LYAPUNOV OPERATOR INEQUALITIES FOR EXPONENTIAL STABILITY
OF LINEAR SKEW-PRODUCT SEMIFLOWS
IN BANACH SPACES

C. PRATA

ABSTRACT. In the present paper we prove a sufficient condition and a characterization for the stability
of linear skew-product semiflows by using Lyapunov function in Banach spaces. These are general-
izations of the results obtained in [1] and [12] for the case of Cp-semigroups. Moreover, there are
presented the discrete variants of the results mentioned above.

1. INTRODUCTION

The theorem of A. M. Lyapunov establishes that if A is a n X n complex matrix then A has all
its characteristics roots with real parts negative if and only if for any positive definite Hermitian
matrix H, there exists a positive definite Hermitian matrix W satisfying the equation

(Lu) A*W +WA=—-H

(where * denotes the conjugate transpose of a matrix) (see [2]).

The use of the above Lyapunov operator equation is extended on the infinite-dimensional frame-
work by Daleckij and Krein [4] for the case of semigroups T'(t) = e*4, where A is a bounded linear
operator. The authors prove in [4] that {e!4};>0, with A € B(X) is exponentially stable if and
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only if there exists W € B(X), W >> 0 (i.e., there exists m > 0 such that (Wx,z) > m||z|? for
any x € X), solution of the Lyapunov equation A*W + WA = —1I.
This result is extended by R. Datko [5], for the general case of Cy-semigroups as it follows.

Theorem 1.1 ([5]). A Cy-semigroup {T(t)}i>0 is exponentially stable if and only if there exists
W eB(X), W=W* W >0 such that

(L) (Az, Wz) + (Wz, Az) = —||z|?
for all x € D(A), where A denotes the infinitezimal generator of {T'(t)}>0.

C. Chicone [3], Y. Latushkin [3], A. Pazy [9], J. Goldstein [6] and L. Pandolfi [8] studied the
Lyapunov operator equations with unbounded A. All the above results are given in the setting of
one-parameter semigroups acting on Hilbert spaces.

Moreover, in [10], an attempt to establish an equivalence between the solvability of the Lyapunov
operator equation and the exponential stability of a Cy-semigroup in the general context of Banach
spaces is presented.

Also in [12], C. Preda and P. Preda studied the case of the Lyapunov operator equation for the
exponential stability of one-parameter semigroups acting on Banach spaces by using the idea of
N.U. Ahmed (see [1]).

For the case of linear skew-product semiflows on real Hilbert spaces, a result which presents
an equality of Lyapunov type can be found in [15]. In that paper, Pham Viet Hai and Le Ngoc
Thanh present some characterizations for the uniform exponential stability of linear skew-product
semiflows using a variant of Lyapunov equality.

Some necessary and sufficient conditions for uniform exponential stability of linear skew-product
semiflows in Banach spaces are given in the paper [7]. The authors use Banach function spaces to
obtain generalizations of some well-known results of Datko, Neerven, Rolewicz and Zabczyk.
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On the other hand, in the paper [14], Pham Viet Hai extends the results of P. Preda, A. Pogan
and C. Preda from [11] for the case of the uniform exponential stability of linear skew-product
semiflows.

In the present paper, we try to go more general and find variants of Lyapunov operator equation
for the exponential stability of linear skew-product semiflows acting on Banach spaces.

This paper extends for the case of linear skew-product semiflows the results obtained in [12]
for the case of strongly continuous, one-parameter semigroups acting on Banach spaces by using
analogous techniques.

In order to do that, we need to recall some notions about the adjoint of a linear operator on a
Banach space.

Let X be a real or complex Banach space and X’ its (dual) conjugate space consisting of all
bounded and antilinear functionals on X. Also X* will denote the classic dual space of all bounded
and linear functionals on X.

If Y is also a Banach space, we will denote by B(X,Y) the Banach space of all linear and
bounded operators from X to Y. If X =Y, we will write B(X).

The norms on X, X', Y and B(X,Y) will be denoted by the symbol || - ||.

We will use the symbols R, R, N to denote the set of real, nonnegative real and natural numbers
respectively and N* = N — {0}.

