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DEGENERATE MONGE-TYPE HYPERSURFACES

D. N. PHAM

Abstract. In this note, we extend the notion of a Monge hypersurface from its roots in a semi-

Euclidean space to more general spaces. For the degenerate case, the geometry of these structures is
studied using the Bejancu-Duggal method of screen distributions.

1. Introduction

Semi-Riemannian geometry is a well established branch of mathematics. By comparison, the theory
of lightlike manifolds is still relatively new and less developed. If (M, g) is a semi-Riemannian
manifold and (M, g) is a semi-Riemannian submanifold of (M, g), the key to relating the geometry
on M with that of M is the fact that the tangent bundle of M splits as

TM |M = TM ⊕NM,

where TM and NM , respectively, are the tangent bundle and normal bundle of M . In lightlike
geometry, this decomposition is no longer possible since a degenerate metric produces a non-empty
intersection between TM and NM .

Lightlike submanifolds arise naturally in semi-Riemannian geometry as well as physics. In semi-
Riemannian geometry, the metric tensor is indefinite. Consequently, there is no assurance that
the induced metric on any given submanifold will remain non-degenerate. In general relativity,
lightlike submanifolds model various types of horizons [1], [14], [15].
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To deal with the problems posed by lightlike submanifolds1, Bejancu and Duggal introduced
the notion of screen distributions in [6], which provides a direct sum decomposition of TM with
certain nice properties. With a choice of a screen distribution, one can induce geometric objects
on a lightlike submanifold in a manner which is analogous to what is done in the classical theory
of submanifolds.

For any developing theory of mathematics, examples clearly play an important role in testing
ideas, developing concepts, and shaping the overall theory. For the field of lightlike geometry, a
number of instructive examples have come in the form of a Monge hypersurface. In addition to
being a source of examples for the field, Monge hypersurfaces are also interesting geometric objects
in their own right [4], [5], [10], [6]. As defined in [6], [10], a Monge hypersurface lives in semi-
Euclidean space, which places limitations on their geometry. In this note, we extend the notion of
a Monge hypersurface from its roots in semi-Euclidean space to more general spaces. These new
structures, which we call Monge-type hypersurfaces, allow for more general geometries, and could,
in time, be a source of new and interesting examples of lightlike hypersurfaces.

The rest of the paper is organized as follows. In Section 2, we review the method of screen
distributions introduced by Bejancu and Duggal in [6]. In Section 3, we develop the basic theory
of Monge-type hypersurfaces as it pertains to lightlike geometry. Lastly, in Section 4, we conclude
the paper with some basic examples.

2. Preliminaries

In this section, we review the Bejancu-Duggal approach to lightlike geometry [10], [6]. We begin
with the following definition

1For an alternate approach to lightlike geometry, see [12], [13].
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Definition 2.1. An r-lightlike (or degenerate) manifold (M, g) is a smooth manifold M with
a degenerate metric g, which satisfies the following conditions:

1. The radical space

RadTpM := {u ∈ TpM | g(u, v) = 0 ∀v ∈ TpM}(2.1)

has dimension r > 0 for all p ∈M ;
2. The distribution defined via p 7→ RadTpM is smooth.

Definition 2.2. Let (M, g) be a semi-Riemannian manifold. A submanifold M of M is a
lightlike submanifold if (M, g) is a lightlike manifold, where g is the induced metric on M .

Hence, the fibers of RadTM are

RadTpM = TpM ∩ TpM⊥,(2.2)

where

TpM
⊥ := {u ∈ TpM | g(u, v) = 0 ∀v ∈ TpM}.(2.3)

Since dim Rad TpM > 0, TM |M does not decompose as the direct sum of TM and TM⊥. Conse-
quently, the classical Gauss-Weingarten formulas breakdown for lightlike submanifolds. As a way
to remedy this problem, Bejancu and Duggal [6] introduced the notion of screen distributions.
We now review this approach for the special case when (M, g) is a lightlike hypersurface, that is,
a lightlike submanifold of codimension 1 in (M, g). Notice that this implies that TM⊥ is a line
bundle and TM⊥ ⊂ TM . By (2.2), we have

