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Mahler’s measure : proof of two conjectured

formulae

Nouressadat TOUAFEK

Abstract

In this note we prove the two formulae conjectured by D. W. Boyd
[Experiment. Math. 7 (1998), 37-82],

m(y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2) =
8

3
L

′
(χ−4,−1),

m(y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2) =
20

3
L

′
(χ−3,−1),

where m denotes the logarithmic Mahler measure for two-variable poly-
nomials.

1 Introduction

The logarithmic Mahler measure of a non-zero Laurent polynomial P ∈ C[x±1
1 , ..., x±1

n ]
is defined as

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, ..., xn)| dx1

x1
...

dxn

xn
.

Here,
Tn = {(x1, ..., xn) ∈ Cn/ |x1| = ... |xn| = 1}

is the n-torus. This integral is not singular and m(P ) always exists. Moreover,
if P has integral coefficients, this number is nonnegative.
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In [3] Boyd computed the measure of polynomials of the form

Pk(x, y) = k + Q(x, y)

where Q is a Laurent polynomial and k an integer parameter. He found families
of (conjectural) formulas of the type m(Pk) ?= rk bEk

, where Pk = 0 defines a
curve Ek of genus 1, rk is a rational number and

bEk
:=

Nk

4π2
L(Ek, 2)

Here Nk is the conductor of the elliptic curve Ek and L(Ek, 2) its L-series.
In particular many experimental relations between the Mahler measure of
different polynomials are founded.

Some of these experimental relations are proved Rodriguez-Villegas [5],
Bertin [1, 2], Touafek and Kerada [6]. The main idea is to view m(P ) as an
elliptic regulator, so, expressed in terms of the elliptic dilogarithm.

Also in [3], formulas of the type m(Pk) ?= rkdf are given, where rk is a
rational number,

df := L
′
(χ−f ,−1) =

f
3
2

4π
L(χ−f , 2)

and Pk = 0 defines a curve of genus 0. Here L(χ−f , 2) is the Dirichlet L-
function associated to the odd primitive caracter χ−f .
Bloch’s formula gives L

′
(χ−f ,−1) for odd primitive character χ−f as a com-

bination of Bloch-Wigner dilogarithms,

L
′
(χ−f ,−1) =

f

4π

f∑
m=1

χ−f (m)D(ξm
f ) (1)

where ξf denotes a primitive of roots of unity. So, we may get m(P ) as a
combination of Bloch-Wigner dilogarithm.
The notation A

?= B, means ” A is conjectured to be equal to B ”, that is A
and B are numerically equal to at least 25 decimal places.

After some preliminaries, we prove in section 3 the two following identities
guessed by Boyd [3]

m(y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2) =
8
3
L

′
(χ−4,−1),

m(y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2) =
20
3

L
′
(χ−3,−1).
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2 Preliminaries

2.1 Polylogarithms

For a positive integer k, the kth polylogarithm function is defined for |x| < 1
by

Lik(x) :=
∞∑

n=1

xn

nk
, x ∈ C.

This function can be continued analytically to C\[1,∞).
In order to avoid discontinuities, and to extend this function to the whole

complex plane, Zagier [7] propose the following version

L̂k(x) := �̂k(
k−1∑
j=0

2jBj

j!
(log |x|)jLik−j(x))

where Bj is the jth Bernoulli number and �̂k denotes � or i� depending on
whether k is odd or even.

This function is one-valued, real analytic in P1(C)\{0, 1,∞} and continu-
ous in P1(C). Moreover, L̂k satisfy some functional equations, for example

L̂k(
1
x

) = (−1)k−1L̂k(x).

For k = 2,
L̂2(x) := �Li2(x) + log |x|arg(1 − x)

is well-known as D(x), the Bloch-Wigner dilogarithm.
The Bloch-Wigner dilogarithm satisfies the following properties

D(x) = −D(x), D(x) = D(x−1
x ), D(x) = D( 1

1−x ), D(x) = −D( 1
x),

D(x) = −D(1 − x), D(x) = −D( x
x−1), D(xn) = n

∑n−1
k=0 D(e

2πik
n x) (distri-

bution formula).

2.2 Mahler measure of two-variable polynomials

Let P ∈ C[x, y] be a polynomial in two variables, we may think of it as a
polynomial in x with coefficients which are polynomials in y and write

P (x, y) = a0(y)
k∏

j=1

(x − xj(y))
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where xj(y) are algebraic functions of y. Integrating the x variable using
Jensen’s formula we obtain

m(P ) = m(a0) +
k∑

j=1

1
2πi

∫
|y|=1

log+ |xj(y)|dy

y
. (2)

where log+ |z| = log |z| if |z| ≥ 1 and 0 otherwise.
Let

η2(2)(x, y) = i log |x|d(argy) − i log |y|d(argx)

it’s a differential form on the variety

γ = {P (x, y) = 0} ∩ {|x| = 1, |y| ≥ 1} .

