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CLOSED HEREDITARY ADDITIVE AND DIVISIBLE SUBCATEGORIES IN

EPIREFLECTIVE

SUBCATEGORIES OF TOP

V. LACKOVÁ

Abstract. The aim of this paper is to investigate closed hereditary additive and divisible (AD) sub-
categories of epireflective subcategories of the category Top. In quotient reflective subcategories of
Top, AD subcategories are precisely the coreflective subcategories. We describe the closed hereditary
AD hull and the closed hereditary AD kernel of AD subcategories and present some results concerning
minimal non-trivial closed hereditary AD subcategories in epireflective subcategories of Top. We also
show that some of the results obtained for AD subcategories are not valid in the case of coreflective
subcategories in epireflective subcategories that are not quotient reflective, for instance, in the category
of Tychonoff spaces.

1. Introduction

Herrlich and Hušek (see [8]) suggested the investigation of hereditary and closed hereditary core-
flective subcategories in Top and Haus, e.g., hereditary (closed hereditary) coreflective kernels
and hulls of coreflective subcategories of Top and Haus. Hereditary coreflective subcategories and
hereditary additive and divisible (AD) subcategories in epireflective subcategories of the category
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Top are studied in the papers of J. Činčura (e. g. [3], [4], [5]), V. Kannan (e. g. [9], [10], [11])
and M. Sleziak (e. g. [15], [16]).

In the category Top, the extremal subobjects are precisely the subspaces. However, in Haus,
Tych and many other epireflective subcategories of the category Top, the extremal subobjects
are precisely the closed subspaces. That is why the notion of closed subspace is important in these
subcategories.

In this paper, we study closed hereditary AD subcategories and closed hereditary coreflective
subcategories in epireflective subcategories of Top. In quotient reflective subcategories of Top,
the notion of a coreflective subcategory is equivalent to the notion of an AD subcategory. In epire-
flective subcategories that are not quotient reflective each coreflective subcategory is also an AD
subcategory. However, there exist AD subcategories that are not coreflective. First we investigate
closed hereditary AD subcategories. We describe the closed hereditary AD hull and kernel of AD
subcategories in epireflective subcategories of Top. As a consequence we obtain the description of
the closed hereditary coreflective hull and kernel of coreflective subcategories in quotient reflective
subcategories of Top. Also some interesting differences between closed hereditary AD subcate-
gories and closed hereditary coreflective subcategories are studied. We provide some results on
minimal closed hereditary AD subcategories containing a non-discrete space. Moreover, we show
that in the category Top1, there exist no such minimal closed hereditary coreflective subcategories.

2. Preliminaries

The undefined terminology may be found in [1] and [6]. By |A|, we denote the cardinality of the
set A and by P(A) the power set of A. By Top, we denote the category of all topological spaces
and by Top0 (Top1, Dis, Tych, ZD), the category of all T0-spaces (T1-spaces, discrete spaces,
Tychonoff spaces, zero-dimensional spaces). All subcategories are supposed to be full (so that
they are completely described by the class of their objects), isomorphism-closed and to contain a
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non-empty space. To avoid the trivial cases, all epireflective subcategories of Top are supposed to
contain a non-indiscrete space. Such epireflective subcategories are called non-trivial. Note that
if an epireflective subcategory of Top is non-trivial, then it contains all zero-dimensional spaces,
in particular, all discrete spaces and coproducts in this subcategory are precisely the topological
sums. It is known that a subcategory of Top is epireflective if and only if it is closed under
topological products and subspaces, and it is quotient reflective if and only if it is closed under
topological products, subspaces and spaces with finer topology. If A is a non-trivial epireflective
subcategory of Top, then a subcategory of A is coreflective in A if and only if it is closed under
topological sums and extremal quotient objects. If A is quotient reflective, then extremal quotient
objects in A are precisely (usual) quotient maps, and a subcategory of A is coreflective if and only
if it is closed under topological sums and (usual) quotient spaces. The coreflective hull CHA(B)
of a subcategory B of A consists of all X ∈ A such that there exists a family {Xi}i∈I ⊆ B and a
quotient map f :

∐
i∈I Xi → X.

If A is a non-trivial epireflective subcategory of Top, then a subcategory of A is said to be
additive if it is closed under topological sums. It is said to be divisible in A if it is closed under
quotient spaces from A. The AD hull ADA(B) of a subcategory B of A consists of all X ∈ A
such that there exists a family {Xi}i∈I ⊆ B and a quotient map f :

∐
i∈I Xi → X.

