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RANDOM CHORDS AND POINT DISTANCES IN

REGULAR POLYGONS

U. BÄSEL

Abstract. In this paper we obtain the chord length distribution function for any

regular polygon. From this function we conclude the density function and the
distribution function of the distance between two uniformly and independently

distributed random points in the regular polygon. The method calculating the

chord length distribution function is quite different from those of Harutyunyan and
Ohanyan. It uses only elementary methods and provides the result with only a few

natural case distinctions.

1. Introduction

A random line g intersecting a convex set K in the plane produces a chord of
K. The length s of this chord is a random variable. If the motion invariant
line measure (see below) is used for the definition of the line, the expectation
of the chord length is equal to πA/u where A is the area of K and u is the
length of its perimeter [19, p. 30]. The chord length distribution function of a
regular triangle was calculated by Sulanke [20, p. 57]. Harutyunyan and Ohanyan
[13] calculated the chord length distribution function for regular polygons using
Dirac’s δ-function in Pleijel’s identity. Bertrand’s paradox associated with the
chord length distribution of a circle is well-known [8, pp. 116–118], [16, pp. 172–
179].

The distance t between two points chosen independently and uniformly at ran-
dom from K is also a random variable. Borel [4] considered this distance in ele-
mentary geometric figures such as triangles, squares and so on (see [17, p. 163]).
The expectations for the distance between two random points for an equilateral
triangle and a rectangle are to be found in [19, p. 49]. Ghosh [11] derived the
distance distribution for a rectangle. Bailey, Borwein & Crandall [3] studied the
expected distance between two random points in the unit n-cube giving closed
form expressions for the cases n = 1, . . . , 5 (see also [5], especially Example 14).
There are a lot of results concerning the distance t within a convex set or in two
convex sets (see Chapter 2 in [16], and [7]).
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The moments of s and t, resp., are closely connected by a simple formula
[19, pp. 46–47]. The second moments of the chord length for regular polygons
were obtained by Heinrich [14].

For practical applications of chord lenghts and point distances of convex sets in
physics, material sciences, operations research and other fields see [12] and [15].

The first aim of the present paper is to derive the chord length distribution
function for any regular polygon in a simple form with only a few natural case
distinctions using a method that requires only elementary geometric considerations
and elementary integrations (especially not using Dirac’s δ-function in Pleijel’s
identity as done in [13]). Our method is also suitable for irregular and even (with
slight modifications) non-convex polygons as shown in [2]. The second aim is to
conclude the density function and the distribution function of the distance between
two random points in every regular polygon. This result is new to the author’s
knowledge. By Pn,r we denote the regular polygon with n sides and circumscribed
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Figure 1. The polygon Pn,r (example n = 7).

We denote by Pn,r the regular polygon with n sides and circumscribed circle
with radius r and centre point in the origin O (see Fig. 1). A straight line g in the
plane is determined by the angle φ, 0 ≤ φ < 2π, that the direction perpendicular to
g makes with a fixed direction (e.g. the x-axis) and by its distance p, 0 ≤ p <∞,
from the origin O:

g = g(p, φ) = {(x, y) ∈ R2 : x cosφ+ y sinφ = p} .

Figure 1. The polygon Pn,r (example n = 7).

circle with radius r and centre point in the origin O (see Fig. 1). A straight line
g in the plane is determined by the angle φ, 0 ≤ φ < 2π, between the direction
perpendicular to g and a fixed direction (e.g., the x-axis), and by its distance p,
0 ≤ p <∞, from the origin O

g = g(p, φ) = {(x, y) ∈ R2 : x cosφ+ y sinφ = p} .
The measure µ of a set of lines g(p, φ) is defined by the integral, over the set, of
the differential form dg = dp dφ. Up to a constant factor, this measure is the only
one that is invariant under motions in the Euclidean plan [19, p. 28].
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The chord length distribution function of Pn,r is usually defined as

F (s) =
1

u
µ({g : g ∩ Pn,r 6= ∅, |χ(g)| ≤ s}) ,

where χ(g) = g ∩ Pn,r is the chord of Pn,r, produced by the line g, |χ(g)| is the
length of χ(g), and u is the length of the perimeter of Pn,r. (The measure of all
lines g that intersect a convex set is equal to its perimeter [19, p. 30].) We use the
distribution function in the form

F (s) = 1− 1

u
µ({g : g ∩ Pn,r 6= ∅, |χ(g)| > s})(1)

(cf. [1, p. 161]). So it remains to calculate the measure of all lines that produce a
chord of length |χ(g)| > s . Using the abbreviation

S(g : s) := {g : g ∩ Pn,r 6= ∅, |χ(g)| > s} ,
we have

µ(S(g : s)) =

∫

S(g : s)
dg =

∫

S(g : s)
dp dφ .

