SIGNED STAR (j, k)-DOMATIC NUMBER OF A GRAPH

S. M. SHEIKHOLESLAMI and L. VOLKMANN

Abstract

Let G be a simple graph without isolated vertices with edge set $E(G)$, and let j and k be two positive integers. A function $f: E(G) \rightarrow\{-1,1\}$ is said to be a signed star j-dominating function on G if $\sum_{e \in E(v)} f(e) \geq j$ for every vertex v of G, where $E(v)=\{u v \in E(G) \mid u \in N(v)\}$. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed star j-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(e) \leq k$ for each $e \in E(G)$, is called a signed $\operatorname{star}(j, k)$-dominating family (of functions) on G. The maximum number of functions in a signed star (j, k)-dominating family on G is the signed star (j, k)-domatic number of G denoted by $d_{S S}^{(j, k)}(G)$.

In this paper we study properties of the signed star (j, k)-domatic number of a graph G. In particular, we determine bounds on $d_{S S}^{(j, k)}(G)$. Some of our results extend those ones given by Atapour, Sheikholeslami, Ghameslou and Volkmann [1] for the signed star domatic number, Sheikholeslami and Volkmann [5] for the signed star (k, k)-domatic number and Sheikholeslami and Volkmann [4] for the signed star k-domatic number.

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. We use [2] for terminology and notation which are not defined here and consider simple graphs without isolated vertices only. The integers $n=|V(G)|$ and $m=|E(G)|$ are the order and the size of the graph G, respectively. For every vertex $v \in V(G)$, the open neighborhood $N(v)$ of v is the set $\{u \in V(G) \mid u v \in E(G)\}$, and the

[^0]Key words and phrases. Signed star (j, k)-domatic number; Signed star domatic number; Signed star j-dominating

* 4 4 $|\bullet|>$

Go back

Full Screen

Close

Quit
closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex v is $d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The complement \bar{G} of a graph G is the graph with vertex set $V(G)$ such that two vertices are adjacent in \bar{G} if and only if these vertices are not adjacent in G.

The open neighborhood $N_{G}(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_{G}[e]=N_{G}(e) \cup\{e\}$. For a function $f: E(G) \longrightarrow\{-1,1\}$ and a subset S of $E(G)$, we define $f(S)=\sum_{e \in S} f(e)$. The edge-neighborhood $E_{G}(v)=E(v)$ of a vertex $v \in V(G)$ is the set of all edges incident with the vertex v. For each vertex $v \in V(G)$, we also define $f(v)=\sum_{e \in E_{G}(v)} f(e)$.

Let j be a positive integer. A function $f: E(G) \longrightarrow\{-1,1\}$ is called a signed star j-dominating function (SSjDF) on G if $f(v) \geq j$ for every vertex v of G. The signed star j-domination number of a graph G is $\gamma_{j S S}(G)=\min \left\{\sum_{e \in E(G)} f(e) \mid f\right.$ is a SSjDF on $\left.G\right\}$. The signed star j-dominating function f on G with $f(E(G))=\gamma_{j S S}(G)$ is called a $\gamma_{j S S}(G)$-function. As the assumption $\delta(G) \geq j$ is clearly necessary, we will always assume that satisfy $\delta(G) \geq j$ while discussing $\gamma_{j S S}(G)$ all graphs involved. The signed star j-domination number was introduced by Xu and Li [10] in 2009 and has been studied by several authors (see for instance, $[3,4,7]$). The signed star 1-domination number is the usual signed star domination number, introduced in 2005 by $\mathrm{Xu}[8]$. The signed star domination number was investigated for example, by $[3,6,9]$.