A category of topological spaces is said to be (closed) hereditary if it is closed under the formation
of (closed) subspaces. For a subcategory A of topological spaces, CSA denotes the subcategory
consisting of all closed subspaces of spaces from A. If A is a non-trivial epireflective subcategory
of Top and B is a subcategory of A, then the smallest closed hereditary AD subcategory of A
containing B is called the closed hereditary AD hull of B in A. The largest closed hereditary AD
subcategory of A contained in B is called the closed hereditary AD kernel of B in A. Similarly,
we define the closed hereditary coreflective hull and kernel of a subcategory.

Let α be an (infinite) regular cardinal. Then C(α) is the topological space on the set α ∪ {α}
such that a set U ⊆ α ∪ {α} is open in C(α) if and only if U ⊆ α or α ∈ U and |α r U | < α. A
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space X is said to be a Pα-space if for every family S of open subsets of X with |S| < α,
⋂
U∈S U

is also an open subset of X. The category of all Pα-spaces is denoted by Top(α).
Recall that a prime space is a topological space with a unique accumulation point. Let X be a

topological space and a be a point in X. The prime factor Xa of X at a is the space obtained by
making all points of X other than a isolated and retaining the original neighborhoods of a.

3. Closed hereditary AD subcategories

The best known examples of (non-trivial) closed hereditary coreflective (AD) subcategories of
the category Top are both the category CG of compactly generated spaces and the category
Seq of sequential spaces. It is easy to see that if A is a non-trivial epireflective subcategory of
Top, then CG ∩ A and Seq ∩ A are closed hereditary AD subcategories of A. If a non-trivial
epireflective subcategory A of Top contains the space R, then obviously, the coreflective hull
CHA(R) of R in A is a coreflective subcategory of A which is not closed hereditary (the subspace
A = { 1n : n ∈ N} ∪ {0} of R does not belong to CHA(R)). Next we want to show that in any
non-trivial epireflective subcategory of Top, there exists a coreflective (and consequently, AD)
subcategory that is not closed hereditary. We shall use the following notions and results. Let
D(2) be the discrete space on the set {0, 1}. Recall that a topological space X is called a kR-space
(kD(2)-space) provided that every map X → R (X → D(2)) which is continuous on compact
subspaces of X is continuous. It is obvious that every kR-space is also a kD(2)-space. Let us denote
the category of all kR-spaces (kD(2)-spaces) by KR (KD(2)). It is known (see, e.g., [12]) that KR
is a coreflective subcategory of Top.

Proposition 3.1. [5, Proposition 3] Let A be an epireflective subcategory of Top and f : X → Y
be an A-morphism. Then f : X → Y is an extremal A-epimorphism if and only if it is surjective
and for any map g : Y → Z with Z ∈ A the map g is continuous whenever the map g ◦ f is
continuous.
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The following proposition is a consequence of [14, Theorem 5.6 (ii)].

Proposition 3.2. Let X =
∏
a∈AXa. If each Xa is a locally compact T2-space, then X is a

kR-space.

Proposition 3.3. [2, Chapter 2, Problem 367] Let X be a T2-space. If {Ba}a∈A is a family of
subspaces of X and C =

⋂
a∈ABa, then the subspace C of X is homeomorphic to a closed subspace

of the space
∏
a∈ABa.

Proposition 3.4. If A is a non-trivial epireflective subcategory of Top, then KD(2) ∩A is a
coreflective subcategory of A which is not closed hereditary.

Proof. It is easy to see that KD(2) ∩ A is closed under topological sums. We show that it
is also closed under extremal quotient objects. Let X be a kD(2)-space from A, f : X → Y be
an extremal A-epimorphism and the map g : Y → D(2) be continuous on compact subspaces.
Then also the map g ◦ f : X → D(2) is continuous on compact subspaces, hence it is continuous.
According to Proposition 3.1, the map g : Y → D(2) is continuous and therefore Y is a kD(2)-
space. Thus KD(2) ∩ A is coreflective in A. It remains to show that KD(2) ∩ A is not closed
hereditary. Let (R, T ) be the topological space on the set R with T = P(Rr {0}) ∪ {U ⊆ R : 0 ∈
U and RrU is countable}. This space is zero-dimensional and every compact subspace of (R, T )
is finite. The map f : (R, T ) → D(2), defined by f(0) = 0 and f(x) = 1 otherwise, is continuous
on every compact subspace of (R, T ) without being continuous. Hence (R, T ) is not a kD(2)-space.
Since (R, T ) is zero-dimensional and the weight of (R, T ) is equal to c = |R|, the space (R, T )
is homeomorphic to a subspace C of the space D(2)c. By A denote the set D(2)c r C and for
each a ∈ A, by Ba denote the subspace D(2)c r {a} of the space D(2)c. Clearly, each Ba is a
zero-dimensional locally compact T2-space and C =

