An. St. Univ. Ovidius Constanta Vol. 16(2), 2008, 127-136

Mahler’s measure : proof of two conjectured
formulae

Nouressadat TOUAFEK

Abstract

In this note we prove the two formulae conjectured by D. W. Boyd
[Experiment. Math. 7 (1998), 37-82],

8 4
m(yg(m + 1)2 + y(at:2 +6x+1)+ (x+ 1)2) = §L (x-4,—-1),

20 v
m(y*(z+1)° +y(@” =100+ 1) + (2 +1)*) = L (x-3,-1),

where m denotes the logarithmic Mahler measure for two-variable poly-
nomials.

1 Introduction

The logarithmic Mahler measure of a non-zero Laurent polynomial P € C[z7!

is defined as

1 dri dz,
P)i=—— log |P ey T )| — .. .
m(P) = g [ g Pl ) TS
Here,
T ={(z1,....,20) € C"/ |z1| = ... |20| = 1}

is the n-torus. This integral is not singular and m(P) always exists. Moreover,
if P has integral coefficients, this number is nonnegative.
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In [3] Boyd computed the measure of polynomials of the form

where () is a Laurent polynomial and %k an integer parameter. He found families

of (conjectural) formulas of the type m(Fy) Lk bg,, where P, = 0 defines a
curve Fj of genus 1, rg is a rational number and
Ny,
bE,c = 4—71_2L(Ek,2)
Here N}, is the conductor of the elliptic curve Ej and L(E},2) its L-series.
In particular many experimental relations between the Mahler measure of
different polynomials are founded.

Some of these experimental relations are proved Rodriguez-Villegas [5],
Bertin [1, 2], Touafek and Kerada [6]. The main idea is to view m(P) as an
elliptic regulator, so, expressed in terms of the elliptic dilogarithm.

Also in [3], formulas of the type m(P) < rpdy are given, where 7 is a

rational number,
3
3

dr+=L'(x-r, 1) = L1 1.2)

m
and P, = 0 defines a curve of genus 0. Here L(x_¢,2) is the Dirichlet L-
function associated to the odd primitive caracter x_;.

Bloch’s formula gives L (x—f,—1) for odd primitive character xy_y as a com-
bination of Bloch-Wigner dilogarithms,

f
L1 = £ 3w tmbiep) (1)

where £ denotes a primitive of roots of unity. So, we may get m(P) as a
combination of Bloch-Wigner dilogarithm.

The notation A — B, means ” A is conjectured to be equal to B 7, that is A
and B are numerically equal to at least 25 decimal places.

After some preliminaries, we prove in section 3 the two following identities
guessed by Boyd [3]

8
m(y?(z +1)2 +y(z® + 624+ 1)+ (z 4+ 1)?) = gL (X—4,—1),

20
my*(z+1)2 +y@® —10z+1) + (z + 1)) = gL (x_3,—1).



MAHLER’S MEASURE 129

2 Preliminaries

2.1 Polylogarithms

For a positive integer k, the kth polylogarithm function is defined for |z| < 1
by

This function can be continued analytically to C\[1, co).
In order to avoid discontinuities, and to extend this function to the whole
complex plane, Zagier [7] propose the following version
k=1 .5
~ ~ 2 B. o
Li(z) =R () i 2 (log |z|) Lix—_;(x))

J=0

where Bj is the jth Bernoulli number and ﬁk denotes R or i depending on
whether k is odd or even.

This function is one-valued, real analytic in P1(C)\{0, 1,00} and continu-
ous in P1(C). Moreover, IEk satisfy some functional equations, for example

Ei(1) = (-1 Ti(a).

For k = 2,
Lo(z) := SLiy(x) + log|z|arg(l — z)

is well-known as D(x), the Bloch-Wigner dilogarithm.
The Bloch-Wigner dilogarithm satisfies the following properties

D(z) = —=D(z), D(z) = D(*3%), D(z) = D(:=3), D(x) = —D(3),
D(z) = —D(1 — z), D(z) = —D(5%7), D(z") = n Y }—y D(e*"" ) (distri-
bution formula).