We consider all lines g, having a direction perpendicular to a fixed angle φ ∈ [0, π)
with g∩Pn,r 6= ∅. In almost all cases among these lines there are two lines g1 and
g2 with chords of equal length s (see Fig. 1). All parallel lines g lying in the strip
between g1 and g2 have a chord with length |χ(g)| > s. The breadth of this strip
is equal to d(s, φ) + d(s, φ + π), where d(s, φ) and d(s, φ + π) are the distances
between O and g1 and O and g2, repectively. So we have

µ(S(g : s)) =

∫ π

0

[
d(s, φ) + d(s, φ+ π)

]
dφ .(2)

2. The distance function

In the following we determine the distance function in formula (2)

d : [0,max(s)]× [0,∞) → [0, r] , (s, φ) 7→ d(s, φ) ,(3)

where max(s) is the maximum chord length s in Pn,r. If no chord of length s in
the direction perpendicular to φ exists, we put d(s, φ) = 0. Of course for fixed
value of s, d(s, · ) is a 2π/n-periodic function.

We put

K =

⌊
n− 2

2

⌋
,

where b·c is the integer part of · , and define the function m : N× N→ N by

m(k, n) =

{
k mod n if k mod n 6= 0 ,

n if k mod n = 0 .

The angle δk (see Fig. 2) between the lines i and m(i + k, n) containing the sides
i, i = 1, . . . , n, and m(i+ k, n) of Pn,r is given by

δk =

(
1− 2k

n

)
π , k = 1, . . . ,K∗ ,
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Figure 2. Chords χ between side i and side m(i+ k, n).

The angle δk (see Fig. 2) between the lines i and m(i+ k, n) containing the sides
i, i = 1, . . . , n, and m(i+ k, n) of Pn,r is given by

δk =

(
1− 2k

n

)
π , k = 1, . . . ,K∗ ,

where

K∗ =

{
K + 1 if n is odd ,

K if n is even .

The distance `k between the vertices i and m(i + k, n) is for k = 0, . . . ,K + 1
given by

`k = 2r sin
kπ

n
.

The maximum chord length in Pn,r is equal to `K+1. For the distance x between
one point of side i and one point of side m(i + k, n), k = 1, . . . ,K∗, we have
`k−1 ≤ x ≤ `k+1, and `k ≤ x ≤ `k+2 for the analogous distance of the sides i and
m(i+ k + 1, n). Therefore, a chord of length s, `k ≤ s ≤ `k+1, is a chord between
two sides i and m(i+ k, n) or two sides i and m(i+ k + 1, n).

In the first step we derive formulas for the distance d∗k(s, ψ) between O and a
chord χ of length s, `k ≤ s ≤ `k+1, k = 0, . . . ,K, where ψ denotes the oriented
angle between the segment from O to the intersection point I of the lines i and
m(i+ k, n) and the line perpendicular to χ (Fig. 2). We only consider the interval
0 ≤ ψ ≤ π/n. It is necessary to distinguish the following cases:

Figure 2. Chords χ between side i and side m(i+ k, n).

where

K∗ =

{
K + 1 if n is odd,

K if n is even.

The distance `k between the vertices i and m(i + k, n) is for k = 0, . . . ,K + 1
given by

`k = 2r sin
kπ

n
.

The maximum chord length in Pn,r is equal to `K+1. For the distance x between
one point of side i and one point of side m(i + k, n), k = 1, . . . ,K∗, we have
`k−1 ≤ x ≤ `k+1, and `k ≤ x ≤ `k+2 for the analogous distance of the sides i and
m(i+ k + 1, n). Therefore, a chord of length s, `k ≤ s ≤ `k+1, is a chord between
two sides i and m(i+ k, n) or two sides i and m(i+ k + 1, n).

In the first step we derive formulas for the distance d∗k(s, ψ) between O and a
chord χ of length s, `k ≤ s ≤ `k+1, k = 0, . . . ,K, where ψ denotes the oriented
angle between the segment from O to the intersection point I of the lines i and
m(i+ k, n) and the line perpendicular to χ (Fig. 2). We only consider the interval
0 ≤ ψ ≤ π/n. It is necessary to distinguish the following cases:

Case 1

`k ≤ s < `k+1 with

{
k ∈ {1, . . . ,K − 1} if n is even,

k ∈ {1, . . . ,K} if n is odd and s ≤ 2r cos2
π

2n
.