⋂
a∈ABa. According to Proposition 3.3, C

is homeomorphic to a closed subspace D of the space
∏
a∈ABa which is (by Proposition 3.2) a
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kR-space and consequently, a kD(2)-space. Hence (R, T ) is homeomorphic to a closed subspace of
the space

∏
a∈ABa and the space

∏
a∈ABa belongs to KD(2) ∩A. �

Remark. Similarly, it can be shown that if A is an epireflective subcategory of Top containing
the space R, then KR ∩A is a coreflective subcategory of A which is not closed hereditary.

Proposition 3.5. Let A be a non-trivial epireflective subcategory of Top and B be a closed
hereditary subcategory of A. Then the subcategory ADA(B) is also closed hereditary.

Proof. Let X be a space from ADA(B) and Y be a closed subspace of X. Then there exists a
family of spaces {Xi}i∈I in B and a quotient map f :

∐
i∈I Xi → X. For every i ∈ I, the space

f−1(Y ) ∩ Xi is a closed subspace of Xi, hence f−1(Y ) ∩ Xi ∈ ADA(B). The space f−1(Y ) =∐
i∈I f

−1(Y )∩Xi also belongs to ADA(B). And since the map f |f−1(Y ) : f−1(Y )→ Y is quotient,
we obtain that Y ∈ ADA(B) and the subcategory ADA(B) is closed hereditary. �

The preceding proposition does not hold in general if the AD hull is replaced by the coreflective
hull (see Example 4.2).

Next we describe the closed hereditary AD hull of an AD subcategory in a non-trivial epireflec-
tive subcategory of Top.

Proposition 3.6. Let A be a non-trivial epireflective subcategory of the category Top and B
be an AD subcategory of A. Let C denote the subcategory of A consisting of all spaces Y ∈ A such
that there exists a quotient map f : X → Y from a closed subspace X of a space from B. Then C
is the closed hereditary AD hull of B in A. Moreover, if Top1 ⊆ A, then the closed hereditary
AD hull of B coincides with CSB.

Proof. Obviously, C is an AD subcategory. We show that it is also closed hereditary. Let
X ∈ C and Y be a closed subspace of X. Then there exists a space X2 ∈ CSB and a quotient
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map f : X2 → X. The subspace f−1(Y ) is closed in X2, hence f−1(Y ) ∈ CSB and the map
f |f−1(Y ) : f−1(Y )→ Y is quotient. Thus Y ∈ C and C is additive, divisible and closed hereditary.

Let D be an arbitrary additive, divisible and closed hereditary subcategory of A such that
B ⊆ D. Let X ∈ C. Then there exists a space Y ∈ CSB and a quotient map f : Y → X. Since
B ⊆ D and D is closed hereditary and divisible, we obtain that X ∈ D. Hence C ⊆ D and C is
the closed hereditary AD hull of B.

Finally let Top1 ⊆ A. Then A = Top, A = Top0 or A = Top1. The subcategory CSB of A
is obviously closed hereditary and additive. We show that CSB is also divisible. Let X ∈ CSB
and f : X → Y be a quotient map with Y ∈ A. There exists a space X2 ∈ B such that X is a
closed subspace of X2. Suppose (without loss of generality) that Y ∩X2 = ∅ and define the map
g : X2 → Y ∪X2 rX by

g(x) =

{
f(x) if x ∈ X,
x if x ∈ X2 rX.

By Z denote the space on the set Y ∪X2 rX for which g is a quotient map. Obviously, the space
Y is a closed subspace of Z and the subspace X2rX of X2 is an open subspace of Z. It is easy to
check that if X2 is a T0-space (T1-space), then Z is also a T0-space (T1-space). Hence Z ∈ A and
therefore Z ∈ B. Consequently, Y ∈ CSB and CSB is the closed hereditary AD hull of B. �

It is obvious that if B is a subcategory of an epireflective subcategory A of Top, C is the AD
hull of B in A and D is the closed hereditary AD hull of C in A, then D is the closed hereditary
AD hull of B in A. Hence, as a consequence of Proposition 3.6, we obtain the following.

