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Bipartite Graphs Associated with Pell,
Mersenne and Perrin Numbers

Ahmet Öteleş

Abstract

In this paper, we consider the relationships between the numbers
of perfect matchings (1-factors) of bipartite graphs and Pell, Mersenne
and Perrin Numbers. Then we give some Maple procedures in order to
calculate the numbers of perfect matchings of these bipartite graphs.

1 Introduction

The well-known integer sequences (e.g., Fibonacci, Pell) provide invaluable
opportunities for exploration, and contribute handsomely to the beauty of
mathematics, especially number theory [1, 2].

The Pell sequence {P (n)} is defined by the recurrence relation, for n ≥ 2

P (n) = 2P (n− 1) + P (n− 2) (1)

with P (0) = 0 and P (1) = 1 [3]. The number P (n) is called nth Pell number.
The Pell sequence is named as A000129 in [4].

The Mersenne sequence {M (n)} is defined by the recurrence relation, for
n ≥ 2

M (n) = 2M (n− 1) + 1 (2)

with M (0) = 0 and M (1) = 1 [5]. The number M (n) is called nth Mersenne
number. The Mersenne sequence is named as A000225 in [4].

Key Words: Perfect matching, permanent, Pell number, Mersenne number, Perrin
number.
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The Perrin sequence {R (n)} is defined by the recurrence relation, for n > 2

R (n) = R (n− 2) +R (n− 3)

with R (0) = 3, R (1) = 0 R (2) = 2. The number R (n) is called nth Perrin
number [6]. The Perrin sequence is named as A001608 in [4].

The first few values of these sequences can be seen at the following table:

n 0 1 2 3 4 5 6 7 8 9 10 . . .
P (n) 0 1 2 5 12 29 70 169 408 985 2378 . . .
M (n) 0 1 3 7 15 31 63 127 255 511 1023 . . .
R (n) 3 0 2 3 2 5 5 7 10 12 17 . . .

.

The investigation of the properties of bipartite graphs was begun by König.
His work was motivated by an attempt to give a new approach to the investiga-
tion of matrices on determinants of matrices. As a practical matter, bipartite
graphs form a model of the interaction between two different types of objects.
For example; social network analysis, railway optimization problem, marriage
problem, etc [7]. The enumeration or actual construction of perfect match-
ing of a bipartite graph has many applications, for example, in maximal flow
problems and in assignment and scheduling problems arising in operational
research [8]. The number of perfect matchings of bipartite graphs also plays
a significant role in organic chemistry [9].

A bipartite graph G is a graph whose vertex set V can be partitioned into
two subsets V1 and V2 such that every edge of G joins a vertex in V1 and a
vertex in V2. A perfect matching (or 1 -factor) of a graph is a matching in
which each vertex has exactly one edge incident on it. Namely, every vertex in
the graph has degree 1. Let A(G) be adjacency matrix of the bipartite graph
G and µ(G) denote the number of perfect matchings of G. Then, one can find
the following fact in [8]: µ(G) =

√
per (A(G)).

Let G be a bipartite graph whose vertex set V is partitioned into two
subsets V1 and V2 such that |V1| = |V2| = n. We construct the bipartite
adjacent matrix B(G) = (bij) of G as following: bij = 1 if and only if G
contains an edge from vi ∈ V1 to vj ∈ V2, and otherwise bij = 0. Then, the
number of perfect matchings of bipartite graph G is equal to the permanent
of its bipartite adjacency matrix [8].

The permanent of an n× n matrix A = (aij) is defined by

per (A) =
∑
σεSn

n∏
i=1

aiσ(i)

where the summation extends over all permutations σ of the symmetric group
Sn. The permanent of a matrix is analogous to the determinant, where all of
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the signs used in the Laplace expansion of minors are positive. One can find
the basic properties and more applications of permanents [8, 9, 10, 11, 12, 13].

