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two-point Abel-Gontscharoff polynomial
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Abstract

Using two-point Abel-Gontscharoff interpolating polynomial some
new generalizations of Steffensen’s inequality for n—convex functions are
obtained and some Ostrowski-type inequalities related to obtained gen-
eralizations are given. Furthermore, using the Cebysev functional some
new bounds for the remainder in obtained generalizations are proven
and related Griiss-type inequalities are given.

1 Introduction

The two-Point Abel-Gontscharoff interpolation problem is a particular case of
Abel-Gontscharoff interpolation problem introduced in 1935 by Whittaker [11]
and subseququently by Gontscharoff [4] and Davis [3]. In [1] this interpolation
problem is also reffered to as the two-point right focal interpolation problem.
Let f € C"[a,b] (n > 2) and let Page be its two-point Abel-Gontscharoff
interpolating polynomial then

f(t) = Paga(t) + eaca(t) (1.1)
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where Pags is the polynomial of degree n — 1 defined by

Paca(t) = wa@(al)

n—a—27[ j t—ay)tHi (g — ag)i i . ;
"X [Z( (ailﬂ‘g!(j—i)!) JeT ) az)

and the associated error can be expressed by

b

eaga(t) = / gacz(t, s)f™ (s)ds. (1.2)

a

The corresponding Green function gaga(t, s) from (1.2) is defined by

o ) )
> (T —a)i(ar —s)m a<s<t,
gAGQ(t7S> = 7' 1:071,—1 ] .
(=Y - % ("Nt —a1)i(ar — )", t<s<b.
i=a+1

The polynomial P4gs satisfies the following conditions called the two-point
right focal conditions ([1, p. 172])

Pily(ar) = fD(a), 0<i<a,

PO (az) = fD(a), a+1<i<n—1, a<a <as<b.

These conditions are a particular case of the general Abel-Gontscharoff inter-
polation conditions

P(ais1) = fDaiy1), 0<i<n—1,a<a;<ay<---<a,<Dbh

Some generalizations of Steffensen’s inequality via Abel-Gontscharoff poly-
nomial using the difference of integrals on two intervals were obtained in [7].
The aim of this paper is to obtain some new generalizations of Steffensen’s
inequality via two-point Abel-Gontscharoff polynomial using different reason-
ing from the one used in [7]. This inequality was first given and proved by
Steffensen in 1918 in paper [10]. A comprehensive survey on Steffensen’s in-
equality, its generalizations and applications can be found in [9)].

The well-known Steffensen inequality states:
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Theorem 1.1. Suppose that f is nonincreasing and g is integrable on [a,b]
with0< g<1and A= f:g(t)dt. Then we have

b b atA

fie< [ g [ f (1.3)
b—X\ a a
The inequalities are reversed for f nondecreasing.

In [5] Jakseti¢ and Pecari¢ generalized Steffensen’s inequality for positive
measures using identites

/ FOdut) — [ F@a(t)dut)
la,a+A] [a,b]

(1.4)
_ / O — g(6))du(t) — / F(Dg(t)dp(t)
la,a+A] (a+X,b]

and

/ F(O)g(t)du(t) — / F(O)dp(t)

[a,b] (b=X,b]

_ / F(H)g(t)du(t) — / FO - g(0)du().
[a,b—k] (b—)x,b]
(1.5)

Mitrinovié stated in [6] that the inequalities in (1.3) follow from the above
identities for du(t) = dt.

The above identities for du(t) = p(t)dt will be the starting point for our
generalizations of Steffensen’s inequality.

In this paper we use the two-point Abel-Gontscharoff polynomial to obtain
some new identities related to Steffensen’s inequality. Using our new identities
we generalize Steffensen’s inequality for n—convex functions. In Section 3 we
give the Ostrowski-type inequalities related to obtained generalizations. We
conclude this paper with some new bounds for the remainder in obtained
identities using inequalities for the Cebysev functional and with some Griiss-
type inequalities.

Throughout the paper, it is assumed that all integrals under consideration
exist and that they are finite.

2 Generalizations of Steffensen’s inequality

In this section we obtain generalizations of Steffensen’s inequality for n-convex
functons using identity (1.1).
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Theorem 2.1. Let f € C™[a,b] forn > 3 and let g,p : [a,b] — R be integrable

functions such that p is positive and 0 < g < 1. Let fa+/\ )dt = ffg(t)p(t)dt
and let the function G1 be defined by

(@) = {f (1—g ())p(t)dt, z € la,a+ A, 21

fg x € [a+ A0l

Then

atA b o pitD)(g) [P _
[ st~ [ swawa S T [ 6w - s
a a i=0 * a
" : A ’ a1+
Z a+§+z)) (G —)! (/a (e =-a)™ Gl(m)dx)]

a—
+ 3 e a4

§=0
- / b ( / G1<x>g,4a2<x,s>dx> £ (s)ds.