Theorem 3.7. Let A be a non-trivial epireflective subcategory of the category Top and B be
a subcategory of A. Let C denote the subcategory of A consisting of all spaces Y ∈ A such that
there exists a quotient map f : X → Y from a closed subspace X of a topological sum of spaces
belonging to B. Then C is the closed hereditary AD hull of B in A.
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It is known (see [13]) that every Tychonoff space is homeomorphic to a closed subspace of a
Tychonoff kR-space. From Theorem 3.7 we obtain the following proposition.

Proposition 3.8. Each T1-space (T0-space, topological space) is homeomorphic to a closed
subspace of a T1-kR-space (T0-kR-space, kR-space).

Proof. The subcategory KR ∩ Top1 is coreflective in Top1. According to Theorem 3.7, the
subcategory A = CS(KR ∩Top1) is also coreflective in Top1. Let X be a T1-space. Each prime
factor Xa of X is a zero-dimensional space and similarly, to the case of the space (R, T ) in the
proof of Proposition 3.4, it can be shown that the space Xa is homeomorphic to a closed subspace
of a zero-dimensional kR-space, and hence it belongs to A. Each topological space is a quotient
space of the sum of its prime factors, thus the space X belongs to A and consequently, it is
homeomorphic to a closed subspace of some T1-kR-space. The proof for T0-spaces and topological
spaces is analogous (using the fact that every space is a quotient space of a topological sum of
prime T1-spaces). �

The closed hereditary AD hull of a subcategory B of A can be alternatively described as follows

Proposition 3.9. Let A be a non-trivial epireflective subcategory of the category Top and B
be a subcategory of A. Then CS(AD(B)) ∩A is the closed hereditary AD hull of B in A.

Proof. Obviously, CS(AD(B)) ∩ A is a closed hereditary AD subcategory of A that contains
the subcategory B. Let C be a closed hereditary AD subcategory of A containing B. Then,
according to Proposition 3.5, AD(C) is a closed hereditary AD subcategory of Top and, clearly,
AD(C) ∩ A = C. Obviously, AD(B) ⊆ AD(C) and since AD(C) is closed hereditary we get
CS(AD(B)) ⊆ AD(C). Hence CS(AD(B)) ∩A ⊆ AD(C) ∩A = C. �

The following proposition describes the closed hereditary AD kernel of an AD subcategory of a
non-trivial epireflective subcategory of Top.
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Proposition 3.10. Let A be a non-trivial epireflective subcategory of the category Top and B
be an AD subcategory of A. By C denote the subcategory of B consisting of all spaces X ∈ B such
that each closed subspace Y of X belongs to B. Then C is the closed hereditary AD kernel of B
in A.

Proof. Obviously, C is closed hereditary and additive. Let X ∈ C and f : X → Y be a
quotient map. If Y2 is a closed subspace of Y , then f−1(Y2) is a closed subspace of X and
f |f−1(Y2) : f−1(Y2)→ Y2 is a quotient map. Therefore, Y2 ∈ B, Y ∈ C and C is divisible.

It remains to show that if D is a closed hereditary, additive and divisible subcategory of A such
that D ⊆ B, then D ⊆ C. Let X ∈ D. Every closed subspace of X belongs to D, thus it belongs
to B. Hence X ∈ C, therefore, D ⊆ C. �

Remark. If B is not an AD subcategory of an epireflective subcategory A of Top, then it does
not need to have a closed hereditary AD kernel. For instance, if C and D are closed hereditary AD
subcategories such that C∪D is not a closed hereditary AD subcategory, then C∪D does not have
a closed hereditary AD kernel. For example, we may take C = ADA(C(α)), D = ADA(C(β)),
where α and β are distinct regular cardinals.

Let K(C) denote the closed hereditary AD kernel of an AD subcategory C in the category Top.
The closed hereditary AD kernel of an AD subcategory B in A can be alternatively described in
the following way.

Proposition 3.11. Let A be a non-trivial epireflective subcategory of the category Top and B
be an AD subcategory of A. Then K(AD(B)) ∩A is the closed hereditary AD kernel of B in A.