(4)
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For 0 ≤ ψ ≤ αk(s) (e.g., for position χ1 of χ in Fig. 2) the distance d∗k(s, ψ)
between O and χ is equal to

qk(s, ψ) := r cos
π

n
sec

kπ

n
cosψ − s

2

(
tan

kπ

n
cos2 ψ − cot

kπ

n
sin2 ψ

)
.(5)

The angle αk is determined by the position χ2 of χ with the upper end-point in
the vertex m(i+ k + 1, n)

αk(s) = arcsin

(
2r

s
sin

kπ

n
sin

(k + 1)π

n

)
− kπ

n
.(6)

For αk(s) ≤ ψ ≤ π/n, χ is a chord between the sides i and m(i+ k+ 1, n). So we
find

d∗k(s, ψ) =

{
qk(s, ψ) if 0 ≤ ψ ≤ αk(s) ,

qk+1(s, ψ − π/n) if αk(s) < ψ ≤ π/n .
(7)

Case 1a

0 = `0 ≤ s < `1 and s < 2r cos2
π

2n
(8)

We have α0(s) = 0 if s 6= 0, and the limit of α0(s) at s = 0 is 0. Therefore, we get

d∗0(s, ψ) = q1(s, ψ − π/n) for 0 ≤ ψ ≤ π/n(9)

as special case of case 1 with α0(s) = 0 in formula (7).

Case 2

n is even and `K ≤ s ≤ `K+1(10)

A chord χ in the direction perpendicular to ψ does not exist if αK(s) < ψ ≤ π/n,
therefore

d∗K(s, ψ) =

{
qK(s, ψ) if 0 ≤ ψ ≤ αK(s) ,

0 if αK(s) < ψ ≤ π/n .
(11)

Case 3

n is odd and `K ≤ s ≤ `K+1 and s ≥ 2r cos2
π

2n
(12)

A chord χ in the direction perpendicular to ψ does not exist if

β(s) < ψ <
π

n
− β(s) ,

with

β(s) =
π

2n
− arccos

(
2r

s
cos2

π

2n

)
,(13)
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therefore,

d∗K(s, ψ) =





qK(s, ψ) if 0 ≤ ψ < αK(s) ,

qK+1(s, ψ − π/n) if αK(s) ≤ ψ ≤ β(s),

0 if β(s) < ψ < π/n− β(s) ,

qK+1(s, ψ − π/n) if π/n− β(s) ≤ ψ ≤ π/n.

(14)

Due to the symmetry of the graph of d∗k(s, ψ) with respect to the line ψ = π/n,
the values in the interval π/n < ψ ≤ 2π/n can be easily calculated from (7), (9),
(11) and (14) with

d∗k(s, ψ) = d∗k(s, 2π/n− ψ) .(15)

Since d∗k(s, ψ) is a 2π/n-periodic function, we get the values for 2π/n < ψ < ∞
with the translation

ψ 7→ ψ − δ(ψ) with δ(ψ) =

⌊
nψ

2π

⌋
2π

n
.

In the case of even n, the substitution ψ = φ + π/n yields the distances for
angle φ starting from a vertex as shown in Fig. 1. In the case of odd n we have
ψ = φ. So we get the following lemma.

Lemma 1. The restrictions dk(s, φ) = d(s, φ)|`k ≤ s< `k+1
of the distance func-

tion d are given by

dk(s, φ) =





d∗k
(
s, φ− δ(φ)

)
if n is odd ,

d∗k

(
s, φ+

π

n
− δ
(
φ+

π

n

))
if n is even ,

for k = 0, . . . ,K, where

δ( · ) =

⌊
n ·
2π

⌋
2π

n

and d∗k according to the formulas (7), (11), (14) and (15) with αk and β according
to (6) and (13), respectively.

