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Bounds on the Third Order Hankel
Determinant for Certain Subclasses of Analytic

Functions

S.P. Vijayalakshmi, T.V. Sudharsan, Daniel Breaz and
K.G.Subramanian

Abstract

Let A be the class of analytic functions f(z) in the unit disc ∆ =
{z ∈ C : |z| < 1} with the Taylor series expansion about the origin given
by f(z) = z+

∑∞
n=2 anz

n, z ∈ ∆. The focus of this paper is on deriving
upper bounds for the third order Hankel determinant H3(1) for two new
subclasses of A.

1 Introduction

Let A be the class of functions

f(z) = z +

∞∑
n=2

anz
n (1)

which are analytic in ∆ = {z ∈ C : |z| < 1}. A function f ∈ A is respectively
said to be with bounded turning, starlike or convex if and only if for z ∈ ∆,

Ref ′(z) > 0, Re zf
′(z)

f(z) > 0 or Re
(

1 + zf ′′(z)
f ′(z)

)
> 0. The classes of these

functions are respectively denoted by R,S∗ and C. For n ≥ 0 and q ≥ 1,
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the qth Hankel determinant is defined as follows:

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 . . . . . .

...
...

an+q−1 . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣ (2)

This determinant has been considered by several authors (see, for example,
[1, 2, 3, 10, 17, 18, 22]). In fact Noor [18] determined the rate of growth of
Hq(n) as n → ∞ for functions f given by (1) with bounded boundary. In
particular, upper bounds for the second Hankel determinant were obtained
by several authors [6, 9, 12, 20, 21] for different classes of analytic functions.
Upper bound on the third Hankel determinant for different classes of functions
has been studied recently [1, 2, 3, 10, 16, 22]. In the present investigation, the
focus is on the third order Hankel determinant H3(1) for the classes Rβα and
Sβα in ∆ defined as follows:

Definition 1.1. Let f be given by (1). Then f ∈ Rβα if and only if for any
z ∈ ∆, 0 ≤ β < 1, 0 ≤ α ≤ 1,

Re{f ′(z) + αzf ′′(z)} > β. (3)

The choice α = 0, β = 0 yields Re f ′(z) > 0, z ∈ ∆, defining the class R of
bounded turning [15] while the choice α = 0, yields Re f ′(z) > β [5].

Definition 1.2. Let f be given by (1). Then f ∈ Sβα if and only if for any
z ∈ ∆, 0 ≤ β < 1, 0 ≤ α ≤ 1,

Re

{
zf ′(z)

f(z)
+ α

zf ′′(z)

f ′(z)

}
> β.

The choice α = 0, β = 0 yields Re zf ′(z)
f(z) > 0, z ∈ ∆, defining the class S∗

of starlike functions [19] and the choice of α = 0 yields Re zf ′(z)
f(z) > β, z ∈ ∆,

defining the class S∗(β) starlike functions of order β [19]. Setting n = 1 in
(2), H3(1) is given by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
and for f ∈ A,

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22).
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Using the triangle inequality, we have

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (4)

In obtaining an upper bound for |H3(1)|, the approach used is to first deter-
mine upper bounds for the functionals |a2a3 − a4|,|a2a4 − a23| and |a3 − a22|.
Furthermore techniques employed in [13, 14] are useful in establishing the
results (see, for example [6, 9, 12, 21]).

2 Preliminary Results

Some preliminary results required in the following sections are now listed.
Let P denote the class of functions

p(z) = 1 + c1z + c2z
2 + · · · (5)

which are regular in ∆ and satisfy Re p(z) > 0, z ∈ ∆. Throughout this
paper, we assume that p(z) is given by (5) and f(z) is given by (1). To prove
the main results, the following known Lemmas are required.

Lemma 2.1. [4] Let p ∈ P . Then |ck| ≤ 2, k = 1, 2, . . . and the inequality is
sharp.

Lemma 2.2. [13, 14] Let p ∈ P . Then

2c2 = c21 + x(4− c21) (6)

and
4c3 = c31 + 2xc1(4− c21)− x2c1(4− c21) + 2y(1− |x|2)(4− c21) (7)

for some x, y such that |x| ≤ 1 and |y| ≤ 1.

3 Main Results

For functions f ∈ Rβα, Lemma 3.1- Lemma 3.3 give the upper bounds for the
three functionals mentioned earlier while Theorem 3.1 presents an estimate
for |H3(1)|.

