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LYAPUNOV OPERATOR INEQUALITIES FOR EXPONENTIAL STABILITY

OF LINEAR SKEW-PRODUCT SEMIFLOWS

IN BANACH SPACES

C. PRAŢA

Abstract. In the present paper we prove a sufficient condition and a characterization for the stability
of linear skew-product semiflows by using Lyapunov function in Banach spaces. These are general-
izations of the results obtained in [1] and [12] for the case of C0-semigroups. Moreover, there are
presented the discrete variants of the results mentioned above.

1. Introduction

The theorem of A. M. Lyapunov establishes that if A is a n × n complex matrix then A has all
its characteristics roots with real parts negative if and only if for any positive definite Hermitian
matrix H, there exists a positive definite Hermitian matrix W satisfying the equation

A∗W +WA = −H(LH)

(where ∗ denotes the conjugate transpose of a matrix) (see [2]).
The use of the above Lyapunov operator equation is extended on the infinite-dimensional frame-

work by Daleckij and Krein [4] for the case of semigroups T (t) = etA, where A is a bounded linear
operator. The authors prove in [4] that {etA}t≥0, with A ∈ B(X) is exponentially stable if and
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only if there exists W ∈ B(X), W >> 0 (i.e., there exists m > 0 such that 〈Wx, x〉 ≥ m‖x‖2 for
any x ∈ X), solution of the Lyapunov equation A∗W +WA = −I.

This result is extended by R. Datko [5], for the general case of C0-semigroups as it follows.

Theorem 1.1 ([5]). A C0-semigroup {T (t)}t≥0 is exponentially stable if and only if there exists
W ∈ B(X), W = W ∗, W ≥ 0 such that

〈Ax,Wx〉+ 〈Wx,Ax〉 = −‖x‖2(L)

for all x ∈ D(A), where A denotes the infinitezimal generator of {T (t)}t≥0.

C. Chicone [3], Y. Latushkin [3], A. Pazy [9], J. Goldstein [6] and L. Pandolfi [8] studied the
Lyapunov operator equations with unbounded A. All the above results are given in the setting of
one-parameter semigroups acting on Hilbert spaces.

Moreover, in [10], an attempt to establish an equivalence between the solvability of the Lyapunov
operator equation and the exponential stability of a C0-semigroup in the general context of Banach
spaces is presented.

Also in [12], C. Preda and P. Preda studied the case of the Lyapunov operator equation for the
exponential stability of one-parameter semigroups acting on Banach spaces by using the idea of
N.U. Ahmed (see [1]).

For the case of linear skew-product semiflows on real Hilbert spaces, a result which presents
an equality of Lyapunov type can be found in [15]. In that paper, Pham Viet Hai and Le Ngoc
Thanh present some characterizations for the uniform exponential stability of linear skew-product
semiflows using a variant of Lyapunov equality.

Some necessary and sufficient conditions for uniform exponential stability of linear skew-product
semiflows in Banach spaces are given in the paper [7]. The authors use Banach function spaces to
obtain generalizations of some well-known results of Datko, Neerven, Rolewicz and Zabczyk.
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On the other hand, in the paper [14], Pham Viet Hai extends the results of P. Preda, A. Pogan
and C. Preda from [11] for the case of the uniform exponential stability of linear skew-product
semiflows.

In the present paper, we try to go more general and find variants of Lyapunov operator equation
for the exponential stability of linear skew-product semiflows acting on Banach spaces.

This paper extends for the case of linear skew-product semiflows the results obtained in [12]
for the case of strongly continuous, one-parameter semigroups acting on Banach spaces by using
analogous techniques.

In order to do that, we need to recall some notions about the adjoint of a linear operator on a
Banach space.

Let X be a real or complex Banach space and X ′ its (dual) conjugate space consisting of all
bounded and antilinear functionals on X. Also X∗ will denote the classic dual space of all bounded
and linear functionals on X.