3. Chord length distribution function

So we can write the chord length distribution function (1) in the form

F (s) =





0 if −∞ < s < `0 = 0 ,

Hk(s) if `k ≤ s < `k+1 for k = 0, . . . ,K,

1 if `K+1 ≤ s <∞ ,

where

Hk(s) = 1− µk(s)

2nr sin(π/n)
with µk(s) :=

∫ π

0

[
dk(s, φ) + dk(s, φ+ π)

]
dφ .
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With (?) the 2π/n-periodicity of dk(s, φ) and (�) the symmetry of dk(s, φ) with
respect to the line φ = π/n, for odd and even n, we find

µk(s) =

∫ π

0

[
dk(s, φ) + dk(s, φ+ π)

]
dφ

?
=
n

2

∫ 2π/n

0

[
dk(s, φ) + dk(s, φ+ π)

]
dφ

=
n

2

∫ 2π/n

0

[
dk(s, φ) + dk

(
s, φ+ n

2π

n

)]
dφ

?
= n

∫ 2π/n

0

dk(s, φ) dφ
�
= 2n

∫ π/n

0

dk(s, φ) dφ .

Note that this integral formula (together with the piecewise definition of the dis-
tance function) allows us to calculate the distribution function of every regular
polygon in a rather simple way.

The indefinite integral of the function qk (see (5)) is given by

Jk(s, φ) =

∫
qk(s, φ) dφ = r cos

π

n
sec

kπ

n
sinφ

− s

8

[
(2φ+ sin 2φ) tan

kπ

n
− (2φ− sin 2φ) cot

kπ

n

]
.(16)

In case 1 (see (4)) we get with αk = αk(s)

µk(s)

2n
=

∫ αk

0

dk(s, φ) dφ+

∫ π/n

αk

dk(s, φ) dφ

=

∫ αk

0

qk(s, φ) dφ+

∫ π/n

αk

qk+1

(
s, φ− π

n

)
dφ

and with the substitution φ∗ = φ− π/n
µk(s)

2n
=

∫ αk

0

qk(s, φ) dφ+

∫ 0

αk−π/n
qk+1(s, φ∗) dφ∗

= Jk(s, αk)− Jk(s, 0) + Jk+1(s, 0)− Jk+1

(
s, αk −

π

n

)

= Jk(s, αk)− Jk+1

(
s, αk −

π

n

)
,

since Jk(s, 0) = 0. In case 1a (see (8)), one finds with α0(s) = 0 and Jk(s,−φ) =
−Jk(s, φ)

µ0(s)

2n
= −J1

(
s,−π

n

)
= J1

(
s,
π

n

)
.

Putting J0(s, 0) = 0, this formula can be considered as a special case of the formula
for case 1. In case 2 (see (10)), one easily finds

µK(s)

2n
= JK(s, αK)
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and in case 3 (see (12)) with β = β(s), we have

µK(s)

2n
=

[ ∫ αK

0

+

∫ β

αK

+

∫ π/n−β

β

+

∫ π/n

π/n−β

]
dK(s, φ) dφ

=

[ ∫ αK

0

+

∫ β

αK

+

∫ π/n

π/n−β

]
dK(s, φ) dφ

=

∫ αK

0

qK(s, φ) dφ+

[ ∫ β

αK

+

∫ π/n

π/n−β

]
qK+1(s, φ− π/n) dφ

=

∫ αK

0

qK(s, φ) dφ+

[ ∫ β−π/n

αK−π/n
+

∫ 0

−β

]
qK+1(s, φ∗) dφ∗

= JK(s, αK)− JK+1

(
s, αK −

π

n

)
+ JK+1

(
s, β − π

n

)
+ JK+1(s, β) .

The function Jk (see (16)) can be written as

Jk(s, φ) = r cos
π

n
sec

kπ

n
sinφ+

s

4

(
2φ cot

2kπ

n
− sin(2φ) csc

2kπ

n

)
.

Furthermore, we write both functions αk (see (6)) and β (see (13)) in the form

arcsin
a

s
− b

with

a = A1(k) = 2r sin
kπ

n
sin

(k + 1)π

n
, b = B1(k) =

kπ

n
(17)

for αk, and

a = A2 = 2r cos2
π

2n
, b = B2 =

π

2

(
1− 1

n

)
(18)

for β. Using some easy algebraic manipulations, one finds

1

r
Jk

(
s, arcsin

a

s
− b
)

= Θ1(k, a, b) s+ Θ2(k, a, b)
1

s
+ Θ3(k, a, b)

√
s2 − a2
s

+ Θ4(k, a, b) s arcsin
a

s
=: hk(s, a, b) ,

where 



Θ1(k, a, b) =
1

4r
csc

π

n

(
sin(2b) csc

2kπ

n
− 2b cot

2kπ

n

)
,

Θ2(k, a, b) = a

(
cos b cot

π

n
sec

kπ

n
− a

2r
sin(2b) csc

π

n
csc

2kπ

n

)
,

Θ3(k, a, b) = −
(

sin b cot
π

n
sec

kπ

n
+

a

2r
cos(2b) csc

π

n
csc

2kπ

n

)
,

Θ4(k, a, b) =
1

2r
csc

π

n
cot

2kπ

n
.

