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Second Hankel determinant for a class of
analytic functions defined by g-derivative
operator

Dorina Raducanu

Abstract
In this paper, we obtain the estimates for the second Hankel deter-
minant for a class of analytic functions defined by g-derivative operator
and subordinate to an analytic function.

1 Introduction

Let A denote the class of functions of the form
f(z) :z—l—Zanz” (1.1)
n=2

which are analytic in the open unit disk U= {z¢€ C: |z| < 1}.

Let P denote the class of analytic functions in U satisfying p(0) = 1 and
Rp(z) > 0.

We say that an analytic function f is subordinate to an analytic function
g, denoted f < g, if there exists an analytic self map w in U with w(0) = 0
such that f(2) = g(w(2)), z € U. Furthermore, if g is univalent in U, then the
subordination f < g is equivalent to f(0) = g(0) and f(U) C g(U).

Ma and Minda [17] defined two classes of analytic functions:

’
2f'(2)

f(z)
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2f"(2)

f'(2)
where ¢ € P with ¢’(0) > 0 and such that ¢ maps U onto a starlike region
with respect to 1 and symmetric with respect to the real axis.

Many subclasses of starlike and convex functions are contained in 8*(¢) and
C(¢). For example, for the function ¢ given by ¢ (2) = (1 + (1 — 2a)z)/(1 —
2),0 < a < 1, the class 8*(a) = 8* (¢4 ) is the familiar class of starlike functions
of order a and the class C(«a) = C(¢4) is the class of convex functions of order
a. The classes 8* = 8*(0) and € = €(0) are the well-known classes of starlike
and convex functions, respectively.

Following the definitions of Ma and Minda starlike and convex functions,
various classes of analytic functions defined by subordination were investigated
(e.g. see [2], [25], [30]).

For a function f € A given by (1.1) and ¢ € N = {1,2,...}, the qth Hankel
determinant is defined by

G(qﬁ):{feA:H— <¢(z),zeU}

Qg ap+1 - An+4q—1
An+1 ap+2 .- An+q
mm=| " " @=n.
An4q—1 QAniq .- Oni29-2

Note that the well-known Fekete-Szegd functional az — pa3 (see [8]), where u
is a real or complex number, is a generalized form of the Hankel determinant
Hs(1) = a3 — a%. Upper bounds for the coefficient functional |az — pa3| for
various subclasses of univalent functions have been obtained by many authors.
See, for example, the recent results in [1], [4], [24], [29]. The second Hankel
determinant Hy(2) is given by Ha(2) = agay — a3.

Pommerenke [22], [23] and later Hayman [10] investigated the Hankel de-
terminant of areally mean p-valent or univalent functions. The same problem
was also considered in [20]. Recently, the bounds for the second or third Han-
kel determinants for different subclasses of univalent or multivalent functions
have been investigated by many authors (e.g. see [6], [26], [28], [32], [33]).
Hankel determinants for various classes of bi-univalent functions have been
also considered (e.g. see [5], [21]).

The g-calculus operator theory is used in many areas of applied sciences
such as fractional calculus, optimal control, quantum mechanics. The ¢-
difference operator and the Jackson g-integral were first developed by Jackson
[11], [12]. Recently, certain classes of analytic functions defined by g-derivative
operators have been also investigated in [9], [13], [18], [27] etc.

For ¢ € (0,1) and for n € N, the g-analogue of n, or g-integer number n,
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is defined by

1—
[n], = 1qu =l4+q+¢+...+¢" " (1.2)
It is obvious that lim [n], = n.
q—1-

Let ¢ € (0,1) and f € A. The g-derivative or q-difference operator of f is
defined by (e.g. see [3], [12])

Df(x)=4 47Dz (13)
1/(0) ,z=0.
Note that 111{1 D, f(z) = f'(2).
q—1-
If f(z) = 2™ then
Dy f(2) = Dyl=") = 11__‘1; 2 = [t (1.4)
and lir{{ Dgy(2") = HI{Iﬁ [n],2" ' =n2""t

Let f € A be given by (1.1). In view of (1.3) and (1.4), we have
oo
Dyf(z) = 1+ 3 [lgans"L. (15)
n=2

A well-known result due to Marx-Strohhécker [19], [31] states that if f € €
then R4/ f/(z) > 1/2. Motivated by this implication and using the ¢-difference
operator, we define the following class of analytic functions via subordination.