Let k be a further positive integer. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed star j-dominating functions on G with $\sum_{i=1}^{d} f_{i}(e) \leq k$ for each $e \in E(G)$, is called a signed star (j, k)-dominating family ($\mathrm{SS}(\mathrm{j}, \mathrm{k}) \mathrm{D}$ family) (of functions) on G. The maximum number of functions in a signed star (j, k)-dominating family on G is the signed star (j, k)-domatic number of G denoted by $d_{S S}^{(j, k)}(G)$. The signed star (j, k)-domatic number is well-defined and

$$
\begin{equation*}
d_{S S}^{(j, k)}(G) \geq 1 \tag{1}
\end{equation*}
$$

44 $4|\bullet|>$

Go back

Full Screen
for all graphs G with $\delta(G) \geq j$, since the set consisting of any signed star j-dominating function forms a $\operatorname{SS}(\mathrm{j}, \mathrm{k}) \mathrm{D}$ family on G. A $d_{S S}^{(j, k)}$-family of a graph G is a $\operatorname{SS}(\mathrm{j}, \mathrm{k}) \mathrm{D}$ family containing exactly $d_{S S}^{(j, k)}(D)$ signed star j-dominating functions. The signed star $(1,1)$-domatic number $d_{S S}^{(1,1)}(G)$ is the usual signed star domatic number $d_{S S}(G)$ which was introduced by Atapour, Sheikholeslami, Ghameslou and Volkmann [1] in 2010.

Our purpose in this paper is to initiate the study of the signed star (j, k)-domatic number in graphs. We study basic properties and bounds for the signed star (j, k)-domatic number $d_{S S}^{(j, k)}(G)$ of a graph G. In addition, we derive Nordhaus-Gaddum type results and bounds of the product and the sum of $\gamma_{j S S}(G)$ and $d_{S S}^{(j, k)}(G)$. Many of our results extend those given by Atapour, Sheikholeslami, Ghameslou and Volkmann [1] for the signed star domatic number, Sheikholeslami and Volkmann [5] for the signed star (k, k)-domatic number and Sheikholeslami and Volkmann [4] for the signed star k-domatic number.

Observation 1 ([4]). Let G be a graph of size m with $\delta(G) \geq j$. Then $\gamma_{j S S}(G)=m$ if and only if each edge $e \in E(G)$ has an endpoint u such that $d(u)=j$ or $d(u)=j+1$.

2. Properties of the signed star (j, k)-domatic number

Theorem 2. Let $j, k \geq 1$ be two integers. If G is a graph of minimum degree $\delta(G) \geq j$, then

$$
d_{S S}^{(j, k)}(G) \leq \frac{k \delta(G)}{j}
$$

Moreover, if $d_{S S}^{(j, k)}(G)=k \delta(G) / j$, then for each function of any signed star (j, k)-dominating family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ with $d=d_{S S}^{(j, k)}(G)$ and for all vertices v of degree $\delta(G), \sum_{e \in E_{G}(v)} f_{i}(e)=j$ and $\sum_{i=1}^{d} f_{i}(e)=k$ for every $e \in E_{G}(v)$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed star (j, k)-dominating family on G such that $d=d_{S S}^{(j, k)}(G)$. If $v \in V(G)$ is a vertex of minimum degree $\delta(G)$, then it follows that

$$
\begin{aligned}
d \cdot j & =\sum_{i=1}^{d} j \leq \sum_{i=1}^{d} \sum_{e \in E_{G}(v)} f_{i}(e) \\
& =\sum_{e \in E_{G}(v)} \sum_{i=1}^{d} f_{i}(e) \\
& \leq \sum_{e \in E_{G}(v)} k=k \cdot \delta(G),
\end{aligned}
$$

and this implies the desired upper bound on the signed star (j, k)-domatic number.
If $d_{S S}^{(j, k)}(G)=k \delta(G) / j$, then the two inequalities occurring in the proof become equalities, which leads to the two properties given in the statement.

The special cases $j=k=1, j=1$ and $j=k$ in Theorem 2 can be found in [1], [4] and [5], respectively. As an application of Theorem 2, we will prove the following Nordhaus-Gaddum type result.

Corollary 3. Let $j, k \geq 1$ be integers. If G is a graph of order n such that $\delta(G) \geq j$ and $\delta(\bar{G}) \geq j$, then

$$
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) \leq \frac{k}{j}(n-1)
$$

If $d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G})=k(n-1) / j$, then G is regular.