RadTM = TM⊥.(2.4)

A screen distribution S(TM) is any smooth vector bundle for which

TM = S(TM)⊕ TM⊥.(2.5)
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Notice that (2.5) implies that g is non-degenerate on S(TM). The fundamental result of [6] for
the case of lightlike hypersurfaces can be stated as follows

Theorem 2.3. Let (M, g) be a semi-Riemannian manifold and let (M, g) be a lightlike hyper-
surface of M . For each screen distribution S(TM), there exists a unique line bundle tr(TM) which
satisfies the following conditions:

(i) TM |M = TM ⊕ tr(TM)
(ii) given a non-vanishing local section ξ of TM⊥ which is defined on a neighborhood U of

p ∈M , there exists a unique, non-vanishing local section Nξ of tr(TM) defined on a neigh-
borhood U ′ ⊂ U of p such that
(a) g(ξ,Nξ) = 1
(b) g(Nξ, Nξ) = 0
(c) g(W,Nξ) = 0 for all W ∈ Γ(S(TM)|U ′).

The line bundle tr(TM) appearing in Theorem 2.3 is called the lightlike transversal bundle. Ex-
plicitly, tr(TM) is constructed as follows. Let F be any vector bundle for which

F ⊕ TM⊥ = S(TM)⊥.(2.6)

Notice that F is necessarily a line bundle. For all p ∈ M , choose a non-vanishing local section ξ
of TM⊥ and a non-vanishing local section V of F which are both defined on a neighborhood U of
p. Since g is non-degenerate on S(TM), it follows that

TM |M = S(TM)⊕ S(TM)⊥.(2.7)

This implies

g(ξ, V ) 6= 0
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on U . The local section Nξ in Theorem 2.3 is then given by

Nξ :=
1

g(ξ, V )

(
V − g(V, V )

2g(ξ, V )
ξ

)
.(2.8)

It can be shown that the 1-dimensional space spanned by Nξ is independent of the choice of ξ or
the bundle F . Hence, Nξ determines a rank 1 distribution, which in turn defines the line bundle
tr(TM).

Using the decomposition of Theorem 2.3, one obtains a modified version of the Gauss-Weingarten
formulas for lightlike hypersurfaces:

∇XY = ∇XY + h(X,Y )(2.9)

∇XV = −AVX +∇tXV(2.10)

for all X,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where

(i) ∇ is the Levi-Civita connection on (M, g)
(ii) ∇XY and AVX belong to Γ(TM)
(iii) h(X,Y ) and ∇tXV belong to Γ(tr(TM)).

It follows from (2.9) that ∇ is a connection on M and h is a Γ(tr(TM))-valued C∞(M)-bilinear
form. In addition, a direct verification shows that ∇ is torsion-free and h is symmetric. In (2.10),
AV is a C∞(M)-linear operator on Γ(TM) and ∇t is a connection on tr(TM). As in the classical
submanifold theory, h is called the second fundamental tensor, and AV is the shape operator of M
in M . Lastly, the second fundamental form Bξ associated with a local section ξ of TM⊥ is defined
by

Bξ(X,Y ) := g(∇XY, ξ).(2.11)
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It follows from this definition that

h(X,Y ) = Bξ(X,Y )Nξ.(2.12)

The primary shortcoming of this approach is that some (not all) of the induced geometric objects
on (M, g) are dependent on the choice of S(TM). Hence, the search for spaces with canonical or
unique screen distributions has been an area of research for this approach [7], [8], [9], [2], [3].
Fortunately, this framework does contain objects which are independent of the choice of a screen
distribution. Consequently, these objects provide the aforementioned theory with well-defined
invariants. We conclude this section by recalling some of these invariants.