Lemma 3.1. Let f ∈ Rβα. Then

|a2a3 − a4| ≤
(1− β)

2(1 + 3α)
(8)

Proof. Let f ∈ Rβα. Then there exists a p such that
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f ′(z) + αzf ′′(z) = (1− β)p(z) + β, p(0) = 1, Re p(z) > 0.

Equating the coefficients, we find that

a2 =
c1(1− β)

2(1 + α)
, a3 =

c2(1− β)

3(1 + 2α)
, a4 =

c3(1− β)

4(1 + 3α)
, a5 =

c4(1− β)

5(1 + 4α)
.

The functional |a2a3 − a4| is given by

|a2a3 − a4| =
∣∣∣∣ c1c2(1− β)2

6(1 + α)(1 + 2α)
− c3(1− β)

4(1 + 3α)

∣∣∣∣ . (9)

Substituting for c2 and c3 from (6) and (7) of Lemma 2.2, we obtain

|a2a3 − a4| =
(1− β)

48(1 + α)(1 + 2α)(1 + 3α)

∣∣4(1 + 3α)(1− β)c1(c21 + x(4− c21))

−3(1 + α)(1 + 2α)(c31 + 2xc1(4− c21)− x2c1(4− c21) + 2y(1− |x|2)(4− c21))
∣∣

=A(α, β)
∣∣c31(2a− 3b)− 2c1x(4− c21)(3b− a)− 3bx2c1(4− c21)

−2y × 3b(1− |x|2)(4− c21)
∣∣

where A(α, β) = (1−β)
48(1+α)(1+2α)(1+3α) , a = 2(1+3α)(1−β), b = (1+α)(1+2α).

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we
may assume without restriction that c ∈ [0, 2] and on applying the triangle
inequality with ρ = |x| ≤ 1, we get

|a2a3 − a4| ≤A(α, β)
{
c3|2a− 3b|+ 2cρ(4− c2)(3b− a) + 3bρ2c(4− c2)

+2× 3b(1− ρ2)(4− c2)
}

=A(α, β)
{
c3|2a− 3b|+ 2cρ(4− c2)(3b− a) + 3bρ2(4− c2)(c− 2)

+6b(4− c2)
}

= F (ρ).

Next we maximize the function F (ρ).

F ′(ρ) =A(α, β)
{

2c(4− c2)(3b− a) + 6bρ(4− c2)(c− 2)
}

(10)

F ′(ρ) = 0 implies ρ = c(3b−a)
3b(2−c) . Set ρ∗ = c(3b−a)

3b(2−c) . Now 0 ≤ ρ∗ ≤ 1. Also we

have F ′′(ρ) = A(α, β){6b(4 − c2)(c − 2)} < 0, for c < 2. Thus ρ∗ is the only
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value in [0, 1] at which F (ρ) attains a maximum. Hence F (ρ) ≤ F (ρ∗).Thus

F (ρ) ≤ A(α, β)

{
c3|2a− 3b|+ c2

3b
(3b− a)2(2 + c) + 6b(4− c2)

}
= A(α, β)

{
c3{|2a− 3b|+ (3b− a)2

3b
} − c2{[6b− 2(3b− a)2

3b
]}+ 24b

}

F (ρ) ≤ A(α, β)
{
c3γ − c2δ + 24b

}
= G(c),

where γ = |2a− 3b|+ (3b−a)2
3b , δ = [6b− 2(3b−a)2

3b ]. G′(c) = 0 implies c = 0 and
at c = 0, G′′(c) < 0. Thus, the upper bound of F (ρ) corresponds to ρ = ρ∗

and c = 0. Hence |a2a3 − a4| ≤ (1−β)
2(1+3α) .

Corollary 3.1. Choosing α = 0, β = 0 in (8), we get |a2a3 − a4| ≤ 1
2 .

This result coincides with the corresponding result in [3].