Proof. Since $\delta(G) \geq j$ and $\delta(\bar{G}) \geq j$, it follows from Theorem 2 that

$$
\begin{aligned}
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) & \leq \frac{k \delta(G)}{j}+\frac{k \delta(\bar{G})}{j} \\
& =\frac{k}{j}(\delta(G)+(n-\Delta(G)-1)) \leq \frac{k}{j}(n-1),
\end{aligned}
$$

and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then $\Delta(G)-\delta(G) \geq 1$, and the above inequality chain leads to the better bound $d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) \leq \frac{k}{j}(n-2)$. This completes the proof.

Theorem 4. Let $j, k \geq 1$ be integers. If v is a vertex of a graph G such that $d(v)$ is odd and j is even or $d(v)$ is even and j is odd, then

$$
d_{S S}^{(j, k)}(G) \leq \frac{k}{j+1} \cdot d(v)
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed star (j, k)-dominating family on G such that $d=d_{S S}^{(j, k)}(G)$. Assume first that $d(v)$ is odd and j is even. The definition yields to $\sum_{e \in E_{G}(v)} f_{i}(e) \geq j$ for each $i \in\{1,2, \ldots, d\}$. On the left-hand side of this inequality a sum of an odd number of odd summands occurs. Therefore it is an odd number, and as j is even, we obtain $\sum_{e \in E_{G}(v)} f_{i}(e) \geq j+1$ for each $i \in\{1,2, \ldots, d\}$. It follows that

$$
\begin{aligned}
k \cdot d(v) & =\sum_{e \in E_{G}(v)} k \geq \sum_{e \in E_{G}(v)} \sum_{i=1}^{d} f_{i}(e) \\
& =\sum_{i=1}^{d} \sum_{e \in E_{G}(v)} f_{i}(e) \geq \sum_{i=1}^{d}(j+1)=d(j+1),
\end{aligned}
$$

and this leads to the desired bound. Assume next that $d(v)$ is even and j is odd. Note that $\sum_{e \in E_{G}(v)} f_{i}(e) \geq j$ for each $i \in\{1,2, \ldots, d\}$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore it is an even number, and as j is odd, we obtain $\sum_{e \in E_{G}(v)} f_{i}(e) \geq j+1$ for each $i \in\{1,2, \ldots, d\}$. Now the desired bound follows as above, and the proof is complete.

The next result is an immediate consequence of Theorem 4.
Corollary 5. Let $j, k \geq 1$ be integers. If G is a graph such that $\delta(G)$ is odd and j is even or $\delta(G)$ is even and j is odd, then

$$
d_{S S}^{(j, k)}(G) \leq \frac{k}{j+1} \cdot \delta(G) .
$$

As an application of Corollary 5, we will improve the Nordhaus-Gaddum bound in Corollary 3 for many cases.

Theorem 6. Let $j, k \geq 1$ be two integers and let G be a graph of order n such that $\delta(G) \geq j$ and $\delta(\bar{G}) \geq j$. If $\Delta(G)-\delta(G) \geq 1$ or j is odd or j is even and $\delta(G)$ is odd or $j, \delta(G)$ and n are even, then

$$
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G})<\frac{k}{j}(n-1) .
$$

Proof. If $\Delta(G)-\delta(G) \geq 1$, then Corollary 3 implies the desired bound. Thus assume now that G is $\delta(G)$-regular.

44 4 \bullet •
Go back
Case 1. Assume that j is odd. If $\delta(G)$ is even, then from Theorem 2 and Corollary 5 it follows that

$$
\begin{aligned}
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) & \leq \frac{k}{j+1} \delta(G)+\frac{k}{j} \delta(\bar{G}) \\
& <\frac{k}{j}(\delta(G)+(n-\delta(G)-1)) \\
& =\frac{k}{j}(n-1)
\end{aligned}
$$

If $\delta(G)$ is odd, then n is even and thus $\delta(\bar{G})=n-\delta(G)-1$ is even. Combining Theorem 2 and Corollary 5 , we find that

$$
\begin{aligned}
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) & \leq \frac{k}{j} \delta(G)+\frac{k}{j+1} \delta(\bar{G}) \\
& <\frac{k}{j}(\delta(G)+(n-\delta(G)-1) \\
& =\frac{k}{j}(n-1)
\end{aligned}
$$

and this completes the proof of Case 1.
Case 2. Assume that j is even. If $\delta(G)$ is odd, then from Theorem 2 and Corollary 5 it follows that

$$
d_{S S}^{(j, k)}(G)+d_{S S}^{(j, k)}(\bar{G}) \leq \frac{k}{j+1} \delta(G)+\frac{k}{j}(n-\delta(G)-1)<\frac{k}{j}(n-1) .
$$

If $\delta(G)$ is even and n is even, then $\delta(\bar{G})=n-\delta(G)-1$ is odd, and we obtain the desired bound as above.