Definition 2.4. Let (M, g) be a lightlike hypersurface with the screen distribution S(TM) and
let Bξ denote the second fundamental form associated with a local section ξ of TM⊥. Then (M, g)
is

(i) totally geodesic if Bξ ≡ 0
(ii) totally umbilical if Bξ = ρg for a smooth function ρ

(iii) minimal if
n∑
i=1

εiBξ(Ei, Ei) = 0,

where Ei, i = 1, . . . , n is any orthonormal local frame of S(TM), and εi := g(Ei, Ei) ∈
{−1, 1}.

Remark 2.5. Since Bξ is given by (2.11), statements (i) and (ii) of the above definition are clearly
independent of the choice of a screen distribution. Although not quite as apparent, statement (iii)
of the above definition is independent of both the choice of orthonormal frame and the choice of a
screen distribution. In addition, notice that if ξ′ is another local section of TM⊥ (defined on the
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same open set as ξ), then

Bξ′ = λBξ,(2.13)

for a smooth non-vanishing function λ. Hence, (i)–(iii) are also independent of the choice of local
section ξ.

3. Monge-Type Hypersurfaces

We begin with the following definition.

Definition 3.1. A Monge-type hypersurface (M, g) and its ambient space (M, g) are generated

by a triple (M̂, ĝ, F ), where

(i) (M̂, ĝ) is a semi-Riemannian manifold, and

(ii) F : M̂ → R is a smooth function.

The ambient space (M, g) is the semi-Riemannian manifold defined by

M := R× M̂
g := −dx0 ⊗ dx0 + π∗ĝ,

where π : M → M̂ is the natural projection map and x0 is the natural coordinate associated with
the R-component of M . (M, g) is the hypersuface in (M, g) defined by

M := {(t, p) ∈M | t = F (p)}
g := i∗g,

where i : M ↪→M is the inclusion map. The triple (M̂, ĝ, F ) is a Monge-type generator.
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Remark 3.2. Let Rn+1
k−1 denote an (n + 1)-dimensional semi-Euclidean space with index k − 1,

that is, the space Rn+1 with the metric

η := −
k−1∑
i=1

dxi ⊗ dxi +

n+1∑
j=k

dxj ⊗ dxj .

If M̂ in Definition 3.1 is an open submanifold of Rn+1
k−1 (with the induced metric), then (M, g)

coincides with the definition given in [6] for a Monge hypersurface.

Definition 3.3. A Monge-type generator is degenerate if its associated Monge-type hypersur-
face is degenerate.

Theorem 3.4. Let (M̂, ĝ, F ) be a Monge-type generator. Then the associated Monge-type

hypersurface is lightlike iff ĝ(ξ̂, ξ̂) = 1, where ξ̂ is the gradient of F with respect to ĝ.

Proof. Let (M, g) and (M, g) be defined as in Definition 3.1. Set

G := F ◦ π − x0(3.1)

ξ := gradg G,(3.2)

where π : M → M̂ is the projection map and gradg G is the gradient of G with respect to g. Since

M = G−1(0), it follows that ξ is normal to M . Hence, M is lightlike iff

g(ξ, ξ) = 0.(3.3)

Let ξ̂L denote the unique lift of ξ̂ to M . Then

ξ =
∂

∂x0
+ ξ̂L.(3.4)
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Theorem 3.4 then follows from the fact that

g(ξ, ξ) = −1 + g(ξ̂L, ξ̂L) = −1 + ĝ(ξ̂, ξ̂).(3.5)

�

Remark 3.5. Let (M̂, ĝ, F ) be a Monge-type generator and (M, g) its associated ambient space.

If X is any vector field on M̂ , we will denote its unique lift to M by XL, that is, if

π1 : M → R

π2 : M → M̂

are the natural projection maps, then

π1∗XL = 0

π2∗XL = X.

To simplify notation in some places, we will not distinguish between XL and X.