Lemma 3.2. Let f ∈ Rβα. Then

|a2a4 − a23| ≤
4

9

(1− β)2

(1 + 2α)2
(11)

Proof. Let f ∈ Rβα. In a manner similar to the proof of Lemma 3.1, we can
derive

|a2a4 − a23| =
∣∣∣∣ c1c3(1− β)2

8(1 + α)(1 + 3α)
− c22(1− β)2

9(1 + 2α)2

∣∣∣∣ (12)

Substituting for c2 and c3 from (6) and (7) of Lemma 2.2, we obtain

=

∣∣∣∣ c1(1− β)2

32(1 + α)(1 + 3α)
[c31 + 2xc1(4− c21)− x2c1(4− c21)

+2y(1− |x|2)(4− c21)]− (1− β)2

36(1 + 2α)2
[c21 + x(4− c21)]2

∣∣∣∣ .
=

(1− β)2

288(1 + α)(1 + 2α)2(1 + 3α)

∣∣9c1(1 + 2α)2[c31 + 2xc1(4− c21)

−x2c1(4− c21) + 2y(1− |x|2)(4− c21)]

−8(1 + α)(1 + 3α)[c41 + x2(4− c21)2 + 2xc21(4− c21)]
∣∣ .
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Let N = (1−β)2
288(1+α)(1+2α)2(1+3α) ,a = 9(1 + 2α)2, b = 8(1 + α)(1 + 3α)

and a− b = 9(1 + 2α)2 − 8(1 + α)(1 + 3α) = 1 + 12α2 + 4α ≥ 0, since α ≥ 0.

|a2a4 − a23| = N
∣∣ac1[c31 + 2xc1(4− c21)− x2c1(4− c21) + 2y(1− |x|2)(4− c21)]

−b[c41 + x2(4− c21)2 + 2xc21(4− c21)]
∣∣

= N
∣∣c41(a− b) + 2xc21(4− c21)(a− b)− x2(4− c21)[ac21 + b(4− c21)]

+2yac1(1− |x|2)(4− c21)
∣∣ .

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we
may assume without restriction that c ∈ [0, 2] and on applying the triangle
inequality with ρ = |x| ≤ 1, we get

|a2a4 − a23| ≤ N
{
c4(a− b) + 2ρc2(4− c2)(a− b)

+ρ2(4− c2)[c2(a− b)− 2ac+ 4b] + 2ac(4− c2)
}

= N
{
c4(a− b) + 2ρc2(4− c2)(a− b)

+ρ2(4− c2)(a− b)(c− 2)(c− 2b

(a− b)
) + 2ac(4− c2)

}
= F (ρ).

Differentiating F (ρ), we get

F ′(ρ) = N [2c2(4− c2)(a− b) + 2ρ(4− c2)(a− b)(c− 2)(c− 2b

(a− b)
)] ≥ 0,

since a − b > 0, 2b/(a − b) > 2 so that c − 2b/(a − b) < c − 2 < 0 and
(c− 2)(c− 2b

(a−b) ) > 0 for all c ∈ [0, 2]. This implies that F (ρ) is an increasing

function of ρ on the closed interval [0,1]. Hence F (ρ) ≤ F (1) for all ρ ∈ [0, 1].
That is,

|a2a4 − a23| ≤ N
{
c4(a− b) + 2c2(4− c2)(a− b)

+(4− c2)(a− b)(c− 2)(c− 2b

(a− b)
) + 2ac(4− c2)

}
= N

{
−2c4(a− b)− 4c2(4b− 3a) + 16b

}
= G(c).

G′(c) = 0 implies c = 0 so that at c = 0,G′′(c) < 0. Therefore c = 0 is a point
of maximum for G(c). Thus, the upper bound of F (ρ) corresponds to ρ = 1

and c = 0. Hence, |a2a4 − a23| ≤ 4
9

(1−β)2
(1+2α)2 .

Corollary 3.2. Choosing α = 0, β = 0 in (11), we get |a2a4 − a23| ≤ 4
9 .

This result coincides with [7].
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Corollary 3.3. Choosing α = 0 in (11), we get |a2a4−a23| ≤ 4
9 (1−β)2. This

result coincides with [11].

Lemma 3.3. Let f ∈ Rβα. Then for 1/3 ≤ β < 1,

|a3 − a22| ≤
2(1− β)

3(1 + 2α)
(13)

Proof. Let f ∈ Rβα. Then by proceeding as in Lemma 3.1, we have

|(a3 − a22)| =
∣∣∣∣ c2(1− β)

3(1 + 2α)
− c21(1− β)2

4(1 + α)2

∣∣∣∣ (14)

|(a3 − a22)| = (1− β)

12(1 + 2α)(1 + α)2
∣∣4(1 + α)2c2 − 3(1 + 2α)(1− β)c21

∣∣ .
Substituting for c2 from (6) of Lemma 2.2, we obtain

|(a3 − a22)|

=
(1− β)

12(1 + 2α)(1 + α)2
∣∣2(1 + α)2[c21 + x(4− c21)]− 3(1 + 2α)(1− β)c21

∣∣
= M |k1c21 + k1x(4− c21)− k2c21|,

where M = (1−β)
12(1+2α)(1+α)2 , k1 = 2(1 + α)2, k2 = 3(1 + 2α)(1− β). Set c1 = c.