2.2 Mahler measure of two-variable polynomials

Let P € Clz,y] be a polynomial in two variables, we may think of it as a
polynomial in x with coefficients which are polynomials in y and write

k
P(z,y) = ao(y) [ [ (= — z;(»))

J=1
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where z;(y) are algebraic functions of y. Integrating the z variable using
Jensen’s formula we obtain

m(P) =miao) + 3 g [ dog* lay ) - @

where log™ |2| = log|z| if |2| > 1 and 0 otherwise.

Let

12(2)(x,y) = ilog|x|d(argy) — ilog |y|d(argz)
it’s a differential form on the variety
v =A{P(x,y) =0} N{lz| =1,[y[ = 1}.

The differential form 72(2) satisfy the following properties

* 12(2)(z,y) = —m2(2)(y, x)

o 72(2)(w122, ) = n2(2)(w1,y) + 12(2) (22, y)

o 72(2)(w,1 — x) = dD(z), where D(z) = iD(x)

o ifa£p3

t—« t—«

RO -ai-F) = mOE=E1- ) i) a9
+ 172(2)(B — a,t — B).(Tate's formula)

Hence n2(2)(t — 1,t) = —n2(2)(t,1 — t) etc...
For each j, the set

v =1{(z;(),y) : [yl =1 and |z;(y)| > 1}

is a direct path (or a union of such) inside of C' = {P(z,y) = 0}. The set U~;
precisely coincides with

y={(z,y) € C: |yl =1,[z] > 1}

Therefore (2) may be rewritten as

m(P) = mian) + 5z [ 0ol = miao) + 55 [ @)

Or equivalently
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When the differential form 72(2) is exact and 9 # 0 where
Oy ={P(z,y) =0} n{fz[ =1, [yl =1},

in this case we can integrate using Stokes formula.

We can guarantee that 72(2) is exact by having {z, y} is trivial in K2(C(C))®
Q where C = {P(x,y) = 0}. When the polynomial P is tempered, this condi-
tion is satisfied (see Villegas [4]).

2.3 Tempered polynomial

A polynomial in two variables is tempered if the polynomials of the faces of
its Newton polygon has only roots of unity.

When drawing the convex hull of points (i, ) € Z? corresponding to the
monomials ai,jxiyj, a;; # 0, you also draw points located on the faces. The
polynomial of the face is a polynomial in one variable ¢ which is a combination
of the monomials 1, ¢, t2,.... The coefficients of the combination are given when
going along the face, that is a; ; if the lattice point of the face belongs to the
convex hull and 0 otherwise. The two polynomials

P(z,y) =y (x+ 1)? + y(@® + 6z + 1) + (z + 1)?

and
Qz,y) =y’ (x + 1) + y(a® — 10z + 1) + (z + 1)°

are tempered.

3 Results

For the polynomials
P(z,y) =y*(x + 1) +y(a® + 62 + 1) + (v + 1)?

and
Qz,y) = y*(x +1)° + y(2* = 10z + 1) + (z + 1)?
Boyd [3] guessed

7 8 7 20
m(P) = 5L (x-4,-1), m(Q) = 5L (x-3,~1) (3)
Therefore, by Bloch’s formula (1), (3) may be rewritten as
2 16 . 2 10 .
m(P) = 5—D(i), m(Q) = —D(j)

2mi

where j =75 .
In the following we prove these two formulae.
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Theorem 1 We have the following identity
m(y?(x +1)? +y(z® + 62+ 1)+ (z + 1)%) = ng (x—1,-1).
Proof. Let P be the polynomial defined by
P(z,y) = y*(x +1)* + y(a® + 62 + 1) + (v + 1)

It defines a rational curve with the double point (1, —1).
Let z=X+1lety=Y —1, so P(z,y) = 0 becomes,

(X +2)Y)? = X3(Y - 1).