Definition 1.1. Let ¢ : U — C be analytic and let g € (0,1). A function
f €A is said to be in the class 8Qq(¢) if it satisfies the subordination

Df(z) < é(2), z€U. (1.6)
Note that for ¢(z) = 1/(1—z) and ¢ — 1~ the subordination (1.6) becomes

R/ f(2) > %, zeU. (1.7)

For the particular case when ¢ is given by ¢, (2) = (14 (1 —2a)z)/(1—2),0 <
a < 1, the class 8Qq(a) = 8Q4(¢o) consists of functions f € A which satisfy

the inequality
\/Dyf(z)>a, z€l. (1.8)
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Recently, Lee et al. [14] obtained bounds for the second Hankel determi-
nant Hs(2) of functions belonging to the classes 8*(¢), €(¢) and other related
classes defined by subordination.

In this paper, making use of the same technique as in [14], we find upper
bounds for the second Hankel determinant Hs(2) for the function class 8Q4(¢).

2 Second Hankel determinant for the class 8Q,(¢)

Unless otherwise mentioned, we assume throughout this section that the func-
tion ¢ is given by the series

p(z) =1+ Az + Agz? + A28 +..., A > 0. (2.1)
The following two lemmas for the class P will be used to prove our results.

Lemma 2.1. ([7]) Let the function p € P be given by
p(z)=1+crz+c2® +e32®+..., 2z U. (2.2)

Then the sharp estimate
lenl <2, n€N (2.3)
holds.

Lemma 2.2. ([15], [16]) If the function p € P is given by (2.2), then
2c0 =i +x(d— ) (2.4)
des =3 +2(4—cDeyr —c1(4—eD)a? +2(4 — (1 — |z)?)z (2.5)
for some x,z with |x| <1 and |z| < 1.

In the next theorem, we shall determine the upper bound for the Hankel
determinant Hy(2) for the class 8Qq(¢).

Theorem 2.1. Let g € (0,1) and let § = (1 + 1/¢q)*(1 + ¢°). Suppose that
f€8Qq4(0) is given by (1.1).

1. If Ay, As and Az satisfy the inequalities

A2 £ 245 < (5 — 1) Ay and [A2As + (5 + 1)A; As — 3,4;1 _5A2| < 542
then

4¢>
‘a2a4 — ag‘ S mA%
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2. If Ay, Ay and As satisfy the inequalities

|A2 4+ 24, > (6 — 1)A; and
)
2|A2A5 + (5 +1)A1 Az — EA% — 0A3| > Ay|AT + 245 + (0 + 1) A2

or the inequalities

]

|A2 4245 < (6 — 1)A; and |ATAs 4+ (0 4+ 1)A A3 — EA;* —0A3] > 0A3

then

5
|azay — a3| < AT A + (0 + 1) A1 As — LAY — 343,

G206+ 1)
8. If Ay, Ay and As satisfy the inequalities
|A2 +245| > (6 — 1)A; and
)
24T A + (5 + 1) A1 Ay — T A] — 43| < Ay AT +240] + (0 + DA

then

2
laas—a2| < AT
~¢é(6+1)

5
49| A7 Ay + (5 + 1) Ay Ay — SAY — 643)
—2(6 + 1)A1| A2 + 2A5] — | A2 + 24,2 — (6 + 1)2 A2

]

[ ATy + (6 + 1) A1 Ay — S A} = 6A3] — Ay AT + 24| — AT

Proof. Assume that f € 8Q(¢). Then there exists an analytic self map w(z)
of U with w(0) = 0 such that

Dyf(2) = d(w(z)), z€U. (2.6)
Define the function p € P by

14 w(z)

—7:1—1—0124-02224-63234-..., zelU
1—w(z)

p(2)
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or equivalently

z)—1 1 32 CS
w(z)zigz;—kl:2 [0124-(02—21)Z2+<83—6162+41>23+...].