The differential form η2(2) satisfy the following properties

• η2(2)(x, y) = −η2(2)(y, x)

• η2(2)(x1x2, y) = η2(2)(x1, y) + η2(2)(x2, y)

• η2(2)(x, 1 − x) = dD̂(x), where D̂(x) = iD(x)

• if α �= β

η2(2)(t − α, t − β) = η2(2)(
t − α

β − α
, 1 − t − α

β − α
) + η2(2)(t − α, α − β)

+ η2(2)(β − α, t − β).(Tate′s formula)

Hence η2(2)(t − 1, t) = −η2(2)(t, 1 − t) etc...
For each j, the set

γj = {(xj(y), y) : |y| = 1 and |xj(y)| ≥ 1}
is a direct path (or a union of such) inside of C = {P (x, y) = 0}. The set ∪γj

precisely coincides with

γ = {(x, y) ∈ C : |y| = 1, |x| ≥ 1}
Therefore (2) may be rewritten as

m(P ) = m(a0) +
1

2πi

∫
γ

log |x|dy

y
= m(a0) +

1
2πi

∫
γ

η2(2)(x, y).

Or equivalently

m(P ) = m(a0) +
1

2πi

∫
γ

log |x|dy

y
= m(a0) +

1
2πi

∑
j

∫
γj

η2(2)(xj(y), y).
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When the differential form η2(2) is exact and ∂γ �= 0 where

∂γ = {P (x, y) = 0} ∩ {|x| = 1, |y| = 1} ,

in this case we can integrate using Stokes formula.
We can guarantee that η2(2) is exact by having {x, y} is trivial in K2(C(C))⊗

Q where C = {P (x, y) = 0}. When the polynomial P is tempered, this condi-
tion is satisfied (see Villegas [4]).

2.3 Tempered polynomial

A polynomial in two variables is tempered if the polynomials of the faces of
its Newton polygon has only roots of unity.

When drawing the convex hull of points (i, j) ∈ Z2 corresponding to the
monomials ai,jx

iyj, ai,j �= 0, you also draw points located on the faces. The
polynomial of the face is a polynomial in one variable t which is a combination
of the monomials 1, t, t2,.... The coefficients of the combination are given when
going along the face, that is ai,j if the lattice point of the face belongs to the
convex hull and 0 otherwise. The two polynomials

P (x, y) = y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2

and
Q(x, y) = y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2

are tempered.

3 Results

For the polynomials

P (x, y) = y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2

and
Q(x, y) = y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2

Boyd [3] guessed

m(P ) ?=
8
3
L

′
(χ−4,−1), m(Q) ?=

20
3

L
′
(χ−3,−1) (3)

Therefore, by Bloch’s formula (1), (3) may be rewritten as

m(P ) ?=
16
3π

D(i), m(Q) ?=
10
π

D(j)

where j = e
2πi
3 .

In the following we prove these two formulae.
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Theorem 1 We have the following identity

m(y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2) =
8
3
L

′
(χ−4,−1).

Proof. Let P be the polynomial defined by

P (x, y) = y2(x + 1)2 + y(x2 + 6x + 1) + (x + 1)2.

It defines a rational curve with the double point (1,−1).
Let x = X + 1 et y = Y − 1, so P (x, y) = 0 becomes,

((X + 2)Y )2 = X2(Y − 1).

i.e.

Y − 1 = (
(X + 2)Y

X
)2.

Let t = (X+2)Y
X , so y = t2 and the equation P (x, y) = 0 becomes

(x + 1)2t4 + (x2 + 6x + 1)t2 + (x + 1)2 = 0.

Hence we get the following parametrization

y(t) = t2

x1(t) = − (t3 − 1)(t + 1)
(t − 1)(t3 + 1)

x2(t) = − (t3 + 1)(t − 1)
(t + 1)(t3 − 1)

.

We have
m(P ) =

1
2πi

∫
|y|=1

log |x|dy

y
=

1
2πi

∫
γ

η2(2)(x, y)

where

γ =
{
(x + 1)2y2 + (x2 + 6x + 1)y + (x + 1)2 = 0

} ∩ {|y| = 1, |x| ≥ 1}

and
η2(2)(x, y) = i log |x|d(argy) − i log |y|d(argx).