(X +2)Y

Y-l=(—% )2

Let t = %, so y = t? and the equation P(z,y) = 0 becomes
(z+ 1) + (22 + 62+ )t* + (x + 1)? = 0.

Hence we get the following parametrization

y(t) = ¢
o - -
o - Ly
We have ] y 1
np) =g [ oelel = o [ o)
where

v={@+ 1%+ (@ + 62+ )y + (2 + 1) =0} N {ly| = 1,]z| > 1}
and
m2(2)(x,y) = ilog|z|d(argy) — ilog|y|d(argx).
Using the parametrization, we get

m(P) = 5o [ @@ @0 + o [ mOEE.0) @

27 21
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where
= {t:lm @ 2 1l =1} = {t:t =¥ ,0 ¢ 0,7}

and
o = {t e ()] = 1, Jy(t)| = 1} = {t t=c't 0e [ﬂ,zw]}

Using Tate’s formula, we get
n2(2)(t = 1,1) = —na2(2) (¢, 1 — 1),
m2(2)(t+ 1,t) = —n2(2)(=t, 1+ 1),
m2(2)(1+12,8%) = —mp(2)(—17, 1 + ).

So
REE,Y0) = @)1 E) - SR+,
+ 2nm2(2)(t+1,t) — 21m2(2)(t — 1, 1)
= IR - )+ @)1+
— 2ma(2)(—t, 1 4+ t) + 2m2(2) (¢, 1 — ¢).
Hence
L N (t),y(t) = —— —ED( 3)+2D(—t3)—2D(—t)+2D(t) i
i | OEOO) = 55| -5P0)+ 5 1
which gives
1 8 .
2mi /, n2(2)(z1(8), y(t)) = 3—7TD(Z)~ (5)
By the same arguments we get
1 8 .
37 | mO@0.@) = 506, ()
Using (5) and (6), (4) becomes
m(P) = 22D() = 31 (x4, ~1).
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Theorem 2 We have the following identity

20
my (z+ 12 +y@® —10z+1) + (z+ 1)) = gL (x_3,—1).

Proof. Let Q be the polynomial defined by
Qz,y) =y (x +1)? +y(z® — 10z + 1) + (z + 1)~

It defines a rational curve with the double point (1, 1).
Let t=X+1ety=Y +1, s0 Q(x,y) = 0 becomes,

(X +2)Y)? = =3X%(Y +1).

i.e.
(X +2)Y,
Y+1=—(—F—F)".
( 75X )
Let t = (X\/Eigy, so y = —t% and the equation Q(x,y) = 0 becomes

(x+1)%* — (22 =102+ 1)t* + (z + 1)* = 0.

Hence we get the following parametrization

22 +V3t+1 22— V3t+1
y(t) = —t*,01(t) = ——————, 22(t) = ————.
2 —\/3t+1 2 4+3t+1
‘We have
_— tog ol = - [ (@)
T T omi e BTy T 2w )Y
where

v={@+ 1%+ (@® =100+ )y + (z+1)* =0} N {[y[ = L, ]| > 1}.
Using the parametrization , we get

m@—i/mmwmw:f/mmwmw

C2mi

where

=1tz (@) = 1 y)] = 1) = {t t=ie's 0 e [0,277]}
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and
o = {t |za(t)] > 1, y(t)| = 1} = {t t=—ie'% 0 € [O,ZW]}.
Using Tate’s formula, we get

t—8% , t—& . t—=& t—&

n2(2)(z1(t),y(t)) = 2m2(2)( % . ) 4 22(2)( = 11— — )
t t t t
+ 2772(2)(—§71—_—§6)+27I2(2)(_——6a1—_—§—6)

Hence

_ 2 R A YAk SRR VLAY Vo

Mm@ = g [ @D(=E®) +aD( ) + aD(=g) +dD()

_ 2 [ t-& t—& o tn]

where & = €'5. So
m(Q) = = [D(its) ~ D(~ito)] ™)

Using the fact that i = j and D(—j) = —2D(j), (7) becomes

m(@) == D() = 3L (x5, 1),

™
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