Permanents have many applications in physics, chemistry and electrical
engineering. Some of the most important applications of permanents are via
graph theory. A more difficult problem with many applications is the enumer-
ation of perfect matchings of a graph [8]. Therefore, counting the number of
perfect matchings in bipartite graphs has been very popular problem.

One can find so many studies on the relationship between the number of
perfect matchings of bipartite graphs and the well-known integer sequences
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

In this paper, we define three n×n (0, 1)-matrices which correspond to the
adjacency matrices of some bipartite graphs. Then we show that the numbers
of perfect matchings of these bipartite graphs are equal to Pell, Mersenne
and Perrin numbers, respectively. Finally, we give some Maple procedures
regarding our calculations.

2 Main Results

Let A = [aij ] be an m×n real matrix with row vectors α1, α2, ..., αm. We say
A is contractible on column (resp. row) k if column (resp. row) k contains
exactly two nonzero entries. Suppose A is contractible on column k with
aik 6= 0 6= ajk and i 6= j. Then the (m − 1) × (n − 1) matrix Aij:k obtained
from A by replacing row i with ajkαi + aikαj and deleting row j and column
k is called the contraction of A on column k relative to rows i and j. If
A is contractible on row k with aki 6= 0 6= akj and i 6= j, then the matrix

Ak:ij =
[
ATij:k

]T
is called the contraction of A on row k relative to columns

i and j. We say that A can be contracted to a matrix B if either B = A or
there exist matrices A0, A1, ..., At (t ≥ 1) such that A0 = A, At = B, and Ar
is a contraction of Ar−1 for r = 1, ..., t [10].

Brualdi and Gibson [10] proved the following result about the permanent
of a matrix.

Lemma 2.1. Let A be a nonnegative integral matrix of order n for n > 1 and
let B be a contraction of A. Then

perA = perB. (3)
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Let Hn be an n× n (0, 1)-matrix having form

Hn =



1 1 0 0 · · · · · · · · · 0

1 1 0 1 0
...

0 1 1 1
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1


(4)

where

hij =


1, if j − i = −1 or j − i = 0,

1+(−1)j

2 , if j − i = 1 or j − i = 2,

0, otherwise.

Theorem 2.2. Let G(Hn) be the bipartite graph with bipartite adjacency ma-
trix Hn given by (4). Then, the number of perfect matchings of G(Hn) is⌊
n+2
2

⌋
th Pell number P

(⌊
n+2
2

⌋)
, where bxc is the largest integer less than or

equal to x.

Proof. Let Hr
n be the rth contraction of the matrix Hn, 1 ≤ r ≤ n − 2. By

definition of Hn, the matrix Hn can be contracted on column 1 so that

H1
n =



2 0 1 0 · · · · · · · · · 0

1 1 1 0 0
...

0 1 1 0
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1


.
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Since the matrix H1
n can be contracted on column 1 and P (2) = 2, P (1) = 1

H2
n =



2 3 0 0 · · · · · · · · · 0

1 1 0 1 0
...

0 1 1 1
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1



=



P (2) P (2) + P (1) 0 0 · · · · · · · · · 0

1 1 0 1 0
...

0 1 1 1
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1


.

Furthermore, the matrix H2
n can be contracted on column 1 and taking into

account (1), so that

H3
n =



P (3) 0 P (2) 0 · · · · · · · · · 0

1 1 1 0 0
...

0 1 1 0
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1


.
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Continuing this process, we derive the rth contraction of Hn as: If r is odd,

Hr
n =



P
(
r+1
2 + 1

)
0 P

(
r+1
2

)
0 · · · · · · · · · 0

1 1 1 0 0
...

0 1 1 0
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2
0 · · · · · · · · · · · · 0 1 1


and if r is even,

Hr
n =



P
(
r
2
+ 1
)

P
(
r
2
+ 1
)
+ P

(
r
2

)
0 0 · · · · · · · · · 0

1 1 0 1 0
...

0 1 1 1
. . .

. . .
...

... 0 1
. . .

. . . 1+(−1)j

2

. . .
...

...
. . .