We will present some definitions in what follows.

Let © be a metric space.

Definition 1.1. A map o: ©®© xR — © is said to be a continuous semiflow on © if the following
conditions hold
i) 0(0,0) =0 for all § € ©;
ii) o(0,t+s) =o0(c(8,s),t) for all t,s € Ry and 6 € 6;



iii) (0,t) — o(6,t) is continuous on © x R.
If iii) holds for any ¢, s € R then o is said to be a flow on ©.

Definition 1.2. Let o be a continuous semiflow on ©. A strongly continuous cocycle over the
continuous semiflow o is an operator-valued function

®: O xRy — B(X), (0,t) — @(6,1)
that satisfies the following properties
i) ®(0,0) = I (I — the identity operator on X) for all 6 € ©;

ii) (0,t) — ®(0,t)z is continuous for each § € © and = € X

iii) ®(0,t+ s) = ®(o(0,t),s)P(0,t) for all t,s € Ry and 6 € O (the cocycle identity);
If, in addition,

iv) there exist constants M,w > 0 such that

[®(0,1)| < M e fort >0 and 0 € O,

then the strongly continuous cocycle is exponentially bounded.

Definition 1.3. The linear skew-product semiflow (LSPS) associated with the above cocycle
is the dynamical system m = (®,0) on € = X x O defined by

T X XOXRL =X x0, (x,0,t)— w(zx,0,t) = (P(0,t)z,0(6,1)).
We will give some examples of LSPS. First of all, we will define some notions used in the

following examples.

Definition 1.4. A family {T'(¢)}+>¢ of linear and bounded operators acting on X is said to be
a Cy-semigroup or a strongly continuous semigroup on X if the following conditions hold:

i) T(0) = I;



ii) T(t+s) =T(t)T(s) for all ¢,s > 0;
iii) there exists tliI(I)l T(t)r =z for all z € X.
—U+

If the second property holds for any ¢,s € R, then {T'(¢) }+cr is called a Cy-group.
For a general presentation of the theory of Cy-semigroups, we refer the reader to [9].

Definition 1.5. A family of linear and bounded operators {U(¢, s)}i>s>0 is said to be a two-
parameter evolution family if the following conditions hold:
i) U(t,t) =1 for all t > 0;
ii) U(t,to)Ul(to,s) = Ul(t,s) for all t >ty > s > 0;
iii) U(:, s)z is continuous on [s,00) for all s >0, z € X;
U(t,-)x is continuous on [0,¢) for all ¢ > 0, z € X;;
iv) there exist M,w > 0 such that

(U, )] < Me*=*)  forallt>s>0.

For a general presentation of the theory of two-parameter evolution families, we refer the reader
to [3] or [4].

Example 1.1. Let © be a metric space, o a semiflow on © and {T'(t)}+>0 a Co-semigroup on
X. The pair 7y = (®r,0) where &7(0,t) = T(t), for all (6,t) € © x Ry is a linear skew-product
semiflow over o on © x X.

Example 1.2. Let © =Ry, 0(6,t) = 6 + ¢ and let {U(¢, s)}+>s be an evolution family on the
Banach space X. We define

Oy (0,t) =U(t+0,0) for all (0,t) € O x R.

Then {®y(0,t)}oco,t>0 is an exponentially bounded, strongly continuous cocycle (over the above
semiflow o) and the linear skew-product semiflow associated with it is the pair 7 = (®y, o).
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Therefore, we can say that the notion of a cocycle generalizes the classic notion of a two-
parameter evolution family.

Example 1.3. Let © be a metric space, o a semiflow on ©, X a Banach space and A: © — B(X)
a continuous mapping. The problem
i(t) = A(o(0,1))x(t)
x(to) = xo
has an unique solution for all ¢ty € Ry and xy € X. For details we refer the reader to [13].

Definition 1.6. A linear skew-product semiflow (LSPS) 7 = (®,0) on a Banach bundle e =
X X © is said to be exponentially stable if there exist constants N, > 0 such that

|@(0,t)z| < Ne ||z forallt >0, 0 €O, v X.