Proof. Obviously, K(AD(B))∩A is a closed hereditary AD subcategory of A and K(AD(B))∩
A ⊆ AD(B) ∩A = B. Let C be a closed hereditary AD subcategory of A such that B contains
C. According to Proposition 3.5, AD(C) is a closed hereditary AD subcategory of Top. Clearly,
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AD(C) ⊆ AD(B) and AD(C) ⊆ K(AD(B)) (AD(C) is closed hereditary). Therefore, C =
AD(C) ∩A ⊆ K(AD(B) ∩A. �

4. Closed hereditary coreflective subcategories

Every coreflective subcategory of a non-trivial epireflective subcategory of Top is also an AD
subcategory. However, in epireflective subcategories of Top that are not quotient reflective, the
converse is not true. There are AD subcategories that are not coreflective. For example, in the
category Tych (ZD) the subcategory of all Tychonoff (zero-dimensional) k-spaces is additive and
divisible without being coreflective. The categories Top(α)∩Tych (Top(α)∩ZD) are hereditary
coreflective subcategories of the category Tych (ZD), (see [5]) and consequently, they are closed
hereditary. The subcategory of all Tychonoff (zero-dimensional) kD(2)-spaces is coreflective in
Tych (ZD) but not closed hereditary.

From Proposition 3.10 we obtain the following result for quotient reflective subcategories of the
category Top.

Corollary 4.1. Let A be a quotient reflective subcategory of the category Top and B be core-
flective in A. By C denote the subcategory of B consisting of all spaces X ∈ B such that each
closed subspace Y of X belongs to B. Then C is the closed hereditary coreflective kernel of B in
A.

The following example shows that Corollary 4.1 does not hold in general if A is epireflective
but not quotient reflective. Note that every compact space is supposed to be a T2-space (see [6]).

Example 4.2. The category Tych is epireflective in Top but not quotient reflective. The
subcategory KR ∩ Tych is coreflective in Tych and it is not closed hereditary (see the remark
after Proposition 3.4). Then the category C defined as above for B = KR ∩ Tych contains all
compact T2-spaces. Suppose that it is the closed hereditary coreflective kernel of KR∩Tych. Then
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C contains the coreflective hull L of the subcategory of all compact T2-spaces in Tych. According
to [16], L = KR ∩Tych, and therefore, C = KR ∩Tych. But KR ∩Tych is not closed hereditary,
a contradiction.

As a consequence of Theorem 3.7, we obtain the following result for quotient reflective subcat-
egories of the category Top.

Corollary 4.3. Let A be a quotient reflective subcategory of the category Top and B be a
subcategory of A. Let C denote the subcategory of A consisting of all spaces Y ∈ A such that there
exists a quotient map f : X → Y from a closed subspace X of a topological sum of spaces belonging
to B. Then C is the closed hereditary coreflective hull of B in A.

The following proposition describes the construction of the closed hereditary coreflective hull of
a subcategory in an arbitrary non-trivial epireflective subcategory of the category Top.

Proposition 4.4. Let A be a non-trivial epireflective subcategory of the category Top and B
be a subcategory of A. Let B1 = B, Bα+1 = CHA(CSBα) and Bα =

⋃
β<αBβ if α is a limit

ordinal. Then the subcategory B∗ =
⋃
α∈On Bα is the closed hereditary coreflective hull of B in A.

Proof. We first show that B∗ is closed hereditary. Let X ∈ B∗ and Y be a closed subspace
of X. There exists an ordinal α such that X ∈ Bα. Then Y ∈ Bα+1 ⊆ B∗ and B∗ is closed
hereditary. Now, let X ∈ B∗ and f : X → Y be an extremal epimorphism. There exists an ordinal
α such that X ∈ Bα. Then also Y ∈ Bα ⊆ B∗. Therefore, B∗ is closed under extremal quotient
objects. Finally, let {Xi}i∈I ⊆ B∗. There exists an ordinal α such that {Xi}i∈I ⊆ Bα. Then∐
i∈I Xi ∈ Bα+1 ⊆ B∗. Hence B∗ is coreflective.
Let C be a closed hereditary coreflective subcategory of A such that B = B1 ⊆ C. We show by

transfinite induction that Bα ⊆ C for every ordinal α, thus B∗ ⊆ C. Let Bβ ⊆ C for every β < α.
If α is a limit ordinal, then Bα =