If Y is also a Banach space, we will denote by B(X,Y ) the Banach space of all linear and
bounded operators from X to Y . If X = Y , we will write B(X).

The norms on X, X ′, Y and B(X,Y ) will be denoted by the symbol ‖ · ‖.
We will use the symbols R, R+, N to denote the set of real, nonnegative real and natural numbers

respectively and N∗ = N− {0}.
We will present some definitions in what follows.
Let Θ be a metric space.

Definition 1.1. A map σ : Θ×R+ → Θ is said to be a continuous semiflow on Θ if the following
conditions hold

i) σ(θ, 0) = θ for all θ ∈ Θ;
ii) σ(θ, t+ s) = σ(σ(θ, s), t) for all t, s ∈ R+ and θ ∈ Θ;
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iii) (θ, t) 7→ σ(θ, t) is continuous on Θ× R+.

If iii) holds for any t, s ∈ R then σ is said to be a flow on Θ.

Definition 1.2. Let σ be a continuous semiflow on Θ. A strongly continuous cocycle over the
continuous semiflow σ is an operator-valued function

Φ: Θ× R+ → B(X), (θ, t) 7→ Φ(θ, t)

that satisfies the following properties

i) Φ(θ, 0) = I (I – the identity operator on X) for all θ ∈ Θ;
ii) (θ, t) 7→ Φ(θ, t)x is continuous for each θ ∈ Θ and x ∈ X;
iii) Φ(θ, t+ s) = Φ(σ(θ, t), s)Φ(θ, t) for all t, s ∈ R+ and θ ∈ Θ (the cocycle identity);

If, in addition,

iv) there exist constants M,ω > 0 such that

‖Φ(θ, t)‖ ≤M eωt for t ≥ 0 and θ ∈ Θ,

then the strongly continuous cocycle is exponentially bounded.

Definition 1.3. The linear skew-product semiflow (LSPS) associated with the above cocycle
is the dynamical system π = (Φ, σ) on ε = X ×Θ defined by

π : X ×Θ× R+ → X ×Θ, (x, θ, t) 7→ π(x, θ, t) = (Φ(θ, t)x, σ(θ, t)).

We will give some examples of LSPS. First of all, we will define some notions used in the
following examples.

Definition 1.4. A family {T (t)}t≥0 of linear and bounded operators acting on X is said to be
a C0-semigroup or a strongly continuous semigroup on X if the following conditions hold:

i) T (0) = I;
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ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0;
iii) there exists lim

t→0+

T (t)x = x for all x ∈ X.

If the second property holds for any t, s ∈ R, then {T (t)}t∈R is called a C0-group.
For a general presentation of the theory of C0-semigroups, we refer the reader to [9].

Definition 1.5. A family of linear and bounded operators {U(t, s)}t≥s≥0 is said to be a two-
parameter evolution family if the following conditions hold:

i) U(t, t) = I for all t ≥ 0;
ii) U(t, t0)U(t0, s) = U(t, s) for all t ≥ t0 ≥ s ≥ 0;

iii) U(·, s)x is continuous on [s,∞) for all s ≥ 0, x ∈ X;
U(t, ·)x is continuous on [0, t) for all t ≥ 0, x ∈ X;

iv) there exist M,ω > 0 such that

‖U(t, s)‖ ≤M eω(t−s) for all t ≥ s ≥ 0.

For a general presentation of the theory of two-parameter evolution families, we refer the reader
to [3] or [4].

Example 1.1. Let Θ be a metric space, σ a semiflow on Θ and {T (t)}t≥0 a C0-semigroup on
X. The pair πT = (ΦT , σ) where ΦT (θ, t) = T (t), for all (θ, t) ∈ Θ× R+ is a linear skew-product
semiflow over σ on Θ×X.