. . .
. . . 1+(−1)j

2

. . . 0
...

. . .
. . .

. . .
. . . 1+(−1)n

2
... 0 1 1 1+(−1)n

2

0 · · · · · · · · · · · · 0 1 1


for 3 ≤ r ≤ n− 3. Notice that if n is odd (even) then r = n− 3 is even (odd).

Consequently,

Hn−3
n =



 P
(
n−1
2

)
P
(
n−1
2

)
+ P

(
n−1
2 − 1

)
0

1 1 0
0 1 1

 if n is odd, P
(
n
2

)
0 P

(
n
2 − 1

)
1 1 1
0 1 1

 if n is even.

which, by contraction of Hn−3
n on column 1 and taking into account (1), gives

Hn−2
n =


(
P
(
n+1
2

)
0

1 1

)
, if n is odd,(

P
(
n
2

)
P
(
n
2

)
+ P

(
n
2 − 1

)
1 1

)
, if n is even.

(5)
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By applying the equation (3) to the expression (5) and taking into account
(1), we obtain

perHn = perHn−2
n =

{
P
(
n+1
2

)
, if n is odd,

P
(
n+2
2

)
, if n is even,

which is deduced that perHn = P
(⌊
n+2
2

⌋)
. So, the proof is completed.

Let Kn be an n× n (0, 1)-matrix having form

Kn =



1 0 1 0 · · · 1−(−1)j

2 · · · 1−(−1)n

2
1 1 1 0 · · · · · · · · · 0

0 1 1 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . 1 1 1−(−1)j

2

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 1 1−(−1)n

2
0 · · · · · · · · · · · · 0 1 1


(6)

where

kij =


1, if j − i = −1 or j − i = 0,
1−(−1)j

2 , if i = 1 or j − i = 1,
0, otherwise.

Theorem 2.3. Let G(Kn) be the bipartite graph with bipartite adjacency ma-
trix Kn given by (6). Then, the number of perfect matchings of G(Kn) is⌊
n+1
2

⌋
th Mersenne number M

(⌊
n+1
2

⌋)
, where bxc is the largest integer less

than or equal to x.

Proof. Let Kr
n be the rth contraction of Bn for 1 ≤ r ≤ n − 3. By applying

successive contractions to the matrices Kr
n for 1 ≤ r ≤ n−3 according to their

first columns, we get

Kn−2
n =


(
M
(
n−1
2

)
M
(
n−1
2

)
+ 1

1 1

)
, if n is odd,(

M
(
n
2

)
0

1 1

)
, if n is even.

(7)

By applying the equation (3) to the expression (7) and taking into account
(2), we obtain

perKn = perKn−2
n =

{
M
(
n+1
2

)
, if n is odd,

M
(
n
2

)
, if n is even,
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which is deduced that perKn = M
(⌊
n+1
2

⌋)
. So, it is desired.

In [23, Theorem 2], we can reach the following result regarding the relation-
ship between Perrin numbers and the permanent of a certain upper Hessenberg
matrix.

Theorem 2.4. Let Bn = (bij) be the n × n matrix such that bij = 2 if and
only if i = 1 and j = 1, bij = 3 if and only if i = 1 and j = 2, bij = 1 if and
only if j− i = −1 or i > 1 and j− i = 1, or i > 1 and j− i = 2 and otherwise
0. Clearly,

Bn =



2 3 0 0 · · · · · · 0

1 0 1 1 0
...

0 1 0 1 1
. . .

...
... 0 1 0

. . .
. . . 0

...
. . .

. . .
. . . 1 1

...
. . . 1 0 1

0 · · · · · · · · · 0 1 0


. (8)

Then the permanent of Bn is the (n+ 1)st Perrin number R (n+ 1).

Let Sn = (sij) be the n× n (0, 1) -matrix defined by sij = 1 if and only if
|j − i| = 1 or j − i = 2. Let Tn = (tij) be the n × n tridiagonal (0, 1)-matrix
with t11 = t22 = 1. Let Un = (uij) be the n × n (0, 1)-matrix with u35 = 1.
Then we can give the following theorem.