⋃
β<αBβ , therefore, Bα ⊆ C. If α is not a limit ordinal, then
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CSBα−1 ⊆ C, because Bα−1 ⊆ C and C is closed hereditary. C is also coreflective, therefore,
CHA(CSBα−1) = Bα ⊆ C. Thus for every ordinal α, we have Bα ⊆ C, consequently B∗ ⊆ C.
Hence B∗ is the closed hereditary coreflective hull of B in A. �

5. Minimal closed hereditary AD subcategories containing a non-discrete space

Let A be a non-trivial epireflective subcategory of Top. An AD subcategory B of A is called
non-trivial if it contains a non-discrete space. In this section we present some results related to
minimal non-trivial closed hereditary AD subcategories in non-trivial epireflective subcategories of
Top. Recall that in quotient reflective subcategories of Top, the AD subcategories are precisely
the coreflective subcategories.

It is well known (see, e.g., [7]) that the category of all sums of indiscrete spaces is the small-
est non-trivial AD subcategory of Top and the category of all finitely generated T0-spaces is the
smallest non-trivial AD subcategory of Top0. Moreover, both of them are hereditary (and, conse-
quently, closed hereditary). Recall that a topological space is finitely generated if every intersection
of open subsets is again an open subset.

We prove that in the category Top1, there exist no minimal non-trivial closed hereditary AD
subcategories. We need the following proposition.

Proposition 5.1. Let A be a non-trivial AD subcategory of the category Top1 and X be a non-
discrete space from A. Let α be the smallest cardinal such that there exists a non-closed subset A
of X with |A| = α. Then there exists a space Y ∈ A with |Y | = |X| such that a subset B of Y is
closed if and only if |B| < α or B = Y . Moreover, the category ADTop1(Y ) is closed hereditary.

Proof. Let A be an AD subcategory of Top1 and (X, T ) ∈ A be a non-discrete space. Let
M = {fi : i ∈ I} be the set of all bijections on the set X and Ti be the topology on the set X
for which the map fi : (X, T ) → (X, Ti) is a homeomorphism. Let g :

∐
i∈I(X, Ti) → X be the
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map defined by g ◦ mi = idX for all natural embeddings mi : (X, Ti) →
∐
j∈I(X, Tj) and T ′ be

the quotient topology on X with respect to g. Obviously, T ′ =
⋂
i∈I Ti, (X, T ′) is a T1-space and

(X, T ′) ∈ A. Let α be the smallest cardinal such that there exists a non-closed subset A of (X, T )
with |A| = α (clearly, α is infinite). Finally, let B be a subset of (X, T ′) such that |B| ≥ α and
B 6= X. Then there exists a subset C of (X, T ) with cardinality |B| that is not closed. Suppose
the contrary and take subsets B1, B2 of X such that |B1| = |B2| = |B| and B1∩B2 = ∅. The space
(X, T ) has a subset A that is not closed and |A| = α. Then |B1 ∪ A| = |B2 ∪ A| = |B|, therefore,
the subsets B1 ∪ A and B2 ∪ A are closed in (X, T ). But then also (B1 ∪ A) ∩ (B2 ∪ A) = A is
closed, a contradiction. Clearly, there exists a bijection fi0 such that fi0 [C] = B. Since the subset
C is not closed in (X, T ), the subset B is not closed in (X, Ti0), and therefore, (because T ′ ⊆ Ti0)
B is not closed in (X, T ′). It remains to show that the subcategory ADTop1((X, T ′)) is closed
hereditary. Let Z be a closed subspace of (X, T ′). Then Z = X or |Z| < α and in this case Z is a
discrete space. Hence Z ∈ ADTop1((X, T ′)) and ADTop1((X, T ′)) is closed hereditary. �

Corollary 5.2. Let A be an AD subcategory of the category Top1. The category Dis is the
closed hereditary AD kernel of A in Top1 only if A = Dis.

Proposition 5.3. In the category Top1, there exist no minimal non-trivial closed hereditary
AD subcategories.