Example 1.2. Let Θ = R+, σ(θ, t) = θ + t and let {U(t, s)}t≥s be an evolution family on the
Banach space X. We define

ΦU (θ, t) = U(t+ θ, θ) for all (θ, t) ∈ Θ+ × R+.

Then {ΦU (θ, t)}θ∈Θ,t≥0 is an exponentially bounded, strongly continuous cocycle (over the above
semiflow σ) and the linear skew-product semiflow associated with it is the pair π = (ΦU , σ).
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Therefore, we can say that the notion of a cocycle generalizes the classic notion of a two-
parameter evolution family.

Example 1.3. Let Θ be a metric space, σ a semiflow on Θ, X a Banach space and A : Θ→ B(X)
a continuous mapping. The problem

ẋ(t) = A(σ(θ, t))x(t)

x(t0) = x0

has an unique solution for all t0 ∈ R+ and x0 ∈ X. For details we refer the reader to [13].

Definition 1.6. A linear skew-product semiflow (LSPS) π = (Φ, σ) on a Banach bundle ε =
X ×Θ is said to be exponentially stable if there exist constants N, ν > 0 such that

‖Φ(θ, t)x‖ ≤ N e−νt ‖x‖ for all t ≥ 0, θ ∈ Θ, x ∈ X.

All the results concerning the Lyapunov inequality for the exponential stability of linear skew-
product semiflows (LSPS), were acting on Hilbert spaces. We will try to go more general and
find variants of Lyapunov operator equation for the exponential stability of linear skew-product
semiflows (LSPS) acting on Banach spaces. This requires to recall some facts about the adjoint of
a linear operator on a Banach space (see [12]).

Definition 1.7. Let X, Y be two Banach spaces and A ∈ B(X,Y ). Then there exists an unique
operator A∗ ∈ B(Y ′, X ′) that satisfies y(Ax) = A∗y(x) for all x ∈ X and y ∈ Y ′. A∗ will be called
the adjoint of A.

It can be easily checked that

• ‖A‖ = ‖A∗‖;
• (A+B)∗ = A∗ +B∗;
• (λA)∗ = λA∗;
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• If X,Y are reflexive, then A∗∗ = A.

It is worth to note that the above notion of the adjoint of a linear and bounded operator
between two Banach spaces allows us to create a definition of the adjoint that directly generalizes
the definition of the adjoint of an operator on Hilbert spaces. In other words, if X and Y are
Hilbert spaces and A ∈ B(X,Y ), then there is no difference of the adjoint between the adjoint A∗

defined by considering X,Y to be Hilbert spaces, and the adjoint A∗ defined by considering X,Y
to be Banach spaces. If we chose that A∗ : Y ∗ → X∗, then we would obtain a different definition
compared to the Hilbert space definition.

For defining the concept of a self-adjoint operator on a Banach space, we recall that X is
isomorphic and isometric with a subspace of X ′′.

Definition 1.8.

(i) An operator A ∈ B(X,X ′) is said to be self-adjoint if the restriction of A∗ to X is A, and
therefore,

Ay(x) = Ax(y) for all x, y ∈ X.
(ii) A ∈ B(X,X ′) is said to be positive if A is self-adjoint and Ax(x) ≥ 0 for all x ∈ X.

Remark 1.1. It is easy to see that A ∈ B(X,X ′) is positive if and only if Ax(x) is a positive
real number for all x ∈ X.

In the following we will denote by

B+(X,X ′) = {A ∈ B(X,X ′) : A is positive}.

Following Lyapunov’s idea, we obtain a Lyapunov-type operatorial equation for the case of linear
skew-product semiflows acting on Banach spaces. Indeed, from the equation (LH) and (L), taking
into account the fact that any C0-semigroup is a particular case of linear skew-product semiflows,
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we obtain for the case of Hilbert spaces that (see [15])

〈A(σ(θ, t))x,W (σ(θ, t))x〉+ 〈W (σ(θ, t))x,A(σ(θ, t))x〉 = −‖x‖2.(L∗)

If we assume that (L∗) holds for some conditions, let f be the function defined by

f(t) = 〈W (σ(θ, t))Φ(θ, t)x,Φ(θ, t)x〉.