Since |c| = |c1| ≤ 2, using the Lemma 2.1, we may assume without restriction
that c ∈ [0, 2] and on applying the triangle inequality with ρ = |x| ≤ 1, we get

|a3 − a22| ≤M [c2|k1 − k2|+ k1ρ(4− c2)] = F (ρ).

Differentiating F (ρ), we get F ′(ρ) = M [k1(4− c2)] ≥ 0, implying that F (ρ) is
an increasing function of ρ on a closed interval [0,1]. Hence F (ρ) ≤ F (1) for
all ρ ∈ [0, 1]. That is,

|(a3 − a22)| ≤M [c2|k1 − k2|+ k1(4− c2)] = G(c).

By hypothesis, β ≥ 1/3 and hence k1−k2 = 2α2− 2α− 1 + 3β(1 + 2α) ≥ 2α2.
Hence G(c) = M [4k1 − c2k2], G′(c) = −2Mk2c and G′′(c) = −2Mk2. Since
c ∈ [0, 2], it follows that G(c) attains the maximum at c = 0. Thus, the upper
bound of F (ρ) corresponds to ρ = 1 and c = 0. Hence |a3 − a22| ≤ M [4k1] =
2(1−β)
3(1+2α) .
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Corollary 3.4. Choosing α = 0 in (13), we get |a3 − a22| ≤ 2
3 (1 − β). This

result coincides with [10], for 1/3 ≤ β < 1.

Remark 3.1. Let f ∈ Rβα. By Lemma 2.1, we have

|a3| =
∣∣∣∣ c2(1− β)

3(1 + 2α)

∣∣∣∣ ≤ 2(1− β)

3(1 + 2α)
,

|a4| =
∣∣∣∣ c3(1− β)

4(1 + 3α)

∣∣∣∣ ≤ (1− β)

2(1 + 3α)
,

|a5| =
∣∣∣∣ c4(1− β)

5(1 + 4α)

∣∣∣∣ ≤ 2(1− β)

5(1 + 4α)
.

Using the above results, the upper bound for |H3(1)| , f ∈ Rβα is immediately
obtained.

Theorem 3.1. Let f ∈ Rβα. Then for 1/3 ≤ β < 1,

|H3(1)| ≤ 8(1− β)3

27(1 + 2α)3
+

(1− β)2

4(1 + 3α)2
+

4(1− β)2

15(1 + 2α)(1 + 4α)
.

In the following results, with similar approach and technique, an upper
bound for |H3(1)| is attained for f ∈ Sβα. As before, we first derive estimates
for the functionals |a2a3 − a4|, |a2a4 − a23| and |a3 − a22|. Their estimates are
given in Lemmas 3.4, 3.5, and 3.6.

Lemma 3.4. Let f ∈ Sβα. Then

|a2a3 − a4| ≤
2(1− β)

3(1 + 4α)
(15)

Proof. Let f ∈ Sβα. Then there exists a p ∈ P such that

zf ′(z) + αz2f ′′(z) = [(1− β)p(z) + β]f(z),

for some z ∈ ∆. Equating the coefficients, we have

a2 =
c1(1− β)

1 + 2α
, a3 =

c2(1− β)

2(1 + 3α)
+

c21(1− β)2

2(1 + 2α)(1 + 3α)
,

a4 =
c3(1− β)

3(1 + 4α)
+

c1c2(3 + 8α)(1− β)2

6(1 + 2α)(1 + 3α)(1 + 4α)
+

c31(1− β)3

6(1 + 2α)(1 + 3α)(1 + 4α)
,
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and

a5 =
c41(1− β)4

24(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)
+

c22(1− β)2

8(1 + 3α)(1 + 5α)

+
c21c2(1− β)3(20α+ 6)

24(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)
+

c1c3(1− β)2(4 + 14α)

12(1 + 2α)(1 + 4α)(1 + 5α)

+
c4(1− β)

4(1 + 5α)
.