Proof. Assume that A is a minimal non-trivial closed hereditary AD subcategory of Top1. By
Proposition 5.1, there exists an (infinite) cardinal α and a space X ∈ A with α ≤ |X| such that
a subspace A of X is closed if and only if |A| < α or A = X. The subcategory ADTop1(X) is
closed hereditary and it is a subcategory of A. Since A is minimal, ADTop1(X) = A holds. Let
I be a set such that |I| > |X| and Y =

∐
a∈I Xa, where Xa = X for every a ∈ I. Clearly, Y is

non-discrete and α is the smallest cardinal such that Y has a subset of cardinality α that is not
closed. By Proposition 5.1, there exists a space Y ′ ∈ ADTop1(X) such that |Y ′| = |Y | > |X| and
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a subset A of Y ′ is closed if and only if |A| < α or A = Y ′. The category ADTop1(Y ′) is closed
hereditary and it is a subcategory of ADTop1(X). Therefore, ADTop1(Y ′) = ADTop1(X). Then
X ∈ ADTop1(Y ′), thus there exists a quotient map f :

∐
i∈J Yi → X, where Yi = Y ′ for every

i ∈ J . For each j ∈ J , by mj : Y ′ →
∐
i∈I Yi denote the corresponding natural embedding. Then

for some i0 ∈ J , the set f [mi0 [Y ′]] is not a singleton (otherwise, X would be a discrete space).
Singletons are closed in X, therefore, for every c ∈ X, the set Zc = f−1(c) ∩ mi0 [Y ′] is closed
in mi0 [Y ′]. Since Zc 6= mi0 [Y ′], we get |Zc| < α. Then mi0 [Y ′] =

⋃
c∈X Zc and we obtain that

|X| < |Y | = |Y ′| = |mi0 [Y ′]| = |
⋃
c∈X Zc| ≤ |X| · α = |X|, a contradiction. �

Next we investigate minimal non-trivial closed hereditary AD subcategories in epireflective
subcategories A of Top such that A ⊆ Haus. A topological space X is called pseudoradial if
a subspace A of X is closed whenever every limit of every transfinite sequence of elements of
A belongs to A. It is known that the category of all pseudoradial spaces is the AD hull of the
subcategory {C(α) : α is a regular cardinal} in Top.

Proposition 5.4. Let A be a non-trivial epireflective subcategory of Top such that A ⊆ Haus
and B be a closed hereditary AD subcategory of A which contains a non-discrete pseudoradial
space. Then there exists a regular cardinal α such that ADA(C(α)) ⊆ B.

First we prove the following lemma.

Lemma 5.5. Let α be a regular cardinal, X be a Hausdorff Pα-space and f : C(α) → X be a
continuous map. Then the following holds:

a) The subspace f [C(α)] is closed in X.
b) The map f : C(α)→ X is closed.
c) If {f(α)} is an open subset in the subspace f [C(α)] of X, then f [C(α)] is a discrete space.
d) If f [C(α)] is not discrete, then there exists a set A ⊆ α such that |A| = α and the map

f |A∪{α} : A∪{α} → f [C(α)] is a homeomorphism. Thus f [C(α)] is homeomorphic to C(α).
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Proof. a) Let c ∈ X r f [C(α)]. Since X is a T2-space, there are neighbourhoods U of f(α)
and V of c in X such that U ∩ V = ∅. The subset U1 = f−1(U) is open in C(α) and α ∈ U1,
therefore, |C(α) r U1| < α. Let B denote f [C(α) r U1]. Then |B| < α. For every x ∈ B, we
have x 6= c, thus there exist neighbourhoods Ux of x and Vx of c in X such that Ux ∩ Vx = ∅.
Obviously, f [C(α)] ⊆ U ∪

⋃
x∈B Ux = W1. The set W2 = V ∩

⋂
x∈B Vx is a neighbourhood of c

and W1 ∩W2 = ∅. Hence W2 ∩ f [C(α)] = ∅ and therefore, the subspace f [C(α)] is closed in X.
b) Let F be a closed subspace of C(α). Then |F | < α or |F | = α and α ∈ F . If |F | < α, then

also |f [F ]| < α, thus f [F ] is closed in X. If |F | = α and α ∈ F , then F is homeomorphic to C(α)
and the map f |F : F → X is continuous. By part a), f |F [F ] = f [F ] is a closed subspace of X.

c) Let {f(α)} be an open subset of f [C(α)]. Then f−1(f(α)) = U is open in C(α), α ∈ U and
|C(α) r U | < α. For every x ∈ f [C(α)] r {f(α)}, we have f−1(x) ⊆ C(α) r U , therefore, it is an
open subset of C(α). Since the map f : C(α) → X is closed, also f : C(α) → f [C(α)] is closed,
thus it is a quotient map. Since the subset f−1(x) is open in C(α), also {x} is open in f [C(α)].