It can be easily seen that f ′(t) = −‖Φ(θ, t)x‖2. Integrating with respect to τ on the interval
[0, t], we have

〈W (σ(θ, t))Φ(θ, t)x,Φ(θ, t)x〉 − 〈W (θ)x, x〉 = −
t∫

0

‖Φ(θ, τ)x‖2dτ,

which implies

Φ∗(θ, t)W (σ(θ, t))Φ(θ, t)x+

t∫
0

Φ∗(θ, τ)Φ(θ, τ)xdτ = W (θ)x.

If we rewrite the equation above to the case of Banach spaces, using the considerations about
the adjoint of an operator in Banach spaces, we have

W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x) +

t∫
0

‖Φ(θ, τ)x‖2dτ = W (θ)x(x).(L′)

Remark 1.2. The bounded function W : Θ→ B+(X,X ′) from the equation (L′) is said Lyapunov
function corresponding to linear skew-product semiflow
π = (Φ, σ).
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2. Results

In what follows it will be presented a sufficient condition for the exponential stability of linear
skew-product semiflows acting on Banach spaces in terms of Lyapunov inequation.

Theorem 2.1. Let π = (Φ, σ) be a linear skew-product semiflow (LSPS). If there exists W : Θ→
B+(X,X ′) bounded such that

W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x) +

t∫
0

‖Φ(θ, τ)x‖2dτ ≤W (θ)x(x)(1)

for all t ≥ 0, θ ∈ Θ and x ∈ X, then π = (Φ, σ) is exponentially stable.

Proof. Let x ∈ X, θ ∈ Θ and t ≥ 0. From (1) we have that

t∫
0

‖Φ(θ, τ)x‖2dτ ≤W (θ)x(x)−W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x)

≤W (θ)x(x) = |W (θ)x(x)| ≤ K‖x‖2

for all θ ∈ Θ, x ∈ X and t ≥ 0, where K = sup
θ∈Θ
‖W (θ)‖ > 0.

Thus we get that

t∫
0

‖Φ(θ, τ)x‖2dτ ≤ K‖x‖2
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for all θ ∈ Θ, x ∈ X and t ≥ 0, which implies the following relation for t→∞
∞∫

0

‖Φ(θ, τ)x‖2dτ ≤ K‖x‖2 for all θ ∈ Θ and x ∈ X.

From [15, Lemma 2.4], it results that the linear skew-product semiflow π = (Φ, σ) is exponen-
tially stable. �

In what follows, it will be presented the necessary condition which needs a stronger hypothesis.

Theorem 2.2. Let π = (Φ, σ) be a linear skew-product semiflow (LSPS) exponentially stable.
Then for all Γ ∈ B+(X,X ′) with the property that there exists γ > 0 such that Γx(x) ≥ γ‖x‖2, for
all x ∈ X, there exists W : Θ→ B+(X,X ′) bounded such that

(2) W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x) +

t∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ = W (θ)x(x)

for all t ≥ 0, θ ∈ Θ and x ∈ X.

Proof. The linear skew-product semiflow π = (Φ, σ) is exponentially stable and therefore we
have from Definition 1.6 that there exist the constants N , ν > 0 such that

‖Φ(θ, t)x‖ ≤ N e−νt ‖x‖ for all t ≥ 0, θ ∈ Θ, x ∈ X.