Thus, we have

|a2a3 − a4| =
(1− β)

6(1 + 2α)2(1 + 3α)(1 + 4α)
|c1c2(1− β)4α(1 + 2α) (16)

+2c31(1− β)2(1 + 5α)− 2c3(1 + 2α)2(1 + 3α)
∣∣

Substituting for c2 and c3 from (6) and (7) of Lemma 2.2, we have

|a2a3 − a4|

= B(α, β)

∣∣∣∣4α(1 + 2α)(1− β)c1
2

(c21 + x(4− c21))

+c312(1− β)2(1 + 5α)− 2(1 + 2α)2(1 + 3α)

4
[c31 + 2xc1(4− c21)

−x2c1(4− c21) + 2y(1− |x|2)(4− c21)]
∣∣

= B(α, β)
∣∣∣r1c31 + r2c1x(4− c21) +

r3
4
x2c1(4− c21)− r3

2
y(1− |x|2)(4− c21)

∣∣∣ ,
where

B(α, β) =
(1− β)

6(1 + 2α)2(1 + 3α)(1 + 4α)
,

r1 = 2α(1 + 2α)(1− β) + 2(1− β)2(1 + 5α)− (1 + 2α)2(1 + 3α)

2
,

r2 = 2α(1 + 2α)(1− β)− (1 + 2α)2(1 + 3α), r3 = (1 + 2α)2(1 + 3α).

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we
may assume without restriction that c ∈ [0, 2] and on applying the triangle
inequality with ρ = |x| ≤ 1, we get,

|a2a3 − a4|

≤ β(α, β){|r1|c3 + |r2|ρc(4− c2) +
r3
2
ρ2c(4− c2) + r3(4− c2)− r3ρ2(4− c2)}

= β(α, β){|r1|c3 + |r2|ρc(4− c2) +
r3
2
ρ2(c− 2)(4− c2) + r3(4− c2)} = F (ρ).
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Next we maximize the function F (ρ). Differentiating F (ρ), we get

F ′(ρ) = B(α, β)[|r2|c(4− c2) + r3ρ(4− c2)(c− 2)].

F ′(ρ) = 0 implies ρ = |r2|c
r3(2−c) . Set ρ∗ = |r2|c

r3(2−c) . Now, 0 ≤ ρ∗ ≤ 1. Also we

have F ′′(ρ) = B(α, β)r3(4− c2)(c− 2) ≤ 0. Thus ρ∗ is the only value in [0, 1]
at which F (ρ) attains maximum. Hence F (ρ) ≤ F (ρ∗).Thus

F (ρ) ≤ B(α, β)[|r1|c3 +
r22c

2(2 + c)

2r3
+ 4r3 − r3c2]

= B(α, β)[c3γ − c2δ + 4r3] = G(c),

where γ = |r1| + r22
2r3
, δ = r3 − r22

r3
≥ 0, G′(c) = 0 implies c = 0 and at

c = 0, G′′(c) < 0. Therefore c = 0 is a point of maximum of G(c). Thus the
upper bound of F (ρ) corresponds to ρ = ρ∗ and c = 0. Hence |a2a3 − a4| ≤
2(1−β)
3(1+4α) .

Corollary 3.5. Choosing α = 0, β = 0 in (15), we get |a2a3 − a4| ≤ 2
3 .

Corollary 3.6. Choosing α = 0, in (15), we get

|a2a3 − a4| ≤
2(1− β)

3
.

Lemma 3.5. Let f ∈ Sβα. Then

|a2a4 − a23| ≤
(1− β)2

(1 + 3α)2
(17)

Proof. Let f ∈ Sβα. Then by proceeding as in Lemma 3.4, we have

|a2a4 − a23| =∣∣∣∣ c1c3(1− β)2

3(1 + 2α)(1 + 4α)
− c22(1− β)2

4(1 + 3α)2
− c41(1− β)4(1 + 6α)

12(1 + 2α)2(1 + 3α)2(1 + 4α)

− c21c2(1− β)3(2α)

12(1 + 2α)2(1 + 3α)2(1 + 4α)

∣∣∣∣ (18)

=
(1− β)2

48(1 + 2α)2(1 + 3α)2(1 + 4α)