d) Let f−1(f(α)) = C. Then α ∈ C and C is not open in C(α) (otherwise, {f(α)} would be
open in f [C(α)]). Therefore, for D = C(α)rC, we have |D| = α. For every x ∈ f [C(α)]r{f(α)},
let Dx = f−1(x). The subset Dx is closed in C(α) and α /∈ Dx, hence |Dx| < α. Then obviously,
|f [C(α)] r {f(α)}| = α because α is regular. Let A be a subset of α such that for every x ∈
f [C(α)]r {f(α)}, A∩Dx is a singleton. The subspace A∪ {α} of C(α) is homeomorphic to C(α)
because |A| = α. Then the map f |A∪{α} : A ∪ {α} → f [C(α)] is continuous, bijective and closed,
therefore it is a homeomorphism. �

Proof of Proposition 5.4. Let X be a non-discrete pseudoradial space from B. Then there exists
a family of regular cardinals {αi}i∈I and a quotient map f :

∐
j∈I C(αj)→ X. Let mi : C(αi)→∐

j∈I C(αj) be the natural embedding of C(αi) to
∐
j∈I C(αj), J = {i ∈ I : f ◦mi[C(αi)] is not a

discrete subspace of X} and m′i : C(αi)→
∐
j∈J C(αj) be the natural embedding corresponding to∐

j∈J C(αj). Then also the map g :
∐
j∈J C(αj)→ X such that g ◦m′i = f ◦mi for every i ∈ J , is
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quotient. Choose i0 ∈ J such that αi0 ≤ αi, for every i ∈ J . Then
∐
j∈J C(αj) is a Pαi0

-space and

consequently, X is a Hausdorff Pαi0
-space. The map g ◦m′i0 = h : C(αi0)→ X is continuous and

the subspace h[C(αi0)] of X is not discrete. Hence by Lemma 5.5 a) and d), h[C(αi0)] is a closed
subspace of X and it is homeomorphic to C(αi0). Thus C(αi0) ∈ B and ADA(C(αi0)) ⊆ B. �

Corollary 5.6. Let A be a non-trivial epireflective subcategory of Top such that A ⊆ Haus.
Then ADA(C(α)) are minimal non-trivial closed hereditary AD subcategories of A.

We do not know whether the collection of all subcategories ADA(C(α)), α being a regular
cardinal, contains all minimal non-trivial closed hereditary AD subcategories.

Let (X, TX), (Y, TY ) be topological spaces. Then X ≺ Y means that X = Y and TY ⊆ TX .

Lemma 5.7. [16, Lema 6.3] Let α be any infinite cardinal. If Y ≺ C(α) is a prime space (with
the accumulation point α), then there exists a regular cardinal β with C(β) ∈ CH(Y ).

Proposition 5.8. [16, Proposition 6.5] If X is not a sum of connected spaces, then there exists
a cardinal α and a quotient map f : X → P , where P is a prime T2-space and P ≺ C(α).

In the following let SC denote the category of all topological sums of connected spaces. From
Lemma 5.7 and Proposition 5.8, we obtain the following result.

Proposition 5.9. Let A be a non-trivial epireflective subcategory of the category Top such that
A ⊆ Haus and B be an AD subcategory of A such that B 6⊆ SC. Then there exists a regular
cardinal α such that ADA(C(α)) ⊆ B.

Recall that a topological space is said to be totally disconnected if all its components are
singletons. The category TD of all totally disconnected spaces is a quotient reflective subcategory
of Top. If a totally disconnected space X is a topological sum of connected spaces, then it is a
discrete space. As a consequence of Proposition 5.9 we obtain the following result.
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Proposition 5.10. Let A be a non-trivial epireflective subcategory of the category Top such
that A ⊆ TD ∩ Haus and B 6= Dis be an AD subcategory of A. Then there exists a regular
cardinal α such that ADA(C(α)) ⊆ B.

In this case for every minimal non-trivial AD subcategory B of A, there exists a regular cardinal
α such that B = ADA(C(α)).

Proposition 5.9 yields also the following result.

Proposition 5.11. Let A be a non-trivial epireflective subcategory of the category Top such
that A ⊆ Haus and B be an AD subcategory of A such that its closed hereditary AD kernel is the
subcategory of all discrete spaces. Then B ⊆ SC.
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