Theorem 2.5. Let G(Ln) be the bipartite graph with bipartite adjacency ma-
trix Ln = Sn + Tn + Un for n ≥ 3. Then, the number of perfect matchings of
G(Ln) is (n− 1)st Perrin number R (n− 1).

Proof. Let Lrn be the rth contraction of the matrix Ln, 1 ≤ r ≤ n − 2. By
definition of Ln, the matrix Ln can be contracted on column 1 so that

L1
n =



2 2 1 0 · · · · · · · · · 0

1 0 1 0 0
...

0 1 0 1 1 0
...

... 0 1 0 1 1
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 1 1

... 0 1 0 1
0 · · · · · · · · · · · · 0 1 0


.
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If the matrix L1
n can be contracted on column 1, then

L2
n =



2 3 0 0 · · · · · · · · · 0

1 0 1 1 0
...

0 1 0 1 1 0
...

... 0 1 0 1 1
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 1 1

... 0 1 0 1
0 · · · · · · · · · · · · 0 1 0


(9)

which is equal to Bn−2, where Bn is the matrix defined by (8). By applying
the equation (3) to the expression (9) and taking into account Theorem 2.4,
we obtain

perLn = perL2
n = perBn−2 = R (n− 1) ,

which is desired.

Appendix A. The following Maple procedure calculates the numbers of
perfect matchings of bipartite graph G(Hn) given in Theorem 2.2.

restart:
with(LinearAlgebra):
permanent:=proc(n)
local i,j,r,h,H;
h:=(i,j)->piecewise(j-i=-1,1,j-i=0,1,j-i=1,(1+(-1)j)/2, j − i = 2, (1+
(-1)j)/2, 0);
H:=Matrix(n,n,h):
for r from 0 to n-2 do
print(r,H):
for j from 2 to n-r do
H[1,j]:=H[2,1]*H[1,j]+H[1,1]*H[2,j]:
od:
H:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,H),1),2):
od:
print(r,eval(H)):
end proc:with(LinearAlgebra):
permanent(n);

Appendix B. The following Maple procedure calculates the numbers of
perfect matchings of bipartite graph G(Kn) given in Theorem 2.3.
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restart:
with(LinearAlgebra):
permanent:=proc(n)
local i,j,r,k,K;
k:=(i,j)->piecewise(i=1,(1-(-1)j)/2, j − i = −1, 1, j − i = 0, 1, j − i =
1,(1-(-1)j)/2, 0);
K:=Matrix(n,n,k):
for r from 0 to n-2 do
print(r,K):
for j from 2 to n-r do
K[1,j]:=K[2,1]*K[1,j]+K[1,1]*K[2,j]:
od:
K:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,K),1),2):
od:
print(r,eval(K)):
end proc:with(LinearAlgebra):
permanent(n);

Appendix C. The following Maple procedure calculates the numbers of
perfect matchings of bipartite graph G(Ln) given in Theorem 2.5.

restart:
with(LinearAlgebra):
permanent:=proc(n)
local i,j,r,s,t,u,S,T,U,L;
s:=(i,j)->piecewise(abs(j-i)=1,1,j-i=2,1,0);
t:=(i,j)->piecewise(i=1 and j=1,1,i=2 and j=2,1,0);
u:=(i,j)->piecewise(i=3 and j=5,1,0);
S:=Matrix(n,n,s):
T:=Matrix(n,n,t):
U:=Matrix(n,n,u):
L:=S+T-U:
for r from 0 to n-2 do
print(r,L):
for j from 2 to n-r do
L[1,j]:=L[2,1]*L[1,j]+L[1,1]*L[2,j]:
od:
L:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,L),1),2):
od:
print(r,eval(L)):
end proc:with(LinearAlgebra):
permanent(n);
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Department of Mathematics,
Faculty of Education,
Dicle University,
21280 Diyarbakir, Turkey.
Email: aoteles85@gmail.com