Proof. Using identity (1.4) for du(t) = p(t)dt and integration by parts we have
a+A b
[ s [ oo
b

a+A
- / F(8) — Fla+ V][I — g(t)]p(t)dt + / Fla+A) — F(O]g(t)p(t)dt

a+A

- " [ / - (t))P(t)dt] of (@) - / ; [ / bg(t)p(t)dt] af ()
_ / G (2)df (x / Ci(x

Applying identity (1.1) to f’, taking a1 = a, as = a + A and replacing n with
n — 1 we have

(2.2)

« (i+1) ] n—a—3
! il (*a)(ﬂﬁ—a)z+ D ARSI CRPY

i=0 7=0

/ gaca(z, s) f( (s)ds.

f(z) =

(A ()t
Z +1+z)(j—z’)!}

1=

(2.3)
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Now using (2.3) we obtain

b @D (g) [P A
/ Gi(2)f (@)dw = fil() / G (z)(x — a)'dx

=0
n—a—3

J —i
+ Z fa+3+2) +)\

’ +1+i
o | )

b b
+/ G1(x) (/ gAGQ(x,s)f(”)(s)ds> dx.
(2.4)

After applying Fubini’s theorem on the last term in (2.4) we obtain (2.2). O

Theorem 2.2. Let f € C"[a,b] forn > 3 and let g,p : [a,b] — R be integrable

functions such that p is positive and 0 < g < 1. Let fbbﬂ\p(t)dt = fabg(t)p(t)dt
and let the function Go be defined by

Jo 9(t z € [a,b— N,
el {f J(1- ( ))p(f)dt, zeb—\bl. (2.5)

/f t)dt — b f(t)p dt+zf(l+1(b)/bG2(x)(xb+)\)idx

b—X a

n—a—3 J —i b )
+ Zo f(a+j+2 <Z (a+1 + (G —1i)! </a (z—b+ )‘)a+1+zG2($)d5”>>

b b Z
f/ (/ GQ(x)gAGQ(x,s)d:r> f(”)(s)ds.
(2.6)

Proof. Similar to the proof of Theorem 2.1 using identity (1.5) for du(t) =
p(t)dt. O

Now, using the above obtained identites we give generalization of Stef-
fensen’s inequality for n-convex functions.

Theorem 2.3. Let f € C"[a,b] forn > 3 and let g,p : [a,b] — R be integrable
functions such that p is positive and 0 < g < 1. Let fa+/\ )dt = fabg(t)p(t)dt
and let the function Gy be defined by (2.1). If f is n—convex and

/ G1(z)gage(z,s)dx <0, sé€ [a,b], (2.7)
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a+A « (i4+1) a b '
/ swanpteie< [ opan Y Lo [ 6w - ayas
a —o o
J j—i b
(o) (ZAP — )G () d
= 7y 2 far 151G ) (/( WG a)d )]
(2.8)

Proof. If the function f is n-convex, without loss of generality we can assume
that f is n—times differentiable and f(™) > 0 see [8, p. 16 and p. 293]. Now
we can apply Theorem 2.1 to obtain (2.8). O

Theorem 2.4. Let f € C"[a,b] forn > 3 and let g,p : [a,b] — R be integrable

functions such that p is positive and 0 < g < 1. Let fbbiAp(t)dt = f:g(t)p(t)dt
and let the function Gy be defined by (2.5). If f is n—convex and

b
/ Ga(z)gage(x,s)de <0, s € Ja,b], (2.9)
then
b (+1)( b )
/f t)dt > dtfzf )/ Ga(z)(x — b+ \)'da
b— )\ i=0 a
-3 ) J —i b
. a+j+2 —b A a+1+1i d
jgo (; oz—i—l—i—z ]_Z) (/a(x +A) Ga(x) x))
(2.10)
Proof. Similar to the proof of Theorem 2.3. O

Remark 2.1. If the integrals in (2.7) and (2.9) are nonnegative, then the
reverse inequalities in (2.8) and (2.10) hold.

Taking p = 1 and n = 3 in previous theorems we obtain the following
corollary.