(19)

In summary, we have proved the following theorem.
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Theorem 1. The chord length distribution function F of the regular polygon
Pn,r is given by

F (s) =





0 if −∞ < s < `0 = 0 ,

Hk(s) if `k ≤ s < `k+1 for k = 0, . . . ,K,

1 if `K+1 ≤ s <∞ ,

where

`k = 2r sin
kπ

n
, K =

⌊
n− 2

2

⌋

and

Hk(s) =





1− hk(s,A1(k), B1(k)) + hk+1(s,A1(k), B1(k) + π/n)

if (n is even ∧ k ∈ {0, . . . ,K − 1}) ∨ (n is odd ∧ s < λ) ,

1− hK(s,A1(K), B1(K)) + hK+1(s,A1(K), B1(K) + π/n)

−hK+1(s,A2, B2 + π/n)− hK+1(s,A2, B2)

if n is odd ∧ s ≥ λ ,

1− hK(s,A1(K), B1(K)) if n is even ∧ k = K

with
λ = 2r cos2

π

2n
,

A1(k) and B1(k) according to (17), A2 and B2 according to (18), and

hk(s, a, b) =

{
0 if k = 0 ,
∑4
i=1 Θi(k, a, b)Li(s, a) if k = 1, 2, . . . ,

with Θi(k, a, b) according to (19), and

L1(s, a) = s , L2(s, a) =
1

s
, L3(s, a) =

√
s2 − a2
s

, L4(s, a) = s arcsin
a

s
.

F can be written in the form

F (s) = H0(s) =

[(
1− π

n
cot

π

n

)
csc

π

n
+
π

n
sec

π

n

]
s

4r

for 0 ≤ s ≤ λ if n = 3, and 0 ≤ s ≤ `1 if n = 4, 5, . . . . Note that this is a linear
equation of s (cf. [10, pp. 866–867]).

From [20, p. 55, Satz 2], it follows that the chord length distribution function
of a regular polygon is a continuous function.

4. Point distances

In the following, we consider the distance between two uniformly and indepen-
dently distributed random points within the polygon Pn,r with perimeter u and
area A

u = 2nr sin
π

n
, A =

1

2
nr2 sin

2π

n
.
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Theorem 2. The density function g of the distance t between two random
points in Pn,r is given by

g(t) =





2t

A

[
π +

u

A

(
φ∗(t)− t

)]
if t ∈ [0, `K+1) ,

0 if t ∈ R \ [0, `K+1) ,

where

φ∗(t) =

k−1∑

ν=0

J∗ν (`ν , `ν+1) + J∗k (`k, t) if `k ≤ t < `k+1, k = 0, . . . ,K

with
J∗k (s, t) = H∗k(t)−H∗k(s) ,

where

H∗k(t) =





t− h∗k(t, A1(k), B1(k)) + h∗k+1(t, A1(k), B1(k) + π/n)

if (n is even ∧ k ∈ {0, . . . ,K − 1}) ∨ (n is odd ∧ t < λ) ,

t− h∗K(t, A1(K), B1(K)) + h∗K+1(t, A1(K), B1(K) + π/n)

−h∗K+1(t, A2, B2 + π/n)− h∗K+1(t, A2, B2)

+h∗K+1(λ,A2, B2 + π/n) + h∗K+1(λ,A2, B2)

if n is odd ∧ t ≥ λ ,

t− h∗K(t, A1(K), B1(K)) if n is even ∧ k = K

with

h∗k(t, a, b) =





0 if k = 0 ∨ (k 6= 0 ∧ t = 0) ,
4∑

i=1

Θi(k, a, b)L
∗
i (t, a) if k 6= 0 ∧ t > 0 ,

L∗1(t, a) =
t2

2
, L∗2(t, a) = ln t , L∗3(t, a) =

√
t2 − a2 + a arcsin

a

t
,

L∗4(t, a) =
1

2

(
a
√
t2 − a2 + t2 arcsin

a

t

)
.

