two cases.
Case 1. K(X, f) = ∅. We claim K(Y, g) = ∅. If not, assume K(Y, g) 6= ∅. Then there exists

F ∈ K(Y, g) 6= ∅ satisfying g(F ) ⊆ F . As π : X → Y is a conjugate map, that is, π ◦ f = g ◦ π,
the inverse π−1 is a conjugate map from (Y, g) and (X, f), that is, π−1 ◦ g = f ◦ π−1. Note
that π−1(F ) is a nonempty compact subset of X and f(π−1(F )) = π−1(g(F )) ⊆ π−1(F ). Hence,
π−1(F ) ∈ K(X, f), which contradicts K(X, f) = ∅. Therefore, K(X, f) = ∅ implies K(Y, g) = ∅.
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Similarly, we can prove that K(Y, g) = ∅ implies K(X, f) = ∅. So we have proved that K(X, f) = ∅
if and only if K(Y, g) = ∅, and thus by Definition 2.3, h∗pre(f) = h∗pre(g).

Case 2. K(X, f) 6= ∅. We prove that for every F ∈ K(X, f), 2π : K(X, f)→ K(Y, g), 2π(F ) =
π(F ) is a one-to-one correspondence betweenK(X, f) andK(Y, g). Recall π : X → Y is a conjugate
map, that is, π ◦ f = g ◦ π. Since 2π(F ) = π(F ) and g(π(F )) = π(f(F )) ⊆ π(F ), so we have
π(F ) ∈ K(Y, g). Hence, 2π is well definite. Furthermore, for any F1, F2 ∈ K(X, f) and F1 6= F2,
we have 2π(F1) = π(F1), 2π(F2) = π(F2) and π(F1) 6= π(F2), thus 2π(F1) 6= 2π(F2). Moreover,
for any F ∈ K(Y, g), we have π−1(F ) ∈ K(X, f) and 2π(π−1(F )) = π(π−1(F )) = F . Therefore,
2π : K(X, f) → K(Y, g) is bijective. We consider F ∈ K(X, f), then π : F → π(F ) is a conjugate
map, that is, π ◦ f |F = g|π(F ) ◦π. By Corollary 3.1 (3), we have hpre(f |F , F ) = hpre(g|π(F ), π(F )).
Furthermore, h∗pre(f |F , F ) = h∗pre(g|π(F ), π(F )). Hence,

h∗pre(f) = sup
F∈K(X,f)

h∗pre(f |F , F ) = sup
F∈K(X,f)

h∗pre(g|π(F ), π(F )).

Since 2π : K(X, f)→ K(Y, g) is a one-to-one correspondence, we have

sup
F∈K(X,f)

h∗pre(g|π(F ), π(F )) = sup
F ′∈K(Y,g)

h∗pre(g|F ′ , F ′) = h∗pre(g).

Therefore, h∗pre(f) = h∗pre(g). �

4. Pre-image entropies of locally compact spaces
and induced hyperspaces

Let R denote the one-dimensional Euclidean space and X denote a (noncompact) locally compact
metrizable space, if not indicated otherwise. From Kelley’s result [11], the Alexandroff compacti-
fication (that is, one-point compactification) ωX = X ∪ {ω} of X is also metrizable.

Definition 4.1 ([14]). Let f : X → X be a continuous map.
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(1) If there exists an a ∈ X such that for every sequence xn of points of X, lim
n→∞

f(xn) = a

holds whenever xn does not have any convergent subsequence in X, then f is said to be
convergent to a at infinity.

(2) If for every sequence xn of points of X, xn does not have any convergent subsequence in X,
f(xn) does not have any convergent subsequence, then f is said to be convergent to infinity
at the infinity.

(3) If (1) or (2) hold, f is said to be convergent at the infinity.

Theorem 4.1 ([21]). A continuous map f : X → X is convergent at the infinity if and only if
f can be extended to a continuous map f̄ on the Alexandroff compactification ωX.

Theorem 4.2. Let (X, f) be a dynamical system. If f can be extended to a continuous map
on the Alexandroff compactification ωX, that is, f is convergent at the infinity and f̄(ω) = a or
f̄(ω) = ω (refer to Definition 4.1), then h∗pre(f) ≤ h∗pre(f̄).

Proof. By the assumption, (ωX, f̄) is a topological dynamical system and (X, f) is a subsystem
of (ωX, f̄) (by a clear embedding). Hence, from Theorem 3.2, h∗pre(f) ≤ h∗pre(f̄). �

Example 4.1. Let f : R→ R, f(x) = 2x, x ∈ R. Then h∗pre(f) = 0.

From assumption, the only invariant compact subset of f is {0}, that is,
K(R, f) = {{0}}. Denote F = {0}. We prove h∗pre(f |F , F ) = 0. In fact, f : F → F is a homeo-
morphism from compact space F onto itself. Hence, hpre(f |F ) = 0. As h∗pre(f |F , F ) = hpre(f |F ),
which implies h∗pre(f |F , F ) = 0. Therefore, by Definition 2.3, we have h∗pre(f) = 0.