All the results concerning the Lyapunov inequality for the exponential stability of linear skew-
product semiflows (LSPS), were acting on Hilbert spaces. We will try to go more general and
find variants of Lyapunov operator equation for the exponential stability of linear skew-product
semiflows (LSPS) acting on Banach spaces. This requires to recall some facts about the adjoint of
a linear operator on a Banach space (see [12]).

Definition 1.7. Let X, Y be two Banach spaces and A € B(X,Y’). Then there exists an unique
operator A* € B(Y’, X') that satisfies y(Az) = A*y(x) for all z € X and y € Y’'. A* will be called
the adjoint of A.

It can be easily checked that

o [lA] = [|A*;
e (A+ B)* = A* + B*;
o (AA)* =A%



o If XY are reflexive, then A** = A.

It is worth to note that the above notion of the adjoint of a linear and bounded operator
between two Banach spaces allows us to create a definition of the adjoint that directly generalizes
the definition of the adjoint of an operator on Hilbert spaces. In other words, if X and Y are
Hilbert spaces and A € B(X,Y), then there is no difference of the adjoint between the adjoint A*
defined by considering X, Y to be Hilbert spaces, and the adjoint A* defined by considering X, Y
to be Banach spaces. If we chose that A*: Y* — X*, then we would obtain a different definition
compared to the Hilbert space definition.

For defining the concept of a self-adjoint operator on a Banach space, we recall that X is
isomorphic and isometric with a subspace of X".

Definition 1.8.

(i) An operator A € B(X, X') is said to be self-adjoint if the restriction of A* to X is A, and
therefore,

Ay(z) = Az(y) for all z,y € X.
(if) A € B(X,X’) is said to be positive if A is self-adjoint and Az(xz) > 0 for all x € X.

Remark 1.1. Tt is easy to see that A € B(X, X') is positive if and only if Az(z) is a positive
real number for all z € X.

In the following we will denote by
BT (X,X')={A € B(X,X') : Ais positive}.

Following Lyapunov’s idea, we obtain a Lyapunov-type operatorial equation for the case of linear
skew-product semiflows acting on Banach spaces. Indeed, from the equation (L) and (L), taking
into account the fact that any Cy-semigroup is a particular case of linear skew-product semiflows,
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we obtain for the case of Hilbert spaces that (see [15])

(L") (A(0(6,1)z, W (o (6,1)z) + (W(o(8, )z, A(o(8, 1)) = |||

If we assume that (L*) holds for some conditions, let f be the function defined by
f(t) = (W(o(0,1))2(0,t)z, (0, t)).

It can be easily seen that f'(t) = —||®(6,t)z||?>. Integrating with respect to 7 on the interval
[0,¢], we have

(W (a(6,t)2(0,t)z, ®(0,t)z) — (W(0)z,z) = — / | ®(8, 7)x||*dr,
0
which implies
(0, )W (a(0,1))®(0,t)x + /@*(9, T)P(0, T)xdT = W(0)x.
0

If we rewrite the equation above to the case of Banach spaces, using the considerations about
the adjoint of an operator in Banach spaces, we have

(L") W(a(6,t))®(0,t)x(2(6,t)x) + / (0, 7)x|*dT = W(0)x(z).
0

Remark 1.2. The bounded function W: © — BT (X, X”) from the equation (L') is said Lyapunov
function corresponding to linear skew-product semiflow
m=(D,0).



2. RESULTS

In what follows it will be presented a sufficient condition for the exponential stability of linear
skew-product semiflows acting on Banach spaces in terms of Lyapunov inequation.