∣∣16(1 + 2α)(1 + 3α)2c1c3

−12c22(1 + 2α)2(1 + 4α)− 4c41(1− β)2(1 + 6α)− 4(1− β)2αc21c2
∣∣ .
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Substituting for c2 and c3 from (6) and (7) of Lemma 2.2, we obtain

|a2a4 − a23| = M
∣∣k1c1[c31 + 2xc1(4− c21)− x2c1(4− c21) + 2y(1− |x|2)(4− c21)]

−k2[c41 + x2(4− c21)2 + 2xc21(4− c21)]− k3c41 − k4c21[c21 + x(4− c21)
∣∣ ,

where M = (1−β)2
48(1+2α)2(1+3α)2(1+4α) ,

k1 = 4(1 + 2α)(1 + 3α)2,k2 = 3(1 + 2α)2(1 + 4α) , k3 = 4(1− β)2(1 + 6α) and
k4 = 8α(1− β).

|a2a4 − a23| =
M
∣∣c41[k1 − k2 − k3 − k4] + xc21(4− c21)[2k1 − 2k2 − k4]− x2c21(4− c21)k1

−x2(4− c21)2k2 + 2yc1k1(1− |x|2)(4− c21)
∣∣ .

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we may
assume without restriction that c ∈ [0, 2] and on applying triangle inequality
with ρ = |x| ≤ 1, we obtain

|a2a4 − a23| ≤M
{
c4|k1 − k2 − k3 − k4|+ ρc2(4− c2)|2k1 − 2k2 − k4|

+ρ2(4− c2)(c2(k1 − k2)− 2ck1 + 4k2) + 2ck1(4− c2)
}

= M
{
c4|k1 − k2 − k3 − k4|+ ρc2(4− c2)|2k1 − 2k2 − k4|

+ρ2(4− c2)(k1 − k2)(c− 2)(c− 2k2
k1 − k2

) + 2ck1(4− c2)

}
= F (ρ).

Differentiating F (ρ), we get

F ′(ρ) = M [c2(4− c2)|2k1 − 2k2 − k4|

+ 2ρ(4− c2)(k1 − k2)(c− 2)(c− 2k2
(k1 − k2)

) ≥ 0,

since 2k2/(k1 − k2) > 2 so that c − 2k2/(k1 − k2) < c − 2 < 0 and k1 − k2 =
(1 + 2α)(36α2 + 12α + 1) > 0 as α > 0, and so (c − 2)(c − 2k2

(k1−k2) > 0 for

all c ∈ [0, 2]. This implies that F (ρ) is an increasing function of ρ on a closed
interval [0,1]. Hence F (ρ) ≤ F (1) for all ρ ∈ [0, 1]. That is,

F (ρ)

≤M
{
c4|k1 − k2 − k3 − k4|+ (4− c2)[c2|2k1 − 2k2 − k4|+ (c2(k1 − k2) + 4k2)]

}
= M

{
[c4[|k1 − k2 − k3 − k4| − (|2k1 − 2k2 − k4| − (k1 − k2))]

−c2[4k2 − 4(|2k1 − 2k2 − k4| − 4(k1 − k2))] + 16k2
}

= G(c).

G′(c) = 0 implies c = 0 so that at c = 0, G′′(c) < 0. Therefore c = 0 is a point
of maximum for G(c). Thus the upper bound of F (ρ) corresponds to ρ = 1

and c = 0. Hence |a2a4 − a23| ≤
(1−β)2
(1+3α)2 .
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Corollary 3.7. Choosing α = 0, β = 0 in (17), we get |a2a4 − a23| ≤ 1. This
result coincides with [8].

Corollary 3.8. Choosing α = 0, in (17), we get |a2a4 − a23| ≤ (1− β)2.

Lemma 3.6. Let f ∈ Sβα. Then for 1/2 ≤ β < 1,

|a3 − a22| ≤
1− β
1 + 3α

(19)

Proof. Let f ∈ Sβα. Then by proceeding as in Lemma 3.4, we have

|a3 − a22| =
∣∣∣∣ c2(1− β)

2(1 + 3α)
− c21(1− β)2(1 + 4α)

2(1 + 2α)2(1 + 3α)

∣∣∣∣ (20)

Substituting for c2 from Lemma 2.2 we obtain

|a3 − a22| =
∣∣∣∣ (1− β)

2(1 + 3α)

1

2
[c21 + x(4− c21)]− c21(1− β)2(1 + 4α)

2(1 + 3α)(1 + 2α)2

∣∣∣∣
=

(1− β)