If R is replaced by (0,∞) which is equipped with the subspace topology of R, K((0,∞), f) = ∅.
It follows from Definition 2.3 that h∗pre(f) = 0.

Theorem 4.3. If f : R→ R is an autohomeomorphism, then h∗pre(f) = 0.
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Proof. Let xn be a sequence of points of R that does not have any convergent subsequence in
R. As f is a homeomorphism, the sequence f(xn) does not have any convergent subsequence in
R neither. By Theorem 4.1, f can be extended to a continuous map f̄ : ωR→ ωR and f̄(ω) = ω.
Clearly, f̄ is also an autohomeomorphism. On the other hand, ωR is homeomorphic to the unit
circle S1. Let π : ωR→ S1 be such a homeomorphism. Define g : S1 → S1 by g = π◦f̄ ◦π−1. Then,
g is a homeomorphism and π gives the conjugace between (ωR, f̄) and (S1, g). Hence, it follows from
Theorem 3.3 that h∗pre(f̄) = h∗pre(g). Now, from the result given in Walters book [20], h(g) = 0,
where h(g) denotes topological entropy of g. By [7], h∗pre(g) ≤ h(g), which implies h∗pre(g) = 0.

Hence, h∗pre(f̄) = 0. From Theorem 4.2, h∗pre(f) ≤ h∗pre(f̄). Therefore, h∗pre(f) = 0. �

We investigate the pre-image entropy relation between a topological dynamical system and its
induced hyperspace topological dynamical system. The hyperspace is employed with the Vietoris
topology. Notice that if X is a noncompact metric space, the Vietoris topology is non-metrizable
[15].

The Vietoris topology on 2X , the family of all nonempty closed subsets of X, is generated by
the base

υ(U1, U2, · · · , Un) =

{
F ∈ 2X : F ⊆

n⋃
i=1

Ui and F ∩ Ui 6= ∅ for all i ≤ n

}
,

where U1, U2, · · · , Un are open subsets of X [9].
Let (X, f) be a topological dynamical system, where f : X → X is a closed mapping. The

hyperspace map 2f : 2X → 2X is induced by f as follows: for every F ∈ 2X , 2f (F ) = f(F ). When
f is a closed and continuous map, 2f is well defined and it is continuous [11, 15], thus ensuring that
(2X , 2f ) forms a topological dynamical system, i.e., the induced hyperspace topological dynamical
system of (X, f).

By Michael’s results [15], we have the following facts.
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Fact 1: If X is compact, then 2X is compact.
Fact 2: If X is compact and Hausdorff, then 2X is compact and Hausdorff.
Fact 3: π : X → 2X defined by π(x) = {x} for x ∈ X, is continuous. If X is compact and

Hausdorff, then π is homeomorphic embedding and (X, f) and (π(X), 2f ) are topologically
conjugate.

Theorem 4.4. [14] Let (X, f) be a topological dynamical system, where X is Hausdorff and f
is a closed map. If F ∈ K(X, f), then 2F ∈ K(2X , 2f ). Hence, (2F , 2f ) is a subsystem of (2X , 2f ).

Theorem 4.5. Let (X, f) be a topological dynamical system, where X is Hausdorff and f is a
closed map. Then h∗pre(2f ) ≥ h∗pre(f).

Proof. Case 1. K(X, f) = ∅. By Definition 2.3, we have h∗pre(f) = 0. Hence, h∗pre(2f ) ≥ h∗pre(f).

Case 2. K(X, f) 6= ∅. For F ∈ K(X, f), it follows from Theorem 4.4 that 2F ∈ K(2X , 2f ).
Define π : F → 2F by π(x) = {x}, x ∈ F . From Fact 3 in the preceding paragraph of Theorem
4.4, (F, f) and (π(F ), 2f ) are topologically conjugate. From Cheng and Newhouse’s result [7],
hpre(f |F , F ) = hpre(2f |π(F ), π(F )). By Remark 1, h∗pre(f, F ) = hpre(f |F , F ) and h∗pre(2f , π(F )) =

hpre(2f |π(F ), π(F )), which imply h∗pre(f, F ) = h∗pre(2f , π(F )). Again, by the Fact 3, π(F ) is a

compact subset of 2X . On the other hand, from 2f (π(F )) = π(f(F )) and f(F ) ⊆ F , we have
2f (π(F )) = π(f(F )) ⊆ π(F ), thus π(F ) ∈ K(2X , 2f ). Furthermore, it follows from Defini-
tion 2.3 that h∗pre(2f , π(F )) ≤ h∗pre(2f ) implying h∗pre(f, F ) ≤ h∗pre(2f ). Therefore, h∗pre(f) =

sup
F∈K(X,f)

{h∗pre(f |F , F )} ≤ h∗pre(2f ). �
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