Theorem 7. Let $j, k \geq 1$ be integers. If G is a graph such that k is odd and $d_{S S}^{(j, k)}(G)$ is even or k is even and $d_{S S}^{(j, k)}(G)$ is odd, then

$$
d_{S S}^{(j, k)}(G) \leq \frac{k-1}{j} \cdot \delta(G) .
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed star (j, k)-dominating family on G such that $d=d_{S S}^{(j, k)}(G)$. Assume first that k is odd and d is even. If $e \in E(G)$ is an arbitrary edge, then $\sum_{i=1}^{d} f_{i}(e) \leq k$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore, it is an even number, and as k is odd, we obtain $\sum_{i=1}^{d} f_{i}(e) \leq k-1$ for each $e \in E(G)$. If v is a vertex of minimum degree, then it follows that

$$
\begin{aligned}
d \cdot j & =\sum_{i=1}^{d} j \leq \sum_{i=1}^{d} \sum_{e \in E_{G}(v)} f_{i}(e) \\
& =\sum_{e \in E_{G}(v)} \sum_{i=1}^{d} f_{i}(e) \leq \sum_{e \in E_{G}(v)}(k-1)=\delta(G)(k-1),
\end{aligned}
$$

Go back

Full Screen
and this yields to the desired bound. Assume second that k is even and d is odd. If $e \in E(G)$ is an arbitrary edge, then $\sum_{i=1}^{d} f_{i}(e) \leq k$. On the left-hand side of this inequality a sum of an odd number of odd summands occurs. Therefore, it is an odd number and as k is even, we obtain $\sum_{i=1}^{d} f_{i}(e) \leq k-1$ for each $e \in E(G)$. Now the desired bound follows as above, and the proof is complete.

The special cases $j=k=1, j=1$ and $j=k$ of Theorem 4, Corollary 5 and Theorem 7 can be found in [1], [4] and [5], respectively. According to (1), $d_{S S}^{(j, k)}(G)$ is a positive integer. If we

44 4 • \mid •

Go back

Full Screen
suppose in the case $j=k=1$ that $d_{S S}(G)=d_{S S}^{(1,1)}(G)$ is an even integer, then Theorem 7 leads to the contradiction $d_{S S}(G) \leq 0$. Consequently, we obtain the next known result.

Corollary 8 ([1]). The signed star domatic number $d_{S S}(G)$ is an odd integer.
Proposition 9. Let j, k be two integers such that $j \geq 1$ and $k \geq 2$, and let G be a graph with minimum degree $\delta(G) \geq j$. Then $d_{S S}^{(j, k)}(G)=1$ if and only if each edge $e \in E(G)$ has an endpoint u such that $d(u)=j$ or $d(u)=j+1$.

Proof. Assume that each edge $e \in E(G)$ has an endpoint u such that $d(u)=j$ or $d(u)=j+1$. It follows from Observation 1 that $\gamma_{j S S}(G)=m$ and thus $d_{S S}^{(j, k)}(G)=1$.

Conversely, assume that $d_{S S}^{(j, k)}(G)=1$. If G contains an edge $e=u v$ such that $d(u) \geq j+2$ and $d(v) \geq j+2$, then the functions $f_{i}: E(G) \rightarrow\{-1,1\}$ such that $f_{1}(x)=1$ for each $x \in E(G)$ and $f_{2}(e)=-1$ and $f_{2}(x)=1$ for each edge $x \in E(G) \backslash\{e\}$ are signed star j-dominating functions on G such that $f_{1}(x)+f_{2}(x) \leq 2 \leq k$ for each edge $x \in E(G)$. Thus $\left\{f_{1}, f_{2}\right\}$ is a signed star (j, k)-dominating family on G, a contradiction to $d_{S S}^{(j, k)}(G)=1$.