From the proof of Theorem 3.4, we have the following corollaries

Corollary 3.6. Let (M̂, ĝ, F ) be a Monge-type generator and let (M, g) and (M, g) be defined
as in Definition 3.1. Then

ξ :=
∂

∂x0
+ ξ̂L,

is normal to M , where ξ̂ := gradĝ F .

Corollary 3.7. Let (M̂, ĝ, F ) be a Monge-type generator. If the associated Monge-type hyper-

surface is degenerate in the sense of Definition 2.1, then M̂ cannot be compact.



JJ J I II

Go back

Full Screen

Close

Quit

Proof. Let ξ̂ := gradĝ F . If M̂ is compact, then F must have a critical point somewhere on M̂ .

Hence, ξ̂ must vanish at some point. The statement of the corollary now follows from Theorem
3.4. �

Corollary 3.8. Let (M, g) be a Monge hypersurface with generator (U, η̂, F ), that is, U is an
open submanifold of Rn+1

k−1 and η̂ is the induced metric. Then (M, g) is lightlike iff

−
k−1∑
i=1

(
∂F

∂xi

)2

+

n+1∑
j=k

(
∂F

∂xj

)2

= 1.

Proof. Let ξ̂ denote the gradient of F with respect to η̂. Then

ξ̂ = −
k−1∑
i=1

∂F

∂xi
∂

∂xi
+

n+1∑
j=k

∂F

∂xj
∂

∂xj
.(3.6)

For v ∈ TxRn+1 ' Rn+1,

η̂(v, v) := −
k−1∑
i=1

(vi)2 +

n+1∑
j=k

(vj)2.(3.7)

The corollary now follows from Theorem 3.4. �

The following is an immediate consequence of Definition 3.1.

Lemma 3.9. Let (M, g) be an (n + 1)-dimensional Monge-type hypersurface with generator

(M̂, ĝ, F ). For p ∈ M̂ and (U, xi) a coordinate neighborhood of p, the vector fields

ei :=
∂F

∂xi
∂

∂x0
+

∂

∂xi
, i = 1, . . . , n+ 1
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make up a local frame on M in a neighborhood of (F (p), p).

Theorem 3.10. Let (M̂, ĝ, F ) be a generator with the ambient space (M, g) and Monge-type
hypersurface (M, g). In addition, let ∇ be the Levi-Civita connection on M and let ξ be defined as
in Corollary 3.6. Then the second fundamental form Bξ of M satisfies

Bξ(X,Y ) = −Hess(F )(π∗X,π∗Y ),(3.8)

for all X,Y ∈ Γ(TM), where Hess(F ) is the Hessian of F in (M̂, ĝ).

Proof. By definition,

Bξ(X,Y ) := g(∇XY, ξ) = −g(Y,∇Xξ).(3.9)

Let q ∈M ⊂M and let (U, xi) be a coordinate neighborhood of π(q) in M̂ . Since Bξ is C∞(M)-
bilinear, it suffices to show that

Bξ(ei, ej) = −Hess(F )(π∗ei, π∗ej),(3.10)

where {ei} is the local frame on M in Lemma 3.9 associated with (U, xi). Consider the coordinate
system (R×U, (x0, xi)) of q in M . In this coordinate system, the coefficients of g and ĝ are related
via

gij = ĝij , i, j > 0(3.11)

g0i = 0, i > 0(3.12)

g00 = −1.(3.13)

Let ∇̂ be the Levi-Civita connection on (M̂, ĝ). Then (3.11)–(3.13) implies

∇eiej =
∂2F

∂xi∂xj
∂

∂x0
+
(
∇̂∂i∂j

)
L
,(3.14)
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where

∂i :=
∂

∂xi
.