Proof. According to Piefke [18, p. 130], the density function of the distance is
given by

g(t) =
2ut

A2

∫ `K+1

t

(s− t)f(s) ds ,

where f is the density function of the chord length. From integral geometry it is
well-known that ∫ `K+1

0

sf(s) ds =
πA

u

(see [19, p. 47], [16, p. 94]), hence
∫ `K+1

t

sf(s) ds =
πA

u
−
∫ t

0

sf(s) ds .
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Using integration by parts, we have

∫ t

0

sf(s) ds = sF (s)
∣∣∣
t

0
−
∫ t

0

F (s) ds = tF (t)−
∫ t

0

F (s) ds .

Therefore, we obtain

g(t) =
2t

A

[
π − u

A

(
t−
∫ t

0

F (s) ds

)]
=

2t

A

[
π +

u

A
(φ∗(t)− t)

]

with

φ∗(t) :=

∫ t

0

F (s) ds .

For `k ≤ t < `k+1, k = 0, . . . ,K, this yields

φ∗(t) =

k−1∑

ν=0

∫ `ν+1

`ν

Hν(s) ds+

∫ t

`k

Hk(s) ds

(in case k = 0, the sum is empty). With

H∗k(t) :=

∫
Hk(t) dt und J∗k (s, t) = H∗k(t)−H∗k(s)

it follows that

φ∗(t) =

k−1∑

ν=0

[H∗ν (`ν+1)−H∗ν (`ν)] +H∗k(t)−H∗k(`k)

=

k−1∑

ν=0

J∗ν (`ν , `ν+1) + J∗k (`k, t) .

Furthermore, if k 6= 0 and t > 0,

h∗k(t, a, b) :=

∫
hk(t, a, b) dt =

4∑

i=1

Θi(k, a, b)

∫
Li(t, a) dt

=

4∑

i=1

Θi(k, a, b)L
∗
i (t, a)

with the indefinite integrals

L∗1(t, a) =

∫
tdt =

t2

2
, L∗2(t, a) =

∫
1

t
dt = ln t ,

L∗3(t, a) =

∫ √
t2 − a2
t

dt =
√
t2 − a2 + a arcsin

a

t
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(see [6, p. 48, Eq. 217]) and using integration by parts,

L∗4(t, a) =

∫
L4(t, a) dt =

∫
t arcsin

a

t
dt

=
1

2

(
t2 arcsin

a

t
+ a

∫
t√

t2 − a2
dt

)

=
1

2

(
t2 arcsin

a

t
+ a

√
t2 − a2

)
.

For odd n, the function

H∗K(t) =

{
H∗K, 1(t) if t < λ ,

H∗K, 2(t) if t ≥ λ
with

H∗K, 1(t) := t− h∗K(t, A1(k), B1(k)) + h∗K+1(t, A1(K), B1(K) + π/n) ,

H∗K, 2(t) := t− h∗K(t, A1(K), B1(K)) + h∗K+1(t, A1(K), B1(K) + π/n)

− h∗K+1(t, A2, B2 + π/n)− h∗K+1(t, A2, B2)

is not continuous in t = λ. This causes a false result when calculating the integral

J∗K(`K , λ) = H∗K(λ)−H∗K(`K) .

In order to avoid this problem (and unnecessary case distinctions), we define

H̃∗K, 2(t) = H∗K, 2(t)−H∗K, 2(λ) +H∗K, 1(λ)

= H∗K, 2(t) + h∗K+1(λ,A2, B2 + π/n) + h∗K+1(λ,A2, B2)

and put

H∗K(t) :=

{
H∗K, 1(t) if t < λ ,

H̃∗K, 2(t) if t ≥ λ,
so that H∗K is now a continuous function. This completes the proof. �

Corollary 1. The distribution function G of the distance t between two random
points in Pn,r is given by

G(t) =





0 if −∞ < s < 0 ,

1

A

[
t2
(
π − 2u

3A
t

)
+

2u

A
φ\(t)

]
if 0 ≤ t < `K+1 ,

1 if t ≥ `K+1

with

φ\(t) =

k−1∑

ν=0

Kν(`ν+1) +Kk(t) if `k ≤ t < `k+1, k = 0, . . . ,K ,

where

Kk(t) =
1

2

(
t2 − `2k

)
(
k−1∑

ν=0

J∗ν (`ν , `ν+1)−H∗k(`k)

)
+ J\k(`k, t)
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with J∗k and H∗k according to Theorem 2 and

J\k(s, t) = H\
k(t)−H\

k(s) ,

where

H\
k(t) =





t3

3
− h\k(t, A1(k), B1(k)) + h\k+1(t, A1(k), B1(k) + π/n)

if (n is even ∧ k ∈ {0, . . . ,K − 1}) ∨ (n is odd ∧ t < λ) ,

t3

3
− h\K(t, A1(K), B1(K)) + h\K+1(t, A1(K), B1(K) + π/n)