The next result is an immediate consequence of Observation 1 and Proposition 9.
Corollary 10. Let j, k be two integers such that $j \geq 1$ and $k \geq 2$, and let G be a graph with minimum degree $\delta(G) \geq j$. Then $d_{S S}^{(j, k)}(G)=1$ if and only if $\gamma_{j S S}(G)=m$.

Next we present a lower bound on the signed star (j, k)-domatic number.
Proposition 11. Let j, k be two integers such that $k \geq j \geq 1$, and let G be a graph with minimum degree $\delta(G) \geq j$. If G contains a vertex $v \in V(G)$ such that all vertices of $N[N[v]]$ have degree at least $j+2$, then $d_{S S}^{(j, k)}(G) \geq j$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{j}\right\} \subset N(v)$. The hypothesis that all vertices of $N[N[v]]$ have degree at least $j+2$ implies that the functions $f_{i}: E(G) \rightarrow\{-1,1\}$ such that $f_{i}\left(v u_{i}\right)=-1$ and $f_{i}(x)=1$ for each edge $x \in E(G) \backslash\left\{v u_{i}\right\}$ are signed star j-dominating functions on G for $i \in\{1,2, \ldots, j\}$. Since $f_{1}(x)+f_{2}(x)+\ldots+f_{j}(x) \leq j \leq k$ for each edge $x \in E(G)$, we observe that $\left\{f_{1}, f_{2}, \ldots, f_{j}\right\}$ is a signed star (j, k)-dominating family on G, and Proposition 11 is proved.

Corollary 12. Let j, k be two integers such that $k \geq j \geq 1$. If G is a graph of minimum degree $\delta(G) \geq j+2$, then $d_{S S}^{(j, k)}(G) \geq j$.

Corollary 13. Let $j, k \geq 1$ be integers, and let G be an r-regular graph with $r \geq j$.
(1) If $j \leq r \leq j+1$, then $d_{S S}^{(j, k)}(G)=1$.
(2) If $r=j+2 p+1$ with an integer $p \geq 1$ and $k \geq j$, then $j \leq d_{S S}^{(j, k)}(G) \leq \frac{k r}{j+1}$.
(3) If $r=j+2 p$ with an integer $p \geq 1$ and $k \geq j$, then $j \leq d_{S S}^{(j, k)}(G) \leq \frac{k r}{j}$.

Proof. (1) Assume that $j \leq r \leq j+1$. According to Observation 1, $\gamma_{j S S}(G)=m$ and thus $d_{S S}^{(j, k)}(G)=1$.
(2) Assume that $r=j+2 p+1$ with $p \geq 1$. The condition $k \geq j$ and Corollary 12 imply that $j \leq d_{S S}^{(j, k)}(G)$. If j is even, then $r=j+2 p+1$ is odd, and if j is odd, then $r=j+2 p+1$ is even, Therefore, Corollary 5 leads to the desired upper bound of $d_{S, S}^{(j, k)}(G)$.
(3) Assume that $r=j+2 p$ with $p \geq 1$. The condition $k \geq j$ and Corollary 12 imply that $j \leq d_{S S}^{(j, k)}(G)$. In addition, Theorem 2 yields the desired upper bound of $d_{S, S}^{(j, k)}(G)$.
3. Bounds on the product and the sum of $\gamma_{j S S}(G)$ and $d_{S S}^{(j, k)}(G)$

Note that $\gamma_{j S S}(G)=m$ implies immediately $d_{S S}^{(j, k)}(G)=1$, and so $\gamma_{j S S}(G) \cdot d_{S S}^{(j, k)}(G)=m$ and $\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G)=m+1$. In this section, we present general bounds of the product and the sum of $\gamma_{j S S}(G)$ and $d_{S S}^{(j, k)}(G)$.