Now we consider x, y ∈ X, θ ∈ Θ and

W (θ)x(y) =

∞∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)y)dτ.
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Next we will show that W ∈ B+(X,X ′).
Thus we have that

|W (θ)x(y)| =

∣∣∣∣∣∣
∞∫

0

Γ(Φ(θ, τ)x)(Φ(θ, τ)y)dτ

∣∣∣∣∣∣ ≤
∞∫

0

|Γ(Φ(θ, τ)x)(Φ(θ, τ)y)|dτ

≤ ‖Γ‖
∞∫

0

‖Φ(θ, τ)x‖‖Φ(θ, τ)y‖dτ ≤ ‖Γ‖N2

∞∫
0

e−2ντ dτ‖x‖‖y‖

=
N2

2ν
‖Γ‖‖x‖‖y‖,

which shows that W is linear and bounded.
On the other hand,

W (θ)y(x) =

∞∫
0

Γ(Φ(θ, τ)y)(Φ(θ, τ)x)dτ

=

∞∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)y)dτ = W (θ)x(y)

for all x, y ∈ X and θ ∈ Θ. Thus, W is self-adjoint.
Moreover,

W (θ)x(x) =

∞∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ ≥ γ
∞∫

0

‖Φ(θ, τ)x‖2dτ ≥ 0,
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which implies the fact that W is positive.
It results that W ∈ B+(X,X ′). Now we have that

W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x)

=

∞∫
0

Γ(Φ(σ(θ, t), τ)Φ(θ, t)x)(Φ(σ(θ, t), τ)Φ(θ, t)x)dτ

=

∞∫
0

Γ(Φ(θ, t+ τ)x)(Φ(θ, t+ τ)x)dτ

=

∞∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ −
t∫

0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ

= W (θ)x(x)−
t∫

0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ

and therefore, we get the relation (2) and the proof is complete. �

As a result of the last two theorems, we now obtain the necessary and sufficient conditions for
the exponential stability of a linear skew-product semiflow (LSPS) as follows.

Corollary 2.1. The linear skew-product semiflow π = (Φ, σ) is exponentially stable if and only
if for all Γ ∈ B+(X,X ′) with the property that there exists γ > 0 such that Γx(x) ≥ γ‖x‖2 for all
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x ∈ X, there exists W : R+ → B+(X,X ′) bounded such that

(3) W (σ(θ, t))Φ(θ, t)x(Φ(θ, t)x) +

t∫
0

Γ(Φ(θ, τ)x)(Φ(θ, τ)x)dτ = W (θ)x(x)

for all t ≥ 0, θ ∈ Θ and x ∈ X.

Proof. Necessity results from Theorem 2.2.
Sufficiency results analogously with Theorem 2.1, by considering in addition Γ ∈ B+(X,X ′)

with the same property as in Theorem 2.2. �

In what follows we will also present the discrete versions of the above results.
A sufficient condition is given as follows

Theorem 2.3. Let π = (Φ, σ) be linear skew-product semiflow. If there exists W : N →
B+(X,X ′) bounded such that

(4) W (σ(θ, n))Φ(θ, n)x(Φ(θ, n)x) +

n−1∑
k=0

‖Φ(θ, k)x‖2 ≤W (θ)x(x)

for all θ ∈ Θ, n ∈ N∗ and x ∈ X, then the linear skew-product semiflow is exponentially stable.

Proof. We take n ∈ N∗ and x ∈ X. From relation (4), we have that

n−1∑
k=0

‖Φ(θ, k)x‖2 ≤W (θ)x(x)−W (σ(θ, n))Φ(θ, n)x(Φ(θ, n)x)

≤W (θ)x(x) = |W (θ)x(x)| ≤ L‖x‖2

for all n ∈ N∗, θ ∈ Θ and x ∈ X, where L = supθ∈Θ ‖W (θ)‖ > 0.
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For n→∞ in the previous relation we obtain that

∞∑
k=0

‖Φ(θ, k)x‖2 ≤ L‖x‖2 <∞ for all θ ∈ Θ and x ∈ X.