Theorem 2.1. Let m = (®,0) be a linear skew-product semiflow (LSPS). If there exists W: © —
Bt (X, X') bounded such that

(1) W(c(6,t))®(0,t)z(®(8,t)x) + / @8, 7)z|2dr < W (0)z(x)
0

forallt>0,0 €O and x € X, then m = (D, 0) is exponentially stable.
Proof. Let x € X, 0 € © and t > 0. From (1) we have that
¢
/||‘I’(9,T)9U||2dT S W(0)z(z) — W(o(0,1))2(0,t)x(2(6, )z)
0

< W(O)z(z) = |[W(0)z(z)| < K|z|?

for all € ©, x € X and ¢ > 0, where K = sup ||[W(0)|| > 0.
6co
Thus we get that

t
[12@.m)slar < Kal?
0



for all @ € ©, z € X and t > 0, which implies the following relation for ¢t — co
oo
/||<I>(0, z|?dr < K|z|? for all § € © and z € X.
0

From [15, Lemma 2.4], it results that the linear skew-product semiflow m = (®, o) is exponen-
tially stable. O

In what follows, it will be presented the necessary condition which needs a stronger hypothesis.

Theorem 2.2. Let 7 = (®,0) be a linear skew-product semiflow (LSPS) exponentially stable.
Then for all T € BY (X, X') with the property that there exists v > 0 such that Tz(z) > v||z||?, for
all x € X, there exists W: © — B (X, X') bounded such that

(2) W(o(6,t))®(0,t)x(®(0,t)x) + / (@0, 7)x)(®(0, 7)x)dr = W(0)z(x)
0

forallt >0,0 €0 and x € X.

Proof. The linear skew-product semiflow m = (®, o) is exponentially stable and therefore we
have from Definition 1.6 that there exist the constants NV, v > 0 such that

|@(6,t)z| < Ne ||z forallt >0, 6 €0, z € X.

Now we consider z,y € X, 6 € © and

W (0)z(y) = /F(@(G,T)m)(@(ﬂ,T)y)dT.



Next we will show that W € BT (X, X').
Thus we have that

WO = | [ D@07 < [ @0 12)@(6, 7)) dr

0
[ee)

oo
Ir| / 128, 72| (8, T)ylldr < [T N? / 2™ dr 1y
0 0

IA

N?
= — F
5, ITHIzllyl,

which shows that W is linear and bounded.
On the other hand,

W(0)y(x) = [ T(®(0,7)y)(®(0,7)z)dr

L(®(0, 7)z)(®(0, 7)y)dr = W (0)z(y)

O\g 9\8

for all z,y € X and 6 € ©. Thus, W is self-adjoint.
Moreover,
W (0)x(x) = /F(‘I’(O,T)x)(@(O,T)x)dT > 'y/ (8, 7)x||>dr > 0,
0 0




which implies the fact that W is positive.
It results that W € BT (X, X’). Now we have that

W(a(6,t))®(0,t)z(2(8,t)x)

L(®(o(0,t), 7)®(0,t)x)(P(c(6,t), 7)P(0,t)x)dr

L(®0,t+ 7)x) (20, ¢+ 7)z)dr

I
O — g O —g °—y3

(D0, 7)x)(®(0, 7)x)dT — /F((D(@,T)a:)(@(ﬁ,r)x)dr

W (0)x(z) — / (90, 7)z)(B(0, 7)z)dr

and therefore, we get the relation (2) and the proof is complete. O

As a result of the last two theorems, we now obtain the necessary and sufficient conditions for
the exponential stability of a linear skew-product semiflow (LSPS) as follows.

Corollary 2.1. The linear skew-product semiflow m = (®,0) is exponentially stable if and only
if for all T € BT (X, X") with the property that there exists v > 0 such that Tz(z) > v||z|* for all
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x € X, there exists W: Ry — B (X, X’) bounded such that
¢
(3) W(a(0,1))®(0,1)z(2(0,t)z) + /F(<I>(9,T)$)(‘1>(9J)$)d7 =W(0)z(z)
0
forallt >0,0 €0 and x € X.

Proof. Necessity results from Theorem 2.2.
Sufficiency results analogously with Theorem 2.1, by considering in addition I' € B (X, X’)
with the same property as in Theorem 2.2. |

In what follows we will also present the discrete versions of the above results.
A sufficient condition is given as follows

Theorem 2.3. Let 1 = (®,0) be linear skew-product semiflow. If there exists W : N —
Bt (X, X') bounded such that

n—1
(4) W (0 (6,n))®(0,n)a(D(0,n)z) + D |86, k)z|* < W(0)z(z)
k=0
for all € ©, n € N* and x € X, then the linear skew-product semiflow is exponentially stable.
Proof. We take n € N* and © € X. From relation (4), we have that

n—1
>l @, k)all* < W(9)a(z) — W(o(8,n))2(6, n)a(2(6, n)z)
k=0

<W(O)z(z) = |W(0)z(z)| < L||=|?

for all n € N*, § € © and « € X, where L = supycg ||[W(8)| > 0.