Theorem 14. Let $j, k \geq 1$ be integers. If G is a graph of size m and minimum degree $\delta(G) \geq j$, then

$$
\gamma_{j S S}(G) \cdot d_{S S}^{(j, k)}(G) \leq m k
$$

Moreover, if $\gamma_{j S S}(G) \cdot d_{S S}^{(j, k)}(G)=m k$, then for each $d_{S S}^{(j, k)}$-family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ of G, each function f_{i} is a $\gamma_{j S S}(G)$-function and $\sum_{i=1}^{d} f_{i}(e)=k$ for all $e \in E(G)$.

Proof. If $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a signed star (j, k)-dominating family on G such that $d=d_{S S}^{(j, k)}(G)$, then the definitions imply

$$
\begin{aligned}
d \cdot \gamma_{j S S}(G) & =\sum_{i=1}^{d} \gamma_{j S S}(G) \leq \sum_{i=1}^{d} \sum_{e \in E(G)} f_{i}(e) \\
& =\sum_{e \in E(G)} \sum_{i=1}^{d} f_{i}(e) \leq \sum_{e \in E(G)} k=m k
\end{aligned}
$$

as desired.
If $\gamma_{j S S}(G) \cdot d_{S S}^{(j, k)}(G)=m k$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{S S}^{(j, k)}$-family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of G and for each $i, \sum_{e \in E(G)} f_{i}(e)=\gamma_{j S S}(G)$, thus each function f_{i} is a $\gamma_{j S S}(G)$-function and $\sum_{i=1}^{d} f_{i}(e)=k$ for all $e \in E(G)$.

Theorem 15. Let $j, k \geq 1$ be integers. If G is a graph of size m and minimum degree $\delta(G) \geq j$, then

$$
d_{S S}^{(j, k)}(G)+\gamma_{j S S}(G) \leq m k+1 .
$$

Proof. According to Theorem 14, we have

$$
d_{S S}^{(j, k)}(G)+\gamma_{j S S}(G) \leq d_{S S}^{(j, k)}(G)+\frac{k m}{d_{S S}^{(j, k)}(G)}
$$

Using the fact that the function $g(x)=x+(k m) / x$ is decreasing for $1 \leq x \leq \sqrt{k m}$ and increasing for $\sqrt{k m} \leq x \leq k m$, we obtain

$$
d_{S S}^{(j, k)}(G)+\gamma_{j S S}(G) \leq \max \left\{1+m k, m k+\frac{k m}{k m}\right\}=m k+1
$$

Next we improve Theorem 15 considerably.
Theorem 16. Let $j, k \geq 1$ be two integers. If G is a graph of size m and minimum degree $\delta(G) \geq j$, then

$$
\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G) \leq \begin{cases}m+1 & \text { if } k=1 \\ \frac{m k}{2}+2 & \text { if } k \geq 2\end{cases}
$$

Proof. If $k=1$, then Theorem 15 leads to the desired bound. Therefore we assume next that $k \geq 2$. If the order $n=2$, then $\gamma_{j S S}(G)=m=1$ and $d_{S S}^{(j, k)}(G)=1$ and hence the desired bound is valid. Now we assume that $n \geq 3$. Let f be a SSjDF on G. Since $\sum_{e \in E_{G}(v)} f(e) \geq j$ for every
vertex v of G, it follows that

$$
2 \sum_{e \in E(G)} f(e)=\sum_{v \in V(G)} \sum_{e \in E_{G}(v)} f(e) \geq \sum_{v \in V(G)} j=n j .
$$

This implies $\gamma_{j S S}(G) \geq n j / 2$. As $n \geq 3$ and $j \geq 1$, we obtain $\gamma_{j S S}(G) \geq 2$. Theorem 14 implies that

$$
\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G) \leq \gamma_{j S S}(G)+\frac{m k}{\gamma_{j S S}(G)}
$$