Hence,

g
(
∇eiej , ξ

)
=

∂2F

∂xi∂xj
g(∂0, ξ) + g

((
∇̂∂i∂j

)
L
, ξ
)

(3.15)

= − ∂2F

∂xi∂xj
+ ĝ

(
∇̂∂i∂j , ξ̂

)
(3.16)

= − ∂2F

∂xi∂xj
+ dF

(
∇̂∂i∂j

)
(3.17)

= −Hess(F )(∂i, ∂j)(3.18)

= −Hess(F )(π∗ei, π∗ej)(3.19)

where the third to last equality follows from the definition of ξ̂ in Theorem 3.4. �

Corollary 3.11. Let (M, g) be a Monge-type hypersurface with generator (M̂, ĝ, F ) and ambient

space (M, g). Then M is totally geodesic iff Hess(F ) ≡ 0 on M̂ .

In terms of its generator, the following gives a necessary and sufficient condition for a Monge-type
hypersurface to be totally umbilical.

Theorem 3.12. Let (M, g) be a Monge-type hypersurface with generator(M̂, ĝ, F ) and ambient

space (M, g). Then M is totally umbilical in M iff for all p ∈ M̂ , there exists a neighborhood Û of

p and a smooth function ρ̂ ∈ C∞(Û) such that

Hess(F ) = ρ̂ (dF ⊗ dF − ĝ)
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on Û .

Proof. Let ξ be defined as in Corollary 3.6, let q ∈M be any point, let (U, xi) be a coordinate

neighborhood of π(q) in M̂ , where π is the projection map from M to M̂ , and let {ei} be the local
frame on M from Lemma 3.9 associated with (U, xi). From Theorem 3.10, the condition that M
is totally umbilical is equivalent to

Hess(F )(π∗ei, π∗ej) = −ρg(ei, ej)(3.20)

for some smooth function ρ defined on a neighborhood

V ⊂ π−1(U) ∩M(3.21)

of q in M . Let ρ̂ be the smooth function on the open set π(V ) ⊂ M̂ defined by

ρ = ρ̂ ◦ π.(3.22)

Expanding the right side of (3.20) gives

−ρg(ei, ej) = −ρg(ei, ej)(3.23)

−ρg(ei, ej) = −ρ̂
(
− ∂F
∂xi

∂F

∂xj
+ ĝ(∂i, ∂j)

)
(3.24)

−ρg(ei, ej) = ρ̂

(
∂F

∂xi
∂F

∂xj
− ĝ(∂i, ∂j)

)
(3.25)

where it is understood that if the left side of (3.25) is evaluated at p ∈ V , the right side is evaluated
at π(p). Since π∗ei = ∂i and

dF (∂i) =
∂F

∂xi
,(3.26)
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we have

Hess(F ) = ρ̂ (dF ⊗ dF − ĝ)(3.27)

on π(V ). This completes the proof. �

Corollary 3.13. Let M be a Monge hypersurface of Rn+2
k with generator (Û , η̂, F ). Then M

is totally umbilical iff there exists a smooth function ρ̂ on Û such that

∂2F

∂xi∂xj
= ρ̂

(
∂F

∂xi
∂F

∂xj
− η̂ij

)
, 1 ≤ i, j ≤ n+ 1.(3.28)

Theorem 3.14. Every degenerate Monge-type hypersurface has a canonical screen distribution

which is integrable. If (M̂, ĝ, F ) is a lightlike generator with ambient space (M, g), the lightlike
transversal line bundle associated with the canonical screen is spanned by

Nξ = −1

2

(
∂

∂x0
− ξ̂L

)
,

where ξ̂ := gradĝ F . In addition, the vector field Nξ satisfies g(ξ,Nξ) = 1.

Proof. Let (M, g) be a degenerate Monge-type hypersurface with generator (M̂, ĝ, F ) and am-
bient space (M, g). Let

V := − ∂

∂x0
∈ Γ(TM)(3.29)

and let ξ be defined as in Corollary 3.6. The canonical screen distribution is then defined by setting

S(TM) = (Lξ ⊕ LV )⊥,(3.30)
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where Lξ and LV are the line bundles over M with sections ξ|M and V |M , respectively. Since

TM = L⊥ξ ,(3.31)

it follows that S(TM) ⊂ TM . In addition, since

g(ξ, V ) = 1,(3.32)

it follows that g is non-degenerate on S(TM). Hence, ξp /∈ S(TM)p for all p ∈M . This implies