For n — oo in the previous relation we obtain that

Z @8, k)z|*> < L||z||? < oo for all # € © and z € X.
k=0

Applying [15, Lemma 2.1 and Lemma 2.2], we get that the linear skew product semiflow 7 = (@, o)
is exponentially stable. O

The sufficient condition is given in the following theorem

Theorem 2.4. Let m = (®,0) be a linear skew-product semiflow (LSPS) exponentially stable.
Then for all T € BT (X, X') with the property that there exists v > 0 such that Tz(x) > v||z||? for
all € X, there exists W: © — BT (X, X") bounded such that

(5) W(a(0,n))®(0,n)z(P(0,n)x) + i D(®(0, k)x)(®(0, k)x) = W(0)z(x)
k=0

forallm e N*, 0 € © and z € X.

Proof. As the linear skew-product semiflow m = (®, o) is exponentially stable, we have from
Definition 1.6 that there exist the constants N, v > 0 such that

[®(0,n)z|| < Ne™" |zl foralln e Ng € © and z € X.
We take now z, y € X, n € N* and

Next it will be shown that W € BT (X, X').



Therefore, we have that

W (6)z(y)| = | > T(2(6, k)z)(2(6, k)y)| < D [T(2(6, k)z)(2(6, k)y)l
k=0 k=0

IA

) 0
T[>~ 190, k)12 (6, k)yll < [TIN>D_ e ||yl
k=0 k=0
NZ
< ATyl

which shows that W is linear and bounded.
Moreover,

W(©O)y(z) = ) T(2(0,k)y)(2(0,k)x)

M 11e

L(2(6, k)x)(2(0, k)y) = W (0)z(y)

x>
Il

0

for all z,y € X and 0 € ©. Thus, W is self-adjoint.
On the other hand,

W (0)x(z) =Y T((0,k)x)(®(0,k)z) > 7Y _ |96, k)x|* >0,
k=0 k=0

which implies the fact that W is positive.




It results that W € BT (X, X’). Thus we have that
W(a(0,n))®(0,n)z(2(0,n)z)

L(®(0(0,n), k)®(0,n)x)(®(a (0, n), k)®(6,n)x)

L(®(0,n + k)z)(®(0,n + k)z)

M# TM# I

L(®(0,k)x)(®(0, k)x) — i L(®(0, k)x)(®(0, k)x)
k=0

k=0
n—1
— W(B)a(x) — 3 D@0, K)a)(®(6. ))
k=0
and therefore, we get the relation (5). O

As a result of Theorems 2.3 and 2.4, it can be obtained the following corollary

Corollary 2.2. The linear skew-product semiflow m = (®,0) is exponentially stable if and only
if for all T € BY (X, X") with the property that there exists v > 0 such that Tz(z) > v||z|? for all
x € X, there exists W : Ry — BT (X, X") bounded such that

(6) W (o(6, 1)) (0, n)a((0, n)z) + 2_: T(B(0, k)z)(B(0, k)x) = W (0)z(w)
k=0

forallm e N*, § € © and z € X.




Proof. Necessity results from Theorem 2.4.
Sufficiency results analogously with Theorem 2.3. O

Remark 2.1. As a conclusion, we can mention here that it is interesting to note that the sufficient
condition can be easily obtained, but for the necessary condition, we need a stronger hypothesis.
Thus, in terms of the the existence of I' € B*(X, X’) with the properties presented above, the
exponential stability of a linear skew-product semiflow implies the existence of a Lyapunov function
that verifies the Lyapunov-type equation.

Also, the sufficient condition holds in terms of the existence of I' € BT (X, X").
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