4(1 + 2α)2(1 + 3α)

∣∣[c21 + x(4− c21)](1 + 2α)2 − 2c21(1− β)(1 + 4α)
∣∣

= M
∣∣b1[c21 + x(4− c21)]− b2c21

∣∣ ,
where M = (1−β)

4(1+2α)2(1+3α) , b1 = (1 + 2α)2, b2 = 2(1− β)(1 + 4α). Therefore

|a3 − a22| = M
∣∣b1c21 + b1x(4− c21)− b2c21

∣∣ = M
∣∣(b1 − b2)c21 + b1x(4− c21)

∣∣ .
Suppose now that c1 = c. Since |c| = |c1| ≤ 2, using the Lemma 2.1, we may
assume without restriction that c ∈ [0, 2] and on applying triangle inequality
with ρ = |x| ≤ 1, we obtain

|a3 − a22| ≤M [c2|b1 − b2|+ b1ρ(4− c2)] = F (ρ).

Differentiating F (ρ), we get F ′(ρ) = Mb1(4 − c2) > 0, implying that F (ρ) is
an increasing function of ρ on a closed interval [0,1]. Hence F (ρ) ≤ F (1) for
all ρ ∈ [0, 1]. That is

|(a3 − a22)| ≤M [c2|b1 − b2|+ b1(4− c2)] = G(c).

By hypothesis, β ≥ 1/2 and hence b1− b2 = 4α2− 4α− 1 + 2β(1 + 4α) ≥ 4α2.
Hence G(c) = M [4b1 − b2c2], G′(c) = −2b2Mc and G′′(c) = −2b2M . Since
c ∈ [0, 2], it follows that G(c) attains a maximum at c = 0. Thus the upper

bound of F (ρ) corresponds to ρ = 1 and c = 0. Hence |(a3−a22)| ≤ (1−β)
(1+3α) .
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Corollary 3.9. Choosing α = 0 in (19),we get |a3 − a22| ≤ (1− β).

Using Lemma 2.1,the following estimates can be deduced.

Remark 3.2. Let f ∈ Sβα. By Lemma 2.1, we have

|a3| =
∣∣∣∣ c2(1− β)

2(1 + 3α)
+

c21(1− β)2

2(1 + 2α)(1 + 3α)

∣∣∣∣ ,
≤ (1− β)(3 + 2α− 2β)

(1 + 2α)(1 + 3α)
,

|a4| =
∣∣∣∣ c3(1− β)

3(1 + 4α)
+

c1c2(3 + 8α)(1− β)2

6(1 + 2α)(1 + 3α)(1 + 4α)
+

c31(1− β)3

6(1 + 2α)(1 + 3α)(1 + 4α)

∣∣∣∣ ,
≤ (1− β)[12 + 12α2 + 4β2 − 16αβ − 14β + 26α]

3(1 + 2α)(1 + 3α)(1 + 4α)
and

|a5| =
∣∣∣∣ c41(1− β)4

24(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)

+
c22(1− β)2

8(1 + 3α)(1 + 5α)
+

c21c2(1− β)3(20α+ 6)

24(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)

+
c1c3(1− β)2(4 + 14α)

12(1 + 2α)(1 + 4α)(1 + 5α)
+
c4(1− β)

4(1 + 5α)

∣∣∣∣
≤

(1− β)

{
120 + 288α2 − 16β3 + 744α2 + 548α− 188β

+96β2 − 600αβ + 144α2β + 160αβ2

}
24(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)

.

Finally, using the above results, an upper bound for |H3(1)| , f ∈ Sβα is
immediately obtained. 3.2.

Theorem 3.2. Let f ∈ Sβα. Then for 1/2 ≤ β < 1,

|H3(1)| ≤ (1− β)3(3 + 2α− 2β)

(1 + 2α)(1 + 3α)3

+
2(1− β)2[12 + 12α2 + 4β2 − 16αβ − 14β + 26α]

9(1 + 2α)(1 + 3α)(1 + 4α)2

+

(1− β)2
{

120 + 288α2 − 16β3 + 744α2 + 548α− 188β
+96β2 − 600αβ + 144α2β + 160αβ2

}
24(1 + 2α)(1 + 3α)2(1 + 4α)(1 + 5α)

.

Remark 3.3. The determination of the sharp estimates for |H3(1)| for func-
tions belonging to the classes Rβα and Sβα remain to be explored.
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