TM = S(TM)⊕ TM⊥.(3.33)

From (2.8), the lightlike transversal line bundle tr(TM) associated with S(TM) is spanned by the
vector field

Nξ = −1

2

(
∂

∂x0
− ξ̂L

)
.(3.34)

The fact that g(ξ,Nξ) = 1 is a consequence of Theorem 2.3.
To show that S(TM) is integrable, notice from the definition of V and g that

g(W,V ) = 0⇐⇒Wx0 = 0(3.35)

for all W ∈ Γ(TM). Let X,Y ∈ Γ(S(TM)). From the definition of S(TM), it follows that

[X,Y ]x0 = X(Y x0)− Y (Xx0) = X(0)− Y (0) = 0.(3.36)

Hence [X,Y ] ∈ L⊥V . Lastly, since X,Y are vector fields on M , so is [X,Y ]. Hence, [X,Y ] ∈ L⊥ξ .
This completes the proof. �

Regarding minimal Monge-type hypersurfaces, we have the following result.
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Theorem 3.15. Let (M̂, ĝ, F ) be a degenerate Monge-type generator. The associated Monge-

type hypersurface (M, g) is minimal iff for all p̂ ∈ M̂ , there exists a neighborhood Û of p̂ and an

orthonormal frame {Êi} of the kernel of dF |Û such that

n∑
i=1

εi Hess(F )(Êi, Êi) = 0,(3.37)

where εi = ĝ(Êi, Êi) ∈ {−1, 1} and n := dim M̂ − 1.

Proof. Let S(TM) be the canonical screen distribution on (M, g) and let (M, g) be the ambient

space associated with (M̂, ĝ, F ). In addition, let ξ be the null vector field tangent to M given by
Corollary 3.6.

Suppose that (M, g) is minimal. By definition, this means that for all p ∈ M , there exists a
neighborhood U of p and an orthonormal frame {Ei}ni=1 of S(TM)|U such that

n∑
i=1

εiBξ(Ei, Ei) = 0,(3.38)

where εi = g(Ei, Ei). Let π : M → M̂ be the projection map. If necessary, shrink U so that the

open set Û := π(U) is covered by a coordinate system (xj)n+1
j=1 . Let {ej}n+1

j=1 be the local frame on

M associated with (Û , xj) (see Lemma 3.9). Then

Ei =

n+1∑
j=1

αji ej =

n+1∑
j=1

αji
∂F

∂xj

 ∂

∂x0
+

n+1∑
j=1

αji
∂

∂xj
, i = 1, . . . , n(3.39)
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for some smooth functions αji , j = 1, . . . , n+ 1, i = 1, . . . , n. Since Ei is a section of S(TM)|U , we
have g(Ei, ∂0) = 0, which is equivalent to

n+1∑
j=1

αji
∂F

∂xj
= 0.(3.40)

Set

Êi =

n+1∑
j=1

αji
∂

∂xj
, i = 1, . . . , n(3.41)

where Êi is regarded as a vector field on Û . As a consequence of (3.40), we have

Ei = (Êi)L,(3.42)

where (Êi)L is the unique lift of Êi to U . In addition, notice that (3.40) is equivalent to

dF (Êi) = 0, i = 1, . . . , n.(3.43)

Moreover,

g(Ei, Ej) = ĝ(Êi, Êj) = εjδij ,(3.44)
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where δij = 1 if i = j and zero otherwise. Equation (3.43) shows that Êi belongs to the kernel of

dF on Û . By Theorem 3.10, we have

n∑
i=1

εi Hess(F )(Êi, Êi) =

n∑
i=1

εi Hess(F )(π∗(Êi)L, π∗(Êi)L)

= −
n∑
i=1

εiBξ((Êi)L, (Êi)L)

= −
n∑
i=1

εiBξ(Ei, Ei)

= 0.