(2.7)
Making use of (2.7) together with (2.1) we have

o (BI1) =1 gz + 5[4 (- 5 )+ 225] 2

2 2

3
[ (03—0102—1— ) + Ascy (02—021> + ASCI} B4, (2.8)
5)

4
In view of (1.5)

, we have

2
\/m =1+ %[Q]qagz + % ([3]qa3 _ [2]5 2) 2
;< ]qa2a3+[2§a§> P

Dof(z) =1+ B q022+§ {(1+q+q2)a3_(q)a2} 2

or, by using (1.2)

4 2
1 1+q)(1+q+q° 1+q)3 4] -
+§ [(1+Q)(1+q2)a4( q)(2 1 q>a2a3+( 8q) ag] B+

Equating the coefficients of z, 22 and 23, from (2.6) and (2.8), we obtain

Aic
azzljr; (2.9)
1 A262 A162 A262
“3:1+q+q2(A102+ ot 21) (2.10)
1 A20162
ay = ————— [ Ajcs — Ajcrco + Agciep + 2=
4 (1—|—q)(1+q2)(13 1€1C2 2€1C2 5
Ared Alcd Axet AjAscd Ascd
e e Rl ch> (2.11)
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A lengthy computation leads to
— Al
4¢%26(6 + 1)
x[(—A 4+ A; — 245 + A1 Ay + (5 + 1) Az — §/4A3 — 5A3/A1)c]
+(242 — 4A; +4A5)cEco +4(0 + 1)Arcics — 40A,¢2)

aoa4 — CL%

where § = (14 1/¢)%(1 + ¢?).
In order to simplify computation, let
Ay
A= ——7—
4q26(6 + 1)

) A2
M= —AS+ A — 24+ A1 As + (0 + 1) Az — ZA? - 5A—2 (2.12)
1
Ao =247 —4A; + 445 N3 =4(6+1)A; Ay = —464;. (2.13)
It follows that
|a2a4 — Cl§| = A|)\1(341l + AQC%CQ + Aszcies + )\4C§|. (214)

Since p € P, the function p(e*z) (§ € R) is also in the class P and therefore
we can assume without loss of generality that ¢; = ¢ € [0, 2].

Substituting in (2.14) the values of ¢y and c3 from (2.4) and (2.5) respec-
tively , we get

lagay — a3 = A

1 1 1 1
c* </\1 t3ret At 4A4> + iczx(4 — ) (A2 4+ A+ M)

1 1
—&—1372(4 — )Mz + M4 — P+ §Agc(4 — ) (1 —|z*)z].

Furthermore, substituting the values of A1, A2, A3 and A4 from (2.12) and
(2.13), in view of triangle inequality, we obtain

5 A2
lagas — a2 < A [|A1A2 0+ 1) Ag = AT 02|+ (= )] AF + 245

+u*(4 = ) Ai(c—2)(c—26) + 2(6 + 1) Arc(4 — *)] == F(c,n),  (2.15)

where p = |z| € [0, 1].

Now, we maximize the function F(c, p), given by (2.15), on the closed
rectangle [0,2] x [0,1]. Since

OF (c, )

B A[c?(4 — c)| A3 4+ 2A45] + 2u(4 — ) Ay (c — 2)(c — 20)] > 0
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it follows that F'(c, ) is an increasing function of u. Hence

0213%(1 F(e,p) = F(e, 1) := G(e), (2.16)
where
G(e)=A [(|A1A2 +(6+1)As3 — ZA? — 6j§| — |A% + 24,5 - A1> ct
+4c* (|AT +242| + (1 — 6) A1) + 165 4,] .
Define

A=|A1As+ (6 +1)A3 — §/4A3 — 6A3/A1| — |A3 + 245| — Ay
B = 4]|A? + 24| +4(1 — §) A4
C =1604;.

and let ¢ =t € [0,4]. Then, in view of (2.15) and (2.16), we have

_ad?l < =A At + B .
lazaa a3|_01£16a§2G(c) 012%)(4( t“+ Bt+C)

Since
c ,B<0, A<-B/4

0?32(4(At2_‘_3t+0) _ Z?AAC+_4§2+C ,B>0, A>-B/8 or B<0, A>—-B/4
i B>0 A<-B/s.

a routine calculation yields the desired result. O

If in Theorem (2.1) we let ¢ — 1~ and set ¢(z) = 1/(1 — z), we obtain
the upper bound for the second Hankel determinant Hy(2) for the class of
functions which satisfy inequality (1.7).

Corollary 2.1. Suppose that f € A, given by (1.1), satisfies inequality (1.7).
Then

4
lasay — a§| < 3

Setting ¢(z) = (14 (1 —2a)z)/(1 — z) in Theorem 2.1, we get the estimate
for Hy(2) for the class 8Qq(a) (0 < o < 1).

Corollary 2.2. Let ¢ € (0,1) and let 6 = (1 +1/9)*(1 + ¢*). If f € 8Qq()
is given by (1.1), then

164>

e I _ 2
5+1(1 a)”

|azas — a3| <
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