Applying [15, Lemma 2.1 and Lemma 2.2], we get that the linear skew product semiflow π = (Φ, σ)
is exponentially stable. �

The sufficient condition is given in the following theorem

Theorem 2.4. Let π = (Φ, σ) be a linear skew-product semiflow (LSPS) exponentially stable.
Then for all Γ ∈ B+(X,X ′) with the property that there exists γ > 0 such that Γx(x) ≥ γ‖x‖2 for
all x ∈ X, there exists W : Θ→ B+(X,X ′) bounded such that

(5) W (σ(θ, n))Φ(θ, n)x(Φ(θ, n)x) +

n−1∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x) = W (θ)x(x)

for all n ∈ N∗, θ ∈ Θ and x ∈ X.

Proof. As the linear skew-product semiflow π = (Φ, σ) is exponentially stable, we have from
Definition 1.6 that there exist the constants N , ν > 0 such that

‖Φ(θ, n)x‖ ≤ N e−νn ‖x‖, for all n ∈ N θ ∈ Θ and x ∈ X.

We take now x, y ∈ X, n ∈ N∗ and

W (θ)x(y) =

∞∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)y).

Next it will be shown that W ∈ B+(X,X ′).
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Therefore, we have that

|W (θ)x(y)| =

∣∣∣∣∣
∞∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)y)

∣∣∣∣∣ ≤
∞∑
k=0

|Γ(Φ(θ, k)x)(Φ(θ, k)y)|

≤ ‖Γ‖
∞∑
k=0

‖Φ(θ, k)x‖‖Φ(θ, k)y‖ ≤ ‖Γ‖N2
∞∑
k=0

e−2νk ‖x‖‖y‖

≤ N2

1− e−2ν
‖Γ‖‖x‖‖y‖,

which shows that W is linear and bounded.
Moreover,

W (θ)y(x) =

∞∑
k=0

Γ(Φ(θ, k)y)(Φ(θ, k)x)

=

∞∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)y) = W (θ)x(y)

for all x, y ∈ X and θ ∈ Θ. Thus, W is self-adjoint.
On the other hand,

W (θ)x(x) =

∞∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x) ≥ γ
∞∑
k=0

‖Φ(θ, k)x‖2 ≥ 0,

which implies the fact that W is positive.
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It results that W ∈ B+(X,X ′). Thus we have that

W (σ(θ, n))Φ(θ, n)x(Φ(θ, n)x)

=

∞∑
k=0

Γ(Φ(σ(θ, n), k)Φ(θ, n)x)(Φ(σ(θ, n), k)Φ(θ, n)x)

=

∞∑
k=0

Γ(Φ(θ, n+ k)x)(Φ(θ, n+ k)x)

=

∞∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x)−
n−1∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x)

= W (θ)x(x)−
n−1∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x)

and therefore, we get the relation (5). �

As a result of Theorems 2.3 and 2.4, it can be obtained the following corollary

Corollary 2.2. The linear skew-product semiflow π = (Φ, σ) is exponentially stable if and only
if for all Γ ∈ B+(X,X ′) with the property that there exists γ > 0 such that Γx(x) ≥ γ‖x‖2 for all
x ∈ X, there exists W : R+ → B+(X,X ′) bounded such that

(6) W (σ(θ, n))Φ(θ, n)x(Φ(θ, n)x) +

n−1∑
k=0

Γ(Φ(θ, k)x)(Φ(θ, k)x) = W (θ)x(x)

for all n ∈ N∗, θ ∈ Θ and x ∈ X.
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Proof. Necessity results from Theorem 2.4.
Sufficiency results analogously with Theorem 2.3. �

Remark 2.1. As a conclusion, we can mention here that it is interesting to note that the sufficient
condition can be easily obtained, but for the necessary condition, we need a stronger hypothesis.
Thus, in terms of the the existence of Γ ∈ B+(X,X ′) with the properties presented above, the
exponential stability of a linear skew-product semiflow implies the existence of a Lyapunov function
that verifies the Lyapunov-type equation.

Also, the sufficient condition holds in terms of the existence of Γ ∈ B+(X,X ′).
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