−h\K+1(t, A2, B2 + π/n)− h\K+1(t, A2, B2)

+
t2

2

[
h∗K+1(λ,A2, B2 + π/n) + h∗K+1(λ,A2, B2)

]

if n is odd ∧ t ≥ λ ,

t3

3
− h\K(t, A1(K), B1(K)) if n is even ∧ k = K

with h∗K+1 from Theorem 2, and

h\k(t, a, b) =





0 if k = 0 ∨ (k 6= 0 ∧ t = 0) ,
4∑

i=1

Θi(k, a, b)L
\
i(t, a) if k 6= 0 ∧ t > 0 ,

L\1(t, a) =
t4

8
, L\2(t, a) =

t2

4
(2 ln t− 1) ,

L\3(t, a) =
1

3

(
t2 − a2

)3/2
+
a

2

(
a
√
t2 − a2 + t2 arcsin

a

t

)
,

L\4(t, a) =
1

8

[
5a

3

(
t2 − a2

)3/2
+ a3

√
t2 − a2 + t4 arcsin

a

t

]
.

Proof. For 0 ≤ t < `K+1, one gets

G(t) =

∫ t

0

g(τ) dτ =

∫ t

0

(
2πτ

A
− 2uτ2

A2
+

2uτ

A2

∫ τ

0

F (s) ds

)
dτ

=
πt2

A
− 2ut3

3A2
+

2u

A2

∫ t

0

τ

(∫ τ

0

F (s) ds

)
dτ

=
πt2

A
− 2ut3

3A2
+

2u

A2

∫ t

0

τφ∗(τ) dτ =
1

A

[
t2
(
π − 2u

3A
t

)
+

2u

A
φ\(t)

]

with

φ\(t) :=

∫ t

0

sφ∗(s) ds .
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It remains to calculate φ\(t). For `k ≤ t < `k+1, k = 0, . . . ,K, we have

φ\(t) =

∫ `k

0

sφ∗(s) ds+

∫ t

`k

sφ∗(s) ds

=

k−1∑

ν=0

∫ `ν+1

`ν

sφ∗(s) ds+

∫ t

`k

sφ∗(s) ds

with
∫ t

`k

sφ∗(s) ds =

∫ t

`k

s

(
k−1∑

ν=0

J∗ν (`ν , `ν+1) + J∗k (`k, s)

)
ds

=

k−1∑

ν=0

J∗ν (`ν , `ν+1)

∫ t

`k

sds+

∫ t

`k

sJ∗k (`k, s) ds

=

k−1∑

ν=0

J∗ν (`ν , `ν+1)

∫ t

`k

sds+

∫ t

`k

s [H∗k(s)−H∗k(`k)] ds

=

(
k−1∑

ν=0

J∗ν (`ν , `ν+1)−H∗k(`k)

) ∫ t

`k

sds+

∫ t

`k

sH∗k(s) ds .

Putting

H\
k(t) :=

∫ t

`k

sH∗k(s) ds and J\k(s, t) := H\
k(t)−H\

k(s) ,

it follows that
∫ t

`k

sφ∗(s) ds =
1

2

(
t2 − `2k

)
(
k−1∑

ν=0

J∗ν (`ν , `ν+1)−H∗k(`k)

)
+H\

k(t)−H\
k(`k)

=
1

2

(
t2 − `2k

)
(
k−1∑

ν=0

J∗ν (`ν , `ν+1)−H∗k(`k)

)
+ J\k(`k, t) =: Kk(t)

and hence

φ\(t) =

k−1∑

ν=0

Kν(`ν+1) +Kk(t) , `k ≤ t < `k+1 , k = 0, . . . ,K.

If k 6= 0 and t > 0, one finds

h\k(t, a, b) :=

∫
th∗k(t, a, b) dt =

4∑

i=1

Θi(k, a, b)

∫
tL∗i (t, a) dt

=

4∑

i=1

Θi(k, a, b)L
\
i(t, a)

with the indefinite integrals

L\1(t, a) =

∫
t3

2
dt =

t4

8
, L\2(t, a) =

∫
t ln tdt =

t2

4
(2 ln t− 1)
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and

L\4(t, a) =

∫
tL∗4(t, a) dt =

1

2

∫
t
(
a
√
t2 − a2 + t2 arcsin

a

t

)
dt

=
1

2

(
a

∫
t
√
t2 − a2 dt+

∫
t3 arcsin

a

t
dt

)

with ∫
t
√
t2 − a2 dt =

1

3

(
t2 − a2

)3/2
[6, p. 47, Eq. 214] .