For the converse, we use (3.42) to define Ei in terms of Êi. This immediately guarantees that
the Ei are orthonormal and satisfy

g(Ei, ∂0) = 0

g(Ei, ξ) = 0,

where the last equality follows from the fact that the Êi belong to the kernel of dF . Hence,
{Ei}ni=1 is a local orthonormal frame on S(TM). Running the above calculation in reverse shows
that (M, g) is minimal. This completes the proof. �

4. Examples

In this section, two basic examples of degenerate Monge-type hypersurfaces are presented; both
examples are totally umbilical.
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Example 4.1. Let (M̂, ĝ, F ) be the generator defined by

M̂ := {x ∈ Rn+1 | xn+1 > 0}

ĝ :=
1

(xn+1)2
(dx1 ⊗ dx1 + · · ·+ dxn+1 ⊗ dxn+1)

F := ln(xn+1).

In other words, (M̂, ĝ) is an (n+ 1)-dimensional hyperbolic space. Let

ξ̂ := gradĝ F = xn+1 ∂

∂xn+1
.(4.1)

Since ĝ(ξ̂, ξ̂) = 1, it follows from Theorem 3.4 that the associated Monge-type hypersurface is
lightlike. A direct verification shows that

Hess(F )(∂i, ∂j) =


− 1

(xn+1)2
i = j < n+ 1

0 i = j = n+ 1
0 i 6= j

From this it follows easily that

Hess(F ) = dF ⊗ dF − ĝ.

Hence, by Theorem 3.12, the associated Monge-type hypersurface (M, g) is totally umbilical. The
null vector field ξ tangent to M (see Corollary 3.6) is

ξ =
∂

∂x0
+ xn+1 ∂

∂xn+1
.(4.2)
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Let tr(TM) denote the lightlike transversal bundle associated with the canonical screen (see The-
orem 3.14), and let Nξ denote the unique section of tr(TM) associated with ξ . The induced linear
connection ∇ on (M, g) is then given by

∇XY = ∇XY + g(X,Y )Nξ(4.3)

for all X,Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on the ambient space (M, g). (Note
that the second fundamental form Bξ is precisely g in this example.)

Example 4.2. Let (M̂, ĝ, F ) be the generator2 defined by

M̂ := {(t, r) | −∞ < t <∞, r > R}

ĝ := −
(

1− R

r

)
dt⊗ dt+

(
1− R

r

)−1
dr ⊗ dr

F :=
√
r
√
r −R+R ln

(√
r +
√
r −R

)
,

where R > 0 is a constant. A direct verification shows that

ξ̂ := gradĝ F =

√
r −R
r

∂

∂r
.(4.4)

This shows that ĝ(ξ̂, ξ̂) = 1. By Theorem 3.4, the associated Monge-type hypersurface (M, g) is
lightlike. For the Hessian of F , we have

Hess(F )(∂i, ∂j) =

 −
R
√
r −R

2r5/2
i = j = t

0 otherwise

2The Lorentz manifold (M̂, ĝ) is actually a 2-dimensional submanifold of the Schwartzchild spacetime (see [11, pp.
149]).
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From this, we have

Hess(F ) = ρ(dF ⊗ dF − ĝ),

where

ρ = − R

2r3/2
√
r −R

.(4.5)

Hence, (M, g) is totally umbilical (in the ambient space (M, g)) by Theorem 3.12.
The null vector field ξ tangent to M (see Corollary 3.6) is

ξ :=
∂

∂x0
+

√
r −R
r

∂

∂r
.

Let tr(TM) be the lightlike transversal bundle associated with the canonical screen on M (see
Theorem 3.14). The unique section of tr(TM) associated with ξ is then

Nξ = −1

2

(
∂

∂x0
−
√
r −R
r

∂

∂r

)
.

Using the above information, the induced linear connection on (M, g) is then given by

∇XY = ∇XY + ρg(X,Y )Nξ, ∀ X,Y ∈ Γ(TM).(4.6)
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