Corollary 2.1. Let f € C3[a,b] and let g : [a,b] — R be an integrable function
such that 0 < g < 1. Let A\ = fabg(t)dt

(i) If f is 3—convex and

_ % /: 2?g(x)dw + s/a a?g(x)dz + s /Sb zg(z)dz + (a® — 2as) /ab zg(x)dx
+ i /Sg(a:)dx < (s=a)t (-0 (M /\2> , s€la,a+ Al

3/, 12 2 2
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s s b b
- é/ :cgg(x)ders/ ng(x)dx+52/ zg(z)dz + (a® — Zas)/ xzg(x)dx

3 b 3 3 4
2 —a)\ A
_5 g(x)dx§ <asa2))\+(83a)12’ S€[a+)\,b},

b a-+A b 2
/ ft)g(t)dt < / F)dt + f'(a) </ zg(x)dr — aX — 2)

"(a b 3
RpiChsy (/ g(xxx-am-g).

(i) If f is 3—convezx and

1

3 /: 2g(x)de — s /as 2?g(z)de — ((b—N)? —2s(b— X)) /ab ag(w)da

—SQAbxg(x)dx—f/asg(x)deW<>\22—/\b> s € [a,b— Al

b

%/Sng( )dx—s/s 2g(z)dz — [(b—N)* —2s(b— )\)]/ xg(x)dx

—b+ A
—82/ xg(z dx—i——/ x)dr < — (s 1;_)

7w [; 3(b5)] —A(b— A)? {3(1)/\)3)} , seb—Ab,
then

/ fade > [ RICEERACERY <)\22—b)\+/bxg(:c)d:v>

" b
_f 2(b) (f —/ g(:r)(:r—b+)\)2dx> .

3 Ostrowski-type inequalities

In this section we give the Ostrowski-type inequalities related to general-
izations obtained in the previous section.
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Theorem 3.1. Suppose that all assumptions of Theorem 2.1 hold. Assume
(p,q) is a pazr of conjugate exponents, that is 1 < p,q < oo, 1/p+1/q = 1.
Let |f(")| : [a,b] = R be an R-integrable function for some n > 3. Then we

have

atA b a el (g) [ _
[ swwtae~ [ sosopar+ S E [ - aa
a a Z=0 M a

+ nza: 3 f(a+j+2) (a+A) Z]: - /b(I — )G, (2)dx
7=0 i a+1—|—z)(]_l) " 1
bl b q 1
< Hf(”) ( / Gl(m)gAGQ(x,S)d.T dS) )
p\Jo |/)a

(3.1)

The constant on the right-hand side of (3.1) is sharp for 1 < p < oo and the
best possible for p=1.

Proof. Let’s denote
b
C’(s):/ G1(z)gage(x, s)d.

By taking the modulus of (2.2) and applying Holder’s inequality we obtain

a+X b o it (g) [ '
[ s - / f<t>g(t>p<t>dt+2—f A [ @ - wias
a a 120 * a

n—a—3 J —i b
(o )a x — )it z)dzx
b b I
= / O(s)f (s)ds ngW ( / |c<s>qu>
a p a

1
For the proof of the sharpness of the constant (f(f |C(s)|* ds) ‘ let us find a

function f for which the equality in (3.1) is obtained.
For 1 < p < oo take f to be such that

£ (s) = sgn C(s) |C(s)| 7
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For p = oo take f(™(s) = sgn C(s).
For p = 1 we prove that

s)ds

s€(a,b]

b
< max |C(s )|< f(")(s)‘ds> (3.2)

is the best possible inequality. Suppose that |C(s)| attains its maximum at
S0 € [a, b]. First we assume that C'(sg) > 0. For € small enough we define f.(s)
by
0, a <5< 80,
fe(s) = { (s —s0)",  so<s<sote,

EN )
ni(s s0)" Y, spt+e<s<bh
Then for & small enough

/ " () £ s)ds / + C(s) ds

Now from the inequality (3.2) we have

1 So+¢
= 7/ C(s)ds.

€ Jso

1 So+e sote 1
g/ C(s)ds < C(so)/ fds = C(s0).
Since,
) 1 So+e
6113(1) B C(s)ds = C(so)

the statement follows. In the case C(sg) < 0, we define f.(s) by

L(s—so—e)" !, a<s< s,
fe(s) = —(s—s0—&)", so<s<so+e,
0, so+e<s<bh,
and the rest of the proof is the same as above. O

Using identity (2.6) we obtain the following result.

Theorem 3.2. Suppose that all assumptions of Theorem 2.2 hold. Assume
(p,q) is a pazr of conjugate exponents, that is 1 < p,q < oo, 1/p+1/q = 1.
Let |f ”)| : la,b] = R be an R-integrable function for some n > 3. Then we
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have

' P AGRIUEPY

b .
t)dt — - F(t)p(t)dt + Z - / Go(z)(z — b+ \)dzx

=0 a

n—a—3 J 7 % b .
+ Z Flatit?) p) (Z CES T (/a (x—b+ )\)a+1+ZG2(x)dx>>

7=0 =0
1
b 4 a
ds| .
p a

The constant on the right-hand side of (3.3) is sharp for 1 < p < oo and the
best possible for p = 1.