Using the parametrization, we get

m(P ) =
1

2πi

∫
γ1

η2(2)(x1(t), y(t)) +
1

2πi

∫
γ2

η2(2)(x2(t), y(t)) (4)
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where

γ1 = {t : |x1(t)| ≥ 1, |y(t)| = 1} =
{
t : t = ei θ

2 , θ ∈ [0, π]
}

and
γ2 = {t : |x2(t)| ≥ 1, |y(t)| = 1} =

{
t : t = ei θ

2 , θ ∈ [π, 2π]
}

Using Tate’s formula, we get

η2(2)(t − 1, t) = −η2(2)(t, 1 − t),

η2(2)(t + 1, t) = −η2(2)(−t, 1 + t),

η2(2)(1 + t3, t3) = −η2(2)(−t3, 1 + t3).

So

η2(2)(x1(t), y(t)) =
2
3
η2(2)(1 − t3, t3) − 2

3
η2(2)(1 + t3, t3)

+ 2η2(2)(t + 1, t) − 2η2(2)(t − 1, t)

= −2
3
η2(2)(t3, 1 − t3) +

2
3
η2(2)(−t3, 1 + t3)

− 2η2(2)(−t, 1 + t) + 2η2(2)(t, 1 − t).

Hence

1
2πi

∫
γ1

η2(2)(x1(t), y(t)) =
i

2πi

[
−2

3
D(t3) +

2
3
D(−t3) − 2D(−t) + 2D(t)

]i

1

which gives
1

2πi

∫
γ1

η2(2)(x1(t), y(t)) =
8
3π

D(i). (5)

By the same arguments we get

1
2πi

∫
γ2

η2(2)(x2(t), y(t)) =
8
3π

D(i). (6)

Using (5) and (6), (4) becomes

m(P ) =
16
3π

D(i) =
8
3
L

′
(χ−4,−1).
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Theorem 2 We have the following identity

m(y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2) =
20
3

L
′
(χ−3,−1).

Proof. Let Q be the polynomial defined by

Q(x, y) = y2(x + 1)2 + y(x2 − 10x + 1) + (x + 1)2.

It defines a rational curve with the double point (1, 1).
Let x = X + 1 et y = Y + 1, so Q(x, y) = 0 becomes,

((X + 2)Y )2 = −3X2(Y + 1).

i.e.

Y + 1 = −(
(X + 2)Y√

3X
)2.

Let t = (X+2)Y√
3X

, so y = −t2 and the equation Q(x, y) = 0 becomes

(x + 1)2t4 − (x2 − 10x + 1)t2 + (x + 1)2 = 0.

Hence we get the following parametrization

y(t) = −t2, x1(t) = − t2 +
√

3t + 1
t2 −√

3t + 1
, x2(t) = − t2 −√

3t + 1
t2 +

√
3t + 1

.

We have

m(Q) =
1

2πi

∫
|y|=1

log |x|dy

y
=

1
2πi

∫
γ

η2(2)(x, y),

where

γ =
{
(x + 1)2y2 + (x2 − 10x + 1)y + (x + 1)2 = 0

} ∩ {|y| = 1, |x| ≥ 1} .

Using the parametrization , we get

m(Q) =
1

2πi

∫
γ1

η2(2)(x1(t), y(t)) =
1

2πi

∫
γ2

η2(2)(x2(t), y(t)),

where

γ1 = {t : |x1(t)| ≥ 1, |y(t)| = 1} =
{

t : t = iei θ
2 , θ ∈ [0, 2π]

}
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and

γ2 = {t : |x2(t)| ≥ 1, |y(t)| = 1} =
{

t : t = −iei θ
2 , θ ∈ [0, 2π]

}
.

Using Tate’s formula, we get

η2(2)(x1(t), y(t)) = 2η2(2)(
t − ξ6

−ξ6
, 1 − t − ξ6

−ξ6
) + 2η2(2)(

t − ξ6

−ξ6

, 1 − t − ξ6

−ξ6

)

+ 2η2(2)(
t

−ξ6
, 1 − t

−ξ6
) + 2η2(2)(

t

−ξ6

, 1 − t

−ξ6

).

Hence

m(Q) =
2

2πi

∫
γ1

(dD̂(
t − ξ6

−ξ6
) + dD̂(

t − ξ6

−ξ6

) + dD̂(
t

−ξ6
) + dD̂(

t

−ξ6

))

=
2i

2πi

[
(D(

t − ξ6

−ξ6
) + D(

t − ξ6

−ξ6

) + D(
t

−ξ6
) + D(

t

−ξ6

))
]−i

i

where ξ6 = ei π
6 . So

m(Q) =
4
π

[D(iξ6) − D(−iξ6)] . (7)

Using the fact that iξ6 = j and D(−j) = − 3
2D(j), (7) becomes

m(Q) =
10
π

D(j) =
20
3

L
′
(χ−3,−1).
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