If we define $x=\gamma_{j S S}(G)$ and $g(x)=x+(m k) / x$ for $x>0$, then because $2 \leq \gamma_{j S S}(G) \leq m$, we have to determine the maximum of the function g in the interval $I: 2 \leq x \leq m$. Using the condition $k \geq 2$ and the fact that $m \geq 2$, it is easy to see that

$$
\begin{aligned}
\max _{x \in I}\{g(x)\} & =\max \{g(2), g(m)\} \\
& =\max \left\{2+\frac{m k}{2}, m+\frac{m k}{m}\right\} \\
& =\frac{m k}{2}+2,
\end{aligned}
$$

and the proof is complete.
Theorem 17. Let $j, k \geq 1$ be two integers. If G is a graph of size m, minimum degree $\delta(G) \geq j$ and order $n \geq 2 p+1$ for an integer $p \geq 1$, then

$$
\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G) \leq \begin{cases}m+k & \text { if } 1 \leq k \leq p \\ \frac{m k}{p+1}+p+1 & \text { if } k \geq p+1\end{cases}
$$

Proof. We proceed by induction on p. Theorem 16 shows that the statement is valid for $p=1$. Now let $p \geq 2$ and assume that the statement is true for all integers $1 \leq i \leq p-1$. Then the induction hypothesis implies that $\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G) \leq m+k$ for $1 \leq k \leq p-1$. Thus assume next that $k \geq p$. The hypothesis $n \geq 2 p+1$ leads as in the proof of Theorem 16 to

$$
\gamma_{j S S}(G) \geq \frac{n j}{2} \geq \frac{(2 p+1) j}{2} \geq \frac{2 p+1}{2}
$$

and thus $p+1 \leq \gamma_{j S S}(G) \leq m$. Therefore, it follows from Theorem 14 that

$$
\begin{align*}
\gamma_{j S S}(G)+d_{S S}^{(j, k)}(G) & \leq \gamma_{j S S}(G)+\frac{m k}{\gamma_{j S S}(G)} \\
& \leq \max \left\{p+1+\frac{m k}{p+1}, m+k\right\} \tag{2}
\end{align*}
$$

Note that the hypothesis $n \geq 2 p+1$ yields to $m \geq p+1$.
If $k=p$, then we deduce from the inequality $m \geq p+1$ that

$$
\max \left\{p+1+\frac{m k}{p+1}, m+k\right\}=\max \left\{p+1+\frac{m p}{p+1}, m+p\right\}=m+p .
$$

If $k \geq p+1$, then

$$
p+1+\frac{m k}{p+1} \geq m+k
$$

is equivalent with $m(k-p-1) \geq(p+1)(k-p-1)$, and this inequality is valid since $k \geq p+1$ and $m \geq p+1$. Hence the desired result follows from (2), and the proof is complete.

Go back

Full Screen

Close

1. Atapour M., Sheikholeslami S. M., Ghameshlou A. N. and L. Volkmann, Signed star domatic number of a graph, Discrete Appl. Math., 158 (2010), 213-218.
2. Haynes T. W., Hedetniemi S. T. and Slater P. J., Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
3. Saei R. and Sheikholeslami S. M., Signed star k-subdomination numbers in graphs, Discrete Appl. Math. 156 (2008), 3066-3070.
4. Sheikholeslami S. M. and Volkmann L., Signed star k-domatic number of a graph, Contrib. Discrete Math. 6 (2011), 20-31.
5. \qquad , Signed star (k, k)-domatic number of a graph, submitted.
6. Wang C. P., The signed star domination numbers of the Cartesian product, Discrete Appl. Math. 155 (2007), 1497-1505.
7. 1-10.
8. Xu B., On edge domination numbers of graphs, Discrete Math. 294 (2005), 311-316.
9. , Two classes of edge domination in graphs, Discrete Appl. Math. 154 (2006), 1541-1546.
10. Xu B. and Li C. H., Signed star k-domination numbers of graphs, (Chinese) Pure Appl. Math. (Xi'an) 25 (2009), 638-641.
S. M. Sheikholeslami, Department of Mathematics \& Research Group of Processing and Communication Azarbaijan Shahid Madani University Tabriz, I. R. Iran,
e-mail: s.m.sheikholeslami@azaruniv.edu
L. Volkmann, Lehrstuhl II für Mathematik RWTH-Aachen University 52056 Aachen, Germany, e-mail: volkm@math2.rwth-aachen.de

[^0]: Received September 4, 2012.
 2010 Mathematics Subject Classification. Primary 05C69.