< Hf<n>

b
/ Ga(z)gage(x, s)dx

(3.3)

Proof. Similar to the proof of Theorem 3.1. O

Taking p = 1 and n = 3 in Theorems 3.1 and 3.2 we obtain the following
corollaries.

Corollary 3.1. Let f : [a,b] — R be such that f € C3[a,b], let g : [a,b] — R
be an integrable function such that 0 < g <1 and let A = f; g(t)dt. Assume
(p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+1/q = 1.

Let |f”'|" : [a,b] — R be an R-integrable function. Then for 1 < p < oo we
have

/ t)dt — /f dt+f()</abxg( x—aA——)
-3
3

+

@(/ s —arar -3 ) < Il ([ |3 [ et

+s /anQg(:E)dm—i—sz /:xg(x>dx+(a2—2as> / glw)de + / glw)de - (S%)

_é/: g(x )d;v—&—s/a g(x)dx + s /Sba:g(m)dm

1
3 _ )3 419 N\ g
+(a272as)/ zg(x dxf—/ dx7<—fsa))\f(s+)>\+% dt) .

(3.4)
and the constant on the right-hand side of (3.4) is sharp, while for p =1 we
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have

/ dt—/f t)ydt + f'(a (/bxg xa)\)\;>
IRiLhs )</ag<z><za 2)

where

1 s s b
M, = max {—/ 23g(x)dx + s/ x2g(x)dx + 82/ zg(x)dx
s€la,a+A] 3 Ja a s

(s —a)*

b 3 s
+(a® — 2as)/ xg(z)dx + % / g(z)dx — B
a a

(3.5)
///” max {Ml, Mg}

1 s s b
My = max {—/ 3g(x )dx—|—s/ 2g(x )dx—|—52/ xg(z)dz
s€la+A,b] 3 a s

3
+(a? —2as)/ xg(x dx——/ dx—<g—sa2>)\

_(s-aa A
3 12 [
and the constant on the right-hand side of (3.5) is the best possible.

Corollary 3.2. Let f: [a,b] — R be such that f € C3[a,b], let g : [a,b] — R

be an integrable function such that 0 < g <1 and let A = f g(t)dt. Assume
(p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, l/p +1/q =1.
Let |f"”'|" : [a,b] — R be an R-integrable function. Then for 1<p<oo we
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have

b

" gyt - = o0 (3 -0+ /abwg(m)dx>

a b—X 2

O (X gty vearan)| < e, ([ [ e
,s/: 22g(2)dz — [(b— N)? — 25(b— N)] /a 2g(2)dz — /: rg(w)de — ?/ﬂsg(x)dx
_w (%2 - ,\b) ’ + /:A %/: 2 g(x)de — s/: 22g(x)dx
—[(6—2)% —2s(b— )] /a zg(x)de — s° /Sb zg(x)dr + g /Sb g(x)dzx

(3—1;24—/\) (s—b;-)\) A [%4_%(5_8)} +§)\(b—)\)3—s)\(b—)\)2

' dt> .
(3.6)

and the constant on the right-hand side of (3.6) is sharp, while for p =1 we
have

/bf(t) dt—/b ftydt — f'(b—N\) <)\22 —b>\+/bmg(x)dx>
a b—X a
fl;(g /bg xb+>\)2d:ﬂ>

where

(3.7)
< [If"ll, max { My, Mz}

My= max {;’ / 2 g(w)de — s / Pg(a)de — [(b— N)? — 25(b— A)] /ab g(z)dz
—s? /Sb zg(x)dx — g/: g(z)dr — w <%2 — Ab)}

M, = seﬁlﬁ};,b] {; /as 2 g(x)de — s/aS z?g(z)dx
—[(b=N)?=2s(b - \)] /: zg(z)dz — s /Sb zg(z)dz + § /Sb g(z)dz

(s—b+N*  (s—b+A)3\[A
T T 2

2

3 5“"5)]
2 3 2

F5Ab =N = sA(b =) }

and the constant on the right-hand side of (3.7) is the best possible.
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4 Generalizations related to the bounds for the Cebysev
functional

~ Let f,h: [a,b] — R be Lebesgue integrable functions. We define the
Cebysev functional T'(f,h) b

T(fh) = 5 /f dt——/f t)dt - _a/h(t)dt.