Using integration by parts, we find

∫
t3 arcsin

a

t
dt =

1

4

(
t4 arcsin

a

t
+ a

∫
t2√

1− (a/t)2
dt

)
.

Since t ≥ a > 0 in the present cases,
∫

t2√
1− (a/t)2

dt =

∫
t3√

t2 − a2
dt ,

and
∫

t3√
t2 − a2

dt =
1

3

(
t2 − a2

)3/2
+ a2

√
t2 − a2 [6, p. 48, Eq. 223] .

This yields

L\4(t, a) =
1

8

[
5a

3

(
t2 − a2

)3/2
+ a3

√
t2 − a2 + t4 arcsin

a

t

]
.

Furthermore,

L\3(t, a) =

∫
t
√
t2 − a2 dt+ a

∫
t arcsin

a

t
dt

=
1

3

(
t2 − a2

)3/2
+
a

2

(
a
√
t2 − a2 + t2 arcsin

a

t

)

(see the calculations of L\4(t, a) and L∗4(t, a)). �

5. Examples

Fig. 3 shows examples of chord length distribution functions F .
As special case of Theorem 2, the distance density function for an equilateral

triangle P3, r with circumscribed circle of radius r is given by

g(t) =





2t

A

[
π +

u

A

(
φ(t)− t

)]
if t ∈ [0,

√
3 r) ,

0 if t ∈ R \ [0,
√

3 r)

with u = 3
√

3 r, A =
3

4

√
3 r2 and
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φ(t) =





(
3
√

3 + 2π
)
t2

36r
if 0 ≤ t < 3r

2
,

3

2


t
√

1−
(

3r

2t

)2

− πr

2


+

(
1

4
√

3
− π

9

)
t2

r

+

(
3r

2
+
t2

3r

)
arcsin

3r

2t
if

3r

2
≤ t <

√
3 r .

Fig. 4 shows the function r × g(t) for P3, r and some other examples.
One finds for the expectation of the distance for P3, r:

E[t] =

∫ √3 r

0

t g(t) dt =

(∫ 3r/2

0

+

∫ √3 r

3r/2

)
t g(t) dt

=
r

20

(
27− 90

√
3 + 26

√
3π
)

+
r

20

(
− 27 + 94

√
3− 26

√
3π

+
√

3 ln 27
)

=

√
3 r

20

(
4 + 3 ln 3) .

Since the side length a of P3, r is equal to
√

3 r, we get

E[t] =
a

20

(
4 + 3 ln 3) =

3a

5

(
1

3
+

1

4
ln 3

)
.

This is the result from [19, p. 49].
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0.6

0.8

1.0

F

Figure 3. F for P7, 1 (thick), P8, 1 (dashed) and circle of radius r = 1 (thin).Figure 3. F for P7, 1 (thick), P8, 1 (dashed) and circle of radius r = 1 (thin).

φ(t) =


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3
√

3 + 2π
)
t2

36r
if 0 ≤ t < 3r

2
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3

2


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2t
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2


+

(
1

4
√

3
− π

9

)
t2

r

+

(
3r

2
+
t2

3r

)
arcsin

3r

2t
if

3r

2
≤ t <

√
3 r .

Fig. 4 shows the function r × g(t) for P3, r and some other examples.
For the expectation of the distance for P3, r one finds

E[t] =

∫ √3 r

0

t g(t) dt =

(∫ 3r/2

0

+

∫ √3 r

3r/2

)
t g(t) dt

=
r

20

(
27− 90

√
3 + 26

√
3π
)

+
r

20

(
− 27 + 94

√
3− 26

√
3π

+
√

3 ln 27
)

=

√
3 r

20

(
4 + 3 ln 3) .

Since the side length a of P3, r is equal to
√

3 r, we get

E[t] =
a

20

(
4 + 3 ln 3) =

3a

5

(
1

3
+

1

4
ln 3

)
.

This is the result from [19, p. 49].
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Figure 4. r×g(t) for P3, r (thick and dashed), P4, r (thin), P10, r (thick) and circle of radius r

(thin and dashed).

For the square P4, r, the side length is equal to
√

2 r. For a = 1 a calculation
using Mathematica yields the expected distance E[t] = 0.5214054331 . . .. This
result can be found in [9, p. 479]. It also follows from [3, p. 13], and [7].
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