In [2] Cerone and Dragomir proved the following theorems:

Theorem 4.1. Let f : [a,b] — R be a Lebesgue integrable function and h :
[a,b] = R be an absolutely continuous function with (-—a)(b—-)[h']* € Li[a, b].
Then we have the inequality

1 1 b / 2 ;
7)< 5T ) F(/ (= )b =)W () dx) SCRY

The constant % in (4.1) is the best possible.

Theorem 4.2. Assume that h : [a,b] — R is monotonic nondecreasing on
[a,b] and f : [a,b] — R is absolutely continuous with f" € Lo[a,b]. Then we
have the inequality

b
T(f,h)] < 20— )Ilf Hoo/ (z —a)(b—x)dh(z). (4.2)

The constant & in (4.2) is the best possible.

In the sequel we use the above theorems to obtain some new bounds for
integrals on the left hand side in the perturbed version of identities (2.2) and
(2.6).

Firstly, let us denote

b
= / Gi(z)gaga(z,s)dx, i=1,2. (4.3)
Theorem 4.3. Let f € C"[a,b] for some n > 3 with (-—a)(b—-)[f"+1D)]?

Li[a,b]. Let g,p: [a,b] — R be integmble functions such that p is positive and
0<g<1. Let fa—M f g(t)p(t)dt and let functions G1 and Qp be
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defined by (2.1) and (4.3). Then

«

a+A 2+1)
/ t)dt — /f dt—l— /G1 (x —a) d

n—a—3 J —1
Z a+1+z j—z) </ (z —a)* ™G (x )dxﬂ

+ Z FOFI (a4 \)

7=0

n— n— b
L) = 1 1)(a)/ Q(s)ds = S}(f;a,b),

b—a
(4.4)
where the remainder SL(f;a,b) satisfies the estimation
Vb — ][t ?
si(fiab)| < 2t @)t [ (- a0 - ) )Ps| L (49)
V2 o
Proof. Applying Theorem 4.1 for f — Q1 and h — (") we obtain
L (n) L L
= | @i - = [ e = [ s
, (4.6)
1 1 b 2
< sr@) | [ (- a6 — P

Now if we add

b b n— n—
ﬁ/ Ql(s)ds/ f(”)(s)ds:f( 1)( f( Y /Ql

to both sides of identity (2.2) and use inequality (4.6) we obtain representation
(4.4) and bound (4.5). O

Similarly, using identity (2.6) we obtain the following result:

Theorem 4.4. Let f € C™'[a,b] for some n > 3 with (-—a)(b—-)[f(T1D]?
Lyla,b]. Let g,p:[a,b] = R be integmble functions such that p is positive and

0<g<1. Let fbll)\p f g(t)p(t)dt and let functions G2 and Qs be
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defined by (2.5) and (4.3). Then

' ' O RPN ;
téf@M@MWﬁ—Aqf®Mﬂﬂ+2:i!A(%@Mm—b+ﬂdx
n—a—3 i J i b 4
+ Z AU (Z RS H G0 ( / (:c—b—i—)\)“H“Gz(x)dx))

=0
[OI0) — " D(a /b 2
+ — (s)ds = S;(f;a,b),
(4.7
where the remainder S2(f;a,b) satisfies the estimation
1
— 1 b 2
S0 < L2 0@, )| [ (s - )0 - )™V (s) s
V2 a
Proof. Similar to the proof of Theorem 4.3. O

The following Griiss-type inequalities also hold.
Theorem 4.5. Let f € C™"[a,b] for some n > 3 and f"+1) >0 on [a,d].
Let functions Q;, i = 1,2 be defined by (4.3).

(a) Let f:“‘ f g(t)p(t)dt. Then we have representation (4.4) and
the remainder Sl(f,a b) satzsﬁes the bound

FrE) + f V@) P 0) - f 2 (a)
2 a b—a } '

1S1(fsa,8)] < <ba>||fza||oo{
(4.8)

(b) Let fbb_)\p f g(®)p(t)dt. Then we have representation (4.7) and
the remainder S2(f;a, b) satzsﬁes the bound

SO+ S0V 00 - [0 )
2 a b—a } ’

wﬂﬁmw\sw—awﬂmw{

Proof. (a) Applying Theorem 4.2 for f — Qy, h — f(™ and multiplying by
(b — a) we obtain

/91 (s)f™ (s ds—/m )ds - _a/f<”>

< 1941 [ 6= 97D s

—

[\]
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Since

b b
[ == 7 0sds = [ 25— @+ 0l s)ds
= (b=a) [f"V0) + £V (@] =2 (£ 0) - £ (@)

Using representation (2.2) and inequality (4.9) we deduce (4.8).

(b) Similar to the